Properties

Label 4-150e2-1.1-c3e2-0-0
Degree $4$
Conductor $22500$
Sign $1$
Analytic cond. $78.3275$
Root an. cond. $2.97494$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·4-s − 9·9-s − 96·11-s + 16·16-s − 280·19-s − 420·29-s + 544·31-s + 36·36-s − 396·41-s + 384·44-s + 670·49-s − 480·59-s + 604·61-s − 64·64-s − 1.53e3·71-s + 1.12e3·76-s + 1.28e3·79-s + 81·81-s − 420·89-s + 864·99-s + 3.44e3·101-s + 1.22e3·109-s + 1.68e3·116-s + 4.25e3·121-s − 2.17e3·124-s + 127-s + 131-s + ⋯
L(s)  = 1  − 1/2·4-s − 1/3·9-s − 2.63·11-s + 1/4·16-s − 3.38·19-s − 2.68·29-s + 3.15·31-s + 1/6·36-s − 1.50·41-s + 1.31·44-s + 1.95·49-s − 1.05·59-s + 1.26·61-s − 1/8·64-s − 2.56·71-s + 1.69·76-s + 1.82·79-s + 1/9·81-s − 0.500·89-s + 0.877·99-s + 3.39·101-s + 1.07·109-s + 1.34·116-s + 3.19·121-s − 1.57·124-s + 0.000698·127-s + 0.000666·131-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 22500 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 22500 ^{s/2} \, \Gamma_{\C}(s+3/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(22500\)    =    \(2^{2} \cdot 3^{2} \cdot 5^{4}\)
Sign: $1$
Analytic conductor: \(78.3275\)
Root analytic conductor: \(2.97494\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 22500,\ (\ :3/2, 3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(0.3506597128\)
\(L(\frac12)\) \(\approx\) \(0.3506597128\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( 1 + p^{2} T^{2} \)
3$C_2$ \( 1 + p^{2} T^{2} \)
5 \( 1 \)
good7$C_2^2$ \( 1 - 670 T^{2} + p^{6} T^{4} \)
11$C_2$ \( ( 1 + 48 T + p^{3} T^{2} )^{2} \)
13$C_2^2$ \( 1 - 4390 T^{2} + p^{6} T^{4} \)
17$C_2^2$ \( 1 + 3170 T^{2} + p^{6} T^{4} \)
19$C_2$ \( ( 1 + 140 T + p^{3} T^{2} )^{2} \)
23$C_2^2$ \( 1 - 19150 T^{2} + p^{6} T^{4} \)
29$C_2$ \( ( 1 + 210 T + p^{3} T^{2} )^{2} \)
31$C_2$ \( ( 1 - 272 T + p^{3} T^{2} )^{2} \)
37$C_2^2$ \( 1 + 10250 T^{2} + p^{6} T^{4} \)
41$C_2$ \( ( 1 + 198 T + p^{3} T^{2} )^{2} \)
43$C_2^2$ \( 1 - 87190 T^{2} + p^{6} T^{4} \)
47$C_2^2$ \( 1 - 160990 T^{2} + p^{6} T^{4} \)
53$C_2^2$ \( 1 - 291670 T^{2} + p^{6} T^{4} \)
59$C_2$ \( ( 1 + 240 T + p^{3} T^{2} )^{2} \)
61$C_2$ \( ( 1 - 302 T + p^{3} T^{2} )^{2} \)
67$C_2^2$ \( 1 - 246310 T^{2} + p^{6} T^{4} \)
71$C_2$ \( ( 1 + 768 T + p^{3} T^{2} )^{2} \)
73$C_2^2$ \( 1 - 549550 T^{2} + p^{6} T^{4} \)
79$C_2$ \( ( 1 - 640 T + p^{3} T^{2} )^{2} \)
83$C_2^2$ \( 1 - 1022470 T^{2} + p^{6} T^{4} \)
89$C_2$ \( ( 1 + 210 T + p^{3} T^{2} )^{2} \)
97$C_2^2$ \( 1 + 527810 T^{2} + p^{6} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.86979543112994399977079057624, −12.56129776480021685096843606329, −11.78821021563569664780997133751, −11.21083133443429788769480921893, −10.59147494896833370313373735651, −10.22576905109508936003417735427, −10.12795762288647170570320878774, −8.823280012398518663406337505394, −8.815830045508566178127693547766, −8.008723332242600693263282145555, −7.82624810855910269559865874379, −6.96407135356038098304008064783, −6.13617407268324372371099619580, −5.76280917360728651188354811322, −4.89803569275988450126733203883, −4.54470384811990768391320096075, −3.64809476994345000178108283069, −2.58079993469889873831825000244, −2.15063714118031055240266891461, −0.26970457103126915749408202189, 0.26970457103126915749408202189, 2.15063714118031055240266891461, 2.58079993469889873831825000244, 3.64809476994345000178108283069, 4.54470384811990768391320096075, 4.89803569275988450126733203883, 5.76280917360728651188354811322, 6.13617407268324372371099619580, 6.96407135356038098304008064783, 7.82624810855910269559865874379, 8.008723332242600693263282145555, 8.815830045508566178127693547766, 8.823280012398518663406337505394, 10.12795762288647170570320878774, 10.22576905109508936003417735427, 10.59147494896833370313373735651, 11.21083133443429788769480921893, 11.78821021563569664780997133751, 12.56129776480021685096843606329, 12.86979543112994399977079057624

Graph of the $Z$-function along the critical line