L(s) = 1 | − 8·2-s − 27·3-s + 64·4-s + 216·6-s + 1.12e3·7-s − 512·8-s + 729·9-s − 5.51e3·11-s − 1.72e3·12-s − 1.27e4·13-s − 9.00e3·14-s + 4.09e3·16-s + 3.22e4·17-s − 5.83e3·18-s − 4.44e3·19-s − 3.04e4·21-s + 4.41e4·22-s + 9.54e4·23-s + 1.38e4·24-s + 1.02e5·26-s − 1.96e4·27-s + 7.20e4·28-s + 1.94e4·29-s − 2.40e5·31-s − 3.27e4·32-s + 1.48e5·33-s − 2.57e5·34-s + ⋯ |
L(s) = 1 | − 0.707·2-s − 0.577·3-s + 1/2·4-s + 0.408·6-s + 1.24·7-s − 0.353·8-s + 1/3·9-s − 1.24·11-s − 0.288·12-s − 1.61·13-s − 0.877·14-s + 1/4·16-s + 1.58·17-s − 0.235·18-s − 0.148·19-s − 0.716·21-s + 0.883·22-s + 1.63·23-s + 0.204·24-s + 1.14·26-s − 0.192·27-s + 0.620·28-s + 0.148·29-s − 1.44·31-s − 0.176·32-s + 0.721·33-s − 1.12·34-s + ⋯ |
Λ(s)=(=(150s/2ΓC(s)L(s)−Λ(8−s)
Λ(s)=(=(150s/2ΓC(s+7/2)L(s)−Λ(1−s)
Particular Values
L(4) |
= |
0 |
L(21) |
= |
0 |
L(29) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+p3T |
| 3 | 1+p3T |
| 5 | 1 |
good | 7 | 1−1126T+p7T2 |
| 11 | 1+5518T+p7T2 |
| 13 | 1+12798T+p7T2 |
| 17 | 1−32206T+p7T2 |
| 19 | 1+4440T+p7T2 |
| 23 | 1−95452T+p7T2 |
| 29 | 1−19440T+p7T2 |
| 31 | 1+240248T+p7T2 |
| 37 | 1+77834T+p7T2 |
| 41 | 1−299522T+p7T2 |
| 43 | 1−416212T+p7T2 |
| 47 | 1−322976T+p7T2 |
| 53 | 1+880878T+p7T2 |
| 59 | 1+1845110T+p7T2 |
| 61 | 1+861718T+p7T2 |
| 67 | 1+673864T+p7T2 |
| 71 | 1+3426948T+p7T2 |
| 73 | 1+4678748T+p7T2 |
| 79 | 1+3137760T+p7T2 |
| 83 | 1−484132T+p7T2 |
| 89 | 1−6258710T+p7T2 |
| 97 | 1−8657576T+p7T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.98011576773272423000279665539, −10.32988064182692716188077073000, −9.186434659047989970153627051697, −7.74464548330772264926226270744, −7.38815030634840109665379961838, −5.54882663271926651205320758277, −4.84046004725109938798951389987, −2.74636154900655326346604413238, −1.36617533883969395014554057589, 0,
1.36617533883969395014554057589, 2.74636154900655326346604413238, 4.84046004725109938798951389987, 5.54882663271926651205320758277, 7.38815030634840109665379961838, 7.74464548330772264926226270744, 9.186434659047989970153627051697, 10.32988064182692716188077073000, 10.98011576773272423000279665539