Properties

Label 150.4.c.c
Level 150150
Weight 44
Character orbit 150.c
Analytic conductor 8.8508.850
Analytic rank 00
Dimension 22
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [150,4,Mod(49,150)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(150, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("150.49");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: N N == 150=2352 150 = 2 \cdot 3 \cdot 5^{2}
Weight: k k == 4 4
Character orbit: [χ][\chi] == 150.c (of order 22, degree 11, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 8.850286500868.85028650086
Analytic rank: 00
Dimension: 22
Coefficient field: Q(1)\Q(\sqrt{-1})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x2+1 x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2,a3]\Z[a_1, a_2, a_3]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 30)
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of i=1i = \sqrt{-1}. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+2iq23iq34q4+6q64iq78iq89q948q11+12iq122iq13+8q14+16q16114iq1718iq18140q1912q2196iq22++432q99+O(q100) q + 2 i q^{2} - 3 i q^{3} - 4 q^{4} + 6 q^{6} - 4 i q^{7} - 8 i q^{8} - 9 q^{9} - 48 q^{11} + 12 i q^{12} - 2 i q^{13} + 8 q^{14} + 16 q^{16} - 114 i q^{17} - 18 i q^{18} - 140 q^{19} - 12 q^{21} - 96 i q^{22} + \cdots + 432 q^{99} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q8q4+12q618q996q11+16q14+32q16280q1924q2148q24+8q26420q29+544q31+456q34+72q3612q39396q41+384q44++864q99+O(q100) 2 q - 8 q^{4} + 12 q^{6} - 18 q^{9} - 96 q^{11} + 16 q^{14} + 32 q^{16} - 280 q^{19} - 24 q^{21} - 48 q^{24} + 8 q^{26} - 420 q^{29} + 544 q^{31} + 456 q^{34} + 72 q^{36} - 12 q^{39} - 396 q^{41} + 384 q^{44}+ \cdots + 864 q^{99}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/150Z)×\left(\mathbb{Z}/150\mathbb{Z}\right)^\times.

nn 101101 127127
χ(n)\chi(n) 11 1-1

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
49.1
1.00000i
1.00000i
2.00000i 3.00000i −4.00000 0 6.00000 4.00000i 8.00000i −9.00000 0
49.2 2.00000i 3.00000i −4.00000 0 6.00000 4.00000i 8.00000i −9.00000 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 150.4.c.c 2
3.b odd 2 1 450.4.c.j 2
4.b odd 2 1 1200.4.f.r 2
5.b even 2 1 inner 150.4.c.c 2
5.c odd 4 1 30.4.a.b 1
5.c odd 4 1 150.4.a.b 1
15.d odd 2 1 450.4.c.j 2
15.e even 4 1 90.4.a.c 1
15.e even 4 1 450.4.a.r 1
20.d odd 2 1 1200.4.f.r 2
20.e even 4 1 240.4.a.b 1
20.e even 4 1 1200.4.a.ba 1
35.f even 4 1 1470.4.a.r 1
40.i odd 4 1 960.4.a.n 1
40.k even 4 1 960.4.a.bg 1
45.k odd 12 2 810.4.e.i 2
45.l even 12 2 810.4.e.p 2
60.l odd 4 1 720.4.a.y 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
30.4.a.b 1 5.c odd 4 1
90.4.a.c 1 15.e even 4 1
150.4.a.b 1 5.c odd 4 1
150.4.c.c 2 1.a even 1 1 trivial
150.4.c.c 2 5.b even 2 1 inner
240.4.a.b 1 20.e even 4 1
450.4.a.r 1 15.e even 4 1
450.4.c.j 2 3.b odd 2 1
450.4.c.j 2 15.d odd 2 1
720.4.a.y 1 60.l odd 4 1
810.4.e.i 2 45.k odd 12 2
810.4.e.p 2 45.l even 12 2
960.4.a.n 1 40.i odd 4 1
960.4.a.bg 1 40.k even 4 1
1200.4.a.ba 1 20.e even 4 1
1200.4.f.r 2 4.b odd 2 1
1200.4.f.r 2 20.d odd 2 1
1470.4.a.r 1 35.f even 4 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T72+16 T_{7}^{2} + 16 acting on S4new(150,[χ])S_{4}^{\mathrm{new}}(150, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T2+4 T^{2} + 4 Copy content Toggle raw display
33 T2+9 T^{2} + 9 Copy content Toggle raw display
55 T2 T^{2} Copy content Toggle raw display
77 T2+16 T^{2} + 16 Copy content Toggle raw display
1111 (T+48)2 (T + 48)^{2} Copy content Toggle raw display
1313 T2+4 T^{2} + 4 Copy content Toggle raw display
1717 T2+12996 T^{2} + 12996 Copy content Toggle raw display
1919 (T+140)2 (T + 140)^{2} Copy content Toggle raw display
2323 T2+5184 T^{2} + 5184 Copy content Toggle raw display
2929 (T+210)2 (T + 210)^{2} Copy content Toggle raw display
3131 (T272)2 (T - 272)^{2} Copy content Toggle raw display
3737 T2+111556 T^{2} + 111556 Copy content Toggle raw display
4141 (T+198)2 (T + 198)^{2} Copy content Toggle raw display
4343 T2+71824 T^{2} + 71824 Copy content Toggle raw display
4747 T2+46656 T^{2} + 46656 Copy content Toggle raw display
5353 T2+6084 T^{2} + 6084 Copy content Toggle raw display
5959 (T+240)2 (T + 240)^{2} Copy content Toggle raw display
6161 (T302)2 (T - 302)^{2} Copy content Toggle raw display
6767 T2+355216 T^{2} + 355216 Copy content Toggle raw display
7171 (T+768)2 (T + 768)^{2} Copy content Toggle raw display
7373 T2+228484 T^{2} + 228484 Copy content Toggle raw display
7979 (T640)2 (T - 640)^{2} Copy content Toggle raw display
8383 T2+121104 T^{2} + 121104 Copy content Toggle raw display
8989 (T+210)2 (T + 210)^{2} Copy content Toggle raw display
9797 T2+2353156 T^{2} + 2353156 Copy content Toggle raw display
show more
show less