Properties

Label 150.4.c.a
Level 150150
Weight 44
Character orbit 150.c
Analytic conductor 8.8508.850
Analytic rank 00
Dimension 22
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [150,4,Mod(49,150)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(150, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("150.49");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: N N == 150=2352 150 = 2 \cdot 3 \cdot 5^{2}
Weight: k k == 4 4
Character orbit: [χ][\chi] == 150.c (of order 22, degree 11, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 8.850286500868.85028650086
Analytic rank: 00
Dimension: 22
Coefficient field: Q(1)\Q(\sqrt{-1})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x2+1 x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2,a3]\Z[a_1, a_2, a_3]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 30)
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of i=1i = \sqrt{-1}. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+2iq2+3iq34q46q632iq78iq89q960q1112iq1234iq13+64q14+16q1642iq1718iq18+76q19+96q21120iq22++540q99+O(q100) q + 2 i q^{2} + 3 i q^{3} - 4 q^{4} - 6 q^{6} - 32 i q^{7} - 8 i q^{8} - 9 q^{9} - 60 q^{11} - 12 i q^{12} - 34 i q^{13} + 64 q^{14} + 16 q^{16} - 42 i q^{17} - 18 i q^{18} + 76 q^{19} + 96 q^{21} - 120 i q^{22} + \cdots + 540 q^{99} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q8q412q618q9120q11+128q14+32q16+152q19+192q21+48q24+136q2612q29464q31+168q34+72q36+204q39+468q41+480q44++1080q99+O(q100) 2 q - 8 q^{4} - 12 q^{6} - 18 q^{9} - 120 q^{11} + 128 q^{14} + 32 q^{16} + 152 q^{19} + 192 q^{21} + 48 q^{24} + 136 q^{26} - 12 q^{29} - 464 q^{31} + 168 q^{34} + 72 q^{36} + 204 q^{39} + 468 q^{41} + 480 q^{44}+ \cdots + 1080 q^{99}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/150Z)×\left(\mathbb{Z}/150\mathbb{Z}\right)^\times.

nn 101101 127127
χ(n)\chi(n) 11 1-1

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
49.1
1.00000i
1.00000i
2.00000i 3.00000i −4.00000 0 −6.00000 32.0000i 8.00000i −9.00000 0
49.2 2.00000i 3.00000i −4.00000 0 −6.00000 32.0000i 8.00000i −9.00000 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 150.4.c.a 2
3.b odd 2 1 450.4.c.k 2
4.b odd 2 1 1200.4.f.u 2
5.b even 2 1 inner 150.4.c.a 2
5.c odd 4 1 30.4.a.a 1
5.c odd 4 1 150.4.a.e 1
15.d odd 2 1 450.4.c.k 2
15.e even 4 1 90.4.a.d 1
15.e even 4 1 450.4.a.b 1
20.d odd 2 1 1200.4.f.u 2
20.e even 4 1 240.4.a.c 1
20.e even 4 1 1200.4.a.bk 1
35.f even 4 1 1470.4.a.a 1
40.i odd 4 1 960.4.a.j 1
40.k even 4 1 960.4.a.s 1
45.k odd 12 2 810.4.e.m 2
45.l even 12 2 810.4.e.e 2
60.l odd 4 1 720.4.a.b 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
30.4.a.a 1 5.c odd 4 1
90.4.a.d 1 15.e even 4 1
150.4.a.e 1 5.c odd 4 1
150.4.c.a 2 1.a even 1 1 trivial
150.4.c.a 2 5.b even 2 1 inner
240.4.a.c 1 20.e even 4 1
450.4.a.b 1 15.e even 4 1
450.4.c.k 2 3.b odd 2 1
450.4.c.k 2 15.d odd 2 1
720.4.a.b 1 60.l odd 4 1
810.4.e.e 2 45.l even 12 2
810.4.e.m 2 45.k odd 12 2
960.4.a.j 1 40.i odd 4 1
960.4.a.s 1 40.k even 4 1
1200.4.a.bk 1 20.e even 4 1
1200.4.f.u 2 4.b odd 2 1
1200.4.f.u 2 20.d odd 2 1
1470.4.a.a 1 35.f even 4 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T72+1024 T_{7}^{2} + 1024 acting on S4new(150,[χ])S_{4}^{\mathrm{new}}(150, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T2+4 T^{2} + 4 Copy content Toggle raw display
33 T2+9 T^{2} + 9 Copy content Toggle raw display
55 T2 T^{2} Copy content Toggle raw display
77 T2+1024 T^{2} + 1024 Copy content Toggle raw display
1111 (T+60)2 (T + 60)^{2} Copy content Toggle raw display
1313 T2+1156 T^{2} + 1156 Copy content Toggle raw display
1717 T2+1764 T^{2} + 1764 Copy content Toggle raw display
1919 (T76)2 (T - 76)^{2} Copy content Toggle raw display
2323 T2 T^{2} Copy content Toggle raw display
2929 (T+6)2 (T + 6)^{2} Copy content Toggle raw display
3131 (T+232)2 (T + 232)^{2} Copy content Toggle raw display
3737 T2+17956 T^{2} + 17956 Copy content Toggle raw display
4141 (T234)2 (T - 234)^{2} Copy content Toggle raw display
4343 T2+169744 T^{2} + 169744 Copy content Toggle raw display
4747 T2+129600 T^{2} + 129600 Copy content Toggle raw display
5353 T2+49284 T^{2} + 49284 Copy content Toggle raw display
5959 (T+660)2 (T + 660)^{2} Copy content Toggle raw display
6161 (T+490)2 (T + 490)^{2} Copy content Toggle raw display
6767 T2+659344 T^{2} + 659344 Copy content Toggle raw display
7171 (T120)2 (T - 120)^{2} Copy content Toggle raw display
7373 T2+556516 T^{2} + 556516 Copy content Toggle raw display
7979 (T+152)2 (T + 152)^{2} Copy content Toggle raw display
8383 T2+646416 T^{2} + 646416 Copy content Toggle raw display
8989 (T678)2 (T - 678)^{2} Copy content Toggle raw display
9797 T2+37636 T^{2} + 37636 Copy content Toggle raw display
show more
show less