L(s) = 1 | + 2i·2-s + 3i·3-s − 4·4-s − 6·6-s − 32i·7-s − 8i·8-s − 9·9-s − 60·11-s − 12i·12-s − 34i·13-s + 64·14-s + 16·16-s − 42i·17-s − 18i·18-s + 76·19-s + ⋯ |
L(s) = 1 | + 0.707i·2-s + 0.577i·3-s − 0.5·4-s − 0.408·6-s − 1.72i·7-s − 0.353i·8-s − 0.333·9-s − 1.64·11-s − 0.288i·12-s − 0.725i·13-s + 1.22·14-s + 0.250·16-s − 0.599i·17-s − 0.235i·18-s + 0.917·19-s + ⋯ |
Λ(s)=(=(150s/2ΓC(s)L(s)(0.447+0.894i)Λ(4−s)
Λ(s)=(=(150s/2ΓC(s+3/2)L(s)(0.447+0.894i)Λ(1−s)
Degree: |
2 |
Conductor: |
150
= 2⋅3⋅52
|
Sign: |
0.447+0.894i
|
Analytic conductor: |
8.85028 |
Root analytic conductor: |
2.97494 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ150(49,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 150, ( :3/2), 0.447+0.894i)
|
Particular Values
L(2) |
≈ |
0.700717−0.433067i |
L(21) |
≈ |
0.700717−0.433067i |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1−2iT |
| 3 | 1−3iT |
| 5 | 1 |
good | 7 | 1+32iT−343T2 |
| 11 | 1+60T+1.33e3T2 |
| 13 | 1+34iT−2.19e3T2 |
| 17 | 1+42iT−4.91e3T2 |
| 19 | 1−76T+6.85e3T2 |
| 23 | 1−1.21e4T2 |
| 29 | 1+6T+2.43e4T2 |
| 31 | 1+232T+2.97e4T2 |
| 37 | 1+134iT−5.06e4T2 |
| 41 | 1−234T+6.89e4T2 |
| 43 | 1+412iT−7.95e4T2 |
| 47 | 1−360iT−1.03e5T2 |
| 53 | 1−222iT−1.48e5T2 |
| 59 | 1+660T+2.05e5T2 |
| 61 | 1+490T+2.26e5T2 |
| 67 | 1+812iT−3.00e5T2 |
| 71 | 1−120T+3.57e5T2 |
| 73 | 1−746iT−3.89e5T2 |
| 79 | 1+152T+4.93e5T2 |
| 83 | 1+804iT−5.71e5T2 |
| 89 | 1−678T+7.04e5T2 |
| 97 | 1+194iT−9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.70074530777439346284895072078, −10.91310889903058461504184134554, −10.39420403241401402880704709064, −9.341902598557670757364025634196, −7.77435807833639952018293444663, −7.36434527055723895621211508998, −5.63854425080443732257268933434, −4.63354267210361173861952079542, −3.29529185605881722530371142892, −0.38565541424593073791654779510,
1.94805511515521008373367675398, 2.98999304149075140160991469129, 5.06377722316938025968189036615, 5.97953053592003115708021121908, 7.68355861699815976034773466784, 8.670232017103985326615636378902, 9.613172678273575213380080315908, 10.93556765869403135531574427146, 11.84566126881147538660492756759, 12.62930005829372530495542724517