Properties

Label 150.8.a.d.1.1
Level 150150
Weight 88
Character 150.1
Self dual yes
Analytic conductor 46.85846.858
Analytic rank 11
Dimension 11
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [150,8,Mod(1,150)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(150, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("150.1");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: N N == 150=2352 150 = 2 \cdot 3 \cdot 5^{2}
Weight: k k == 8 8
Character orbit: [χ][\chi] == 150.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 46.857753822646.8577538226
Analytic rank: 11
Dimension: 11
Coefficient field: Q\mathbb{Q}
Coefficient ring: Z\mathbb{Z}
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 30)
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

Embedding invariants

Embedding label 1.1
Character χ\chi == 150.1

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q8.00000q227.0000q3+64.0000q4+216.000q6+1126.00q7512.000q8+729.000q95518.00q111728.00q1212798.0q139008.00q14+4096.00q16+32206.0q175832.00q184440.00q1930402.0q21+44144.0q22+95452.0q23+13824.0q24+102384.q2619683.0q27+72064.0q28+19440.0q29240248.q3132768.0q32+148986.q33257648.q34+46656.0q3677834.0q37+35520.0q38+345546.q39+299522.q41+243216.q42+416212.q43353152.q44763616.q46+322976.q47110592.q48+444333.q49869562.q51819072.q52880878.q53+157464.q54576512.q56+119880.q57155520.q581.84511e6q59861718.q61+1.92198e6q62+820854.q63+262144.q641.19189e6q66673864.q67+2.06118e6q682.57720e6q693.42695e6q71373248.q724.67875e6q73+622672.q74284160.q766.21327e6q772.76437e6q783.13776e6q79+531441.q812.39618e6q82+484132.q831.94573e6q843.32970e6q86524880.q87+2.82522e6q88+6.25871e6q891.44105e7q91+6.10893e6q92+6.48670e6q932.58381e6q94+884736.q96+8.65758e6q973.55466e6q984.02262e6q99+O(q100)q-8.00000 q^{2} -27.0000 q^{3} +64.0000 q^{4} +216.000 q^{6} +1126.00 q^{7} -512.000 q^{8} +729.000 q^{9} -5518.00 q^{11} -1728.00 q^{12} -12798.0 q^{13} -9008.00 q^{14} +4096.00 q^{16} +32206.0 q^{17} -5832.00 q^{18} -4440.00 q^{19} -30402.0 q^{21} +44144.0 q^{22} +95452.0 q^{23} +13824.0 q^{24} +102384. q^{26} -19683.0 q^{27} +72064.0 q^{28} +19440.0 q^{29} -240248. q^{31} -32768.0 q^{32} +148986. q^{33} -257648. q^{34} +46656.0 q^{36} -77834.0 q^{37} +35520.0 q^{38} +345546. q^{39} +299522. q^{41} +243216. q^{42} +416212. q^{43} -353152. q^{44} -763616. q^{46} +322976. q^{47} -110592. q^{48} +444333. q^{49} -869562. q^{51} -819072. q^{52} -880878. q^{53} +157464. q^{54} -576512. q^{56} +119880. q^{57} -155520. q^{58} -1.84511e6 q^{59} -861718. q^{61} +1.92198e6 q^{62} +820854. q^{63} +262144. q^{64} -1.19189e6 q^{66} -673864. q^{67} +2.06118e6 q^{68} -2.57720e6 q^{69} -3.42695e6 q^{71} -373248. q^{72} -4.67875e6 q^{73} +622672. q^{74} -284160. q^{76} -6.21327e6 q^{77} -2.76437e6 q^{78} -3.13776e6 q^{79} +531441. q^{81} -2.39618e6 q^{82} +484132. q^{83} -1.94573e6 q^{84} -3.32970e6 q^{86} -524880. q^{87} +2.82522e6 q^{88} +6.25871e6 q^{89} -1.44105e7 q^{91} +6.10893e6 q^{92} +6.48670e6 q^{93} -2.58381e6 q^{94} +884736. q^{96} +8.65758e6 q^{97} -3.55466e6 q^{98} -4.02262e6 q^{99} +O(q^{100})

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 −8.00000 −0.707107
33 −27.0000 −0.577350
44 64.0000 0.500000
55 0 0
66 216.000 0.408248
77 1126.00 1.24078 0.620391 0.784293i 0.286974π-0.286974\pi
0.620391 + 0.784293i 0.286974π0.286974\pi
88 −512.000 −0.353553
99 729.000 0.333333
1010 0 0
1111 −5518.00 −1.24999 −0.624996 0.780628i 0.714899π-0.714899\pi
−0.624996 + 0.780628i 0.714899π0.714899\pi
1212 −1728.00 −0.288675
1313 −12798.0 −1.61562 −0.807812 0.589440i 0.799348π-0.799348\pi
−0.807812 + 0.589440i 0.799348π0.799348\pi
1414 −9008.00 −0.877365
1515 0 0
1616 4096.00 0.250000
1717 32206.0 1.58988 0.794942 0.606685i 0.207501π-0.207501\pi
0.794942 + 0.606685i 0.207501π0.207501\pi
1818 −5832.00 −0.235702
1919 −4440.00 −0.148506 −0.0742532 0.997239i 0.523657π-0.523657\pi
−0.0742532 + 0.997239i 0.523657π0.523657\pi
2020 0 0
2121 −30402.0 −0.716365
2222 44144.0 0.883878
2323 95452.0 1.63583 0.817914 0.575341i 0.195130π-0.195130\pi
0.817914 + 0.575341i 0.195130π0.195130\pi
2424 13824.0 0.204124
2525 0 0
2626 102384. 1.14242
2727 −19683.0 −0.192450
2828 72064.0 0.620391
2929 19440.0 0.148014 0.0740071 0.997258i 0.476421π-0.476421\pi
0.0740071 + 0.997258i 0.476421π0.476421\pi
3030 0 0
3131 −240248. −1.44842 −0.724209 0.689581i 0.757795π-0.757795\pi
−0.724209 + 0.689581i 0.757795π0.757795\pi
3232 −32768.0 −0.176777
3333 148986. 0.721683
3434 −257648. −1.12422
3535 0 0
3636 46656.0 0.166667
3737 −77834.0 −0.252617 −0.126309 0.991991i 0.540313π-0.540313\pi
−0.126309 + 0.991991i 0.540313π0.540313\pi
3838 35520.0 0.105010
3939 345546. 0.932781
4040 0 0
4141 299522. 0.678712 0.339356 0.940658i 0.389791π-0.389791\pi
0.339356 + 0.940658i 0.389791π0.389791\pi
4242 243216. 0.506547
4343 416212. 0.798316 0.399158 0.916882i 0.369302π-0.369302\pi
0.399158 + 0.916882i 0.369302π0.369302\pi
4444 −353152. −0.624996
4545 0 0
4646 −763616. −1.15670
4747 322976. 0.453762 0.226881 0.973923i 0.427147π-0.427147\pi
0.226881 + 0.973923i 0.427147π0.427147\pi
4848 −110592. −0.144338
4949 444333. 0.539538
5050 0 0
5151 −869562. −0.917920
5252 −819072. −0.807812
5353 −880878. −0.812737 −0.406369 0.913709i 0.633205π-0.633205\pi
−0.406369 + 0.913709i 0.633205π0.633205\pi
5454 157464. 0.136083
5555 0 0
5656 −576512. −0.438682
5757 119880. 0.0857402
5858 −155520. −0.104662
5959 −1.84511e6 −1.16961 −0.584804 0.811175i 0.698829π-0.698829\pi
−0.584804 + 0.811175i 0.698829π0.698829\pi
6060 0 0
6161 −861718. −0.486083 −0.243042 0.970016i 0.578145π-0.578145\pi
−0.243042 + 0.970016i 0.578145π0.578145\pi
6262 1.92198e6 1.02419
6363 820854. 0.413594
6464 262144. 0.125000
6565 0 0
6666 −1.19189e6 −0.510307
6767 −673864. −0.273722 −0.136861 0.990590i 0.543701π-0.543701\pi
−0.136861 + 0.990590i 0.543701π0.543701\pi
6868 2.06118e6 0.794942
6969 −2.57720e6 −0.944446
7070 0 0
7171 −3.42695e6 −1.13633 −0.568163 0.822916i 0.692346π-0.692346\pi
−0.568163 + 0.822916i 0.692346π0.692346\pi
7272 −373248. −0.117851
7373 −4.67875e6 −1.40767 −0.703833 0.710365i 0.748530π-0.748530\pi
−0.703833 + 0.710365i 0.748530π0.748530\pi
7474 622672. 0.178627
7575 0 0
7676 −284160. −0.0742532
7777 −6.21327e6 −1.55097
7878 −2.76437e6 −0.659576
7979 −3.13776e6 −0.716020 −0.358010 0.933718i 0.616545π-0.616545\pi
−0.358010 + 0.933718i 0.616545π0.616545\pi
8080 0 0
8181 531441. 0.111111
8282 −2.39618e6 −0.479922
8383 484132. 0.0929374 0.0464687 0.998920i 0.485203π-0.485203\pi
0.0464687 + 0.998920i 0.485203π0.485203\pi
8484 −1.94573e6 −0.358183
8585 0 0
8686 −3.32970e6 −0.564495
8787 −524880. −0.0854560
8888 2.82522e6 0.441939
8989 6.25871e6 0.941065 0.470533 0.882383i 0.344062π-0.344062\pi
0.470533 + 0.882383i 0.344062π0.344062\pi
9090 0 0
9191 −1.44105e7 −2.00464
9292 6.10893e6 0.817914
9393 6.48670e6 0.836244
9494 −2.58381e6 −0.320858
9595 0 0
9696 884736. 0.102062
9797 8.65758e6 0.963153 0.481576 0.876404i 0.340064π-0.340064\pi
0.481576 + 0.876404i 0.340064π0.340064\pi
9898 −3.55466e6 −0.381511
9999 −4.02262e6 −0.416664
100100 0 0
101101 −7.52329e6 −0.726579 −0.363290 0.931676i 0.618346π-0.618346\pi
−0.363290 + 0.931676i 0.618346π0.618346\pi
102102 6.95650e6 0.649068
103103 −1.40261e7 −1.26476 −0.632380 0.774659i 0.717922π-0.717922\pi
−0.632380 + 0.774659i 0.717922π0.717922\pi
104104 6.55258e6 0.571209
105105 0 0
106106 7.04702e6 0.574692
107107 −1.59380e6 −0.125774 −0.0628871 0.998021i 0.520031π-0.520031\pi
−0.0628871 + 0.998021i 0.520031π0.520031\pi
108108 −1.25971e6 −0.0962250
109109 −1.66129e7 −1.22872 −0.614360 0.789026i 0.710586π-0.710586\pi
−0.614360 + 0.789026i 0.710586π0.710586\pi
110110 0 0
111111 2.10152e6 0.145849
112112 4.61210e6 0.310195
113113 −536598. −0.0349844 −0.0174922 0.999847i 0.505568π-0.505568\pi
−0.0174922 + 0.999847i 0.505568π0.505568\pi
114114 −959040. −0.0606275
115115 0 0
116116 1.24416e6 0.0740071
117117 −9.32974e6 −0.538541
118118 1.47609e7 0.827038
119119 3.62640e7 1.97270
120120 0 0
121121 1.09612e7 0.562480
122122 6.89374e6 0.343713
123123 −8.08709e6 −0.391854
124124 −1.53759e7 −0.724209
125125 0 0
126126 −6.56683e6 −0.292455
127127 −3.90459e7 −1.69146 −0.845732 0.533608i 0.820836π-0.820836\pi
−0.845732 + 0.533608i 0.820836π0.820836\pi
128128 −2.09715e6 −0.0883883
129129 −1.12377e7 −0.460908
130130 0 0
131131 4.08046e6 0.158584 0.0792921 0.996851i 0.474734π-0.474734\pi
0.0792921 + 0.996851i 0.474734π0.474734\pi
132132 9.53510e6 0.360842
133133 −4.99944e6 −0.184264
134134 5.39091e6 0.193551
135135 0 0
136136 −1.64895e7 −0.562109
137137 −2.34170e7 −0.778052 −0.389026 0.921227i 0.627188π-0.627188\pi
−0.389026 + 0.921227i 0.627188π0.627188\pi
138138 2.06176e7 0.667824
139139 −1.35950e6 −0.0429366 −0.0214683 0.999770i 0.506834π-0.506834\pi
−0.0214683 + 0.999770i 0.506834π0.506834\pi
140140 0 0
141141 −8.72035e6 −0.261979
142142 2.74156e7 0.803504
143143 7.06194e7 2.01952
144144 2.98598e6 0.0833333
145145 0 0
146146 3.74300e7 0.995370
147147 −1.19970e7 −0.311503
148148 −4.98138e6 −0.126309
149149 −6.79776e7 −1.68350 −0.841752 0.539865i 0.818475π-0.818475\pi
−0.841752 + 0.539865i 0.818475π0.818475\pi
150150 0 0
151151 3.00991e7 0.711434 0.355717 0.934594i 0.384237π-0.384237\pi
0.355717 + 0.934594i 0.384237π0.384237\pi
152152 2.27328e6 0.0525050
153153 2.34782e7 0.529961
154154 4.97061e7 1.09670
155155 0 0
156156 2.21149e7 0.466391
157157 1.09929e7 0.226706 0.113353 0.993555i 0.463841π-0.463841\pi
0.113353 + 0.993555i 0.463841π0.463841\pi
158158 2.51021e7 0.506302
159159 2.37837e7 0.469234
160160 0 0
161161 1.07479e8 2.02970
162162 −4.25153e6 −0.0785674
163163 −8.99208e7 −1.62631 −0.813155 0.582047i 0.802252π-0.802252\pi
−0.813155 + 0.582047i 0.802252π0.802252\pi
164164 1.91694e7 0.339356
165165 0 0
166166 −3.87306e6 −0.0657167
167167 4.57557e7 0.760217 0.380108 0.924942i 0.375887π-0.375887\pi
0.380108 + 0.924942i 0.375887π0.375887\pi
168168 1.55658e7 0.253273
169169 1.01040e8 1.61024
170170 0 0
171171 −3.23676e6 −0.0495022
172172 2.66376e7 0.399158
173173 −9.47012e7 −1.39057 −0.695287 0.718732i 0.744723π-0.744723\pi
−0.695287 + 0.718732i 0.744723π0.744723\pi
174174 4.19904e6 0.0604265
175175 0 0
176176 −2.26017e7 −0.312498
177177 4.98180e7 0.675273
178178 −5.00697e7 −0.665434
179179 7.12070e7 0.927977 0.463989 0.885841i 0.346418π-0.346418\pi
0.463989 + 0.885841i 0.346418π0.346418\pi
180180 0 0
181181 6.10292e7 0.765003 0.382501 0.923955i 0.375063π-0.375063\pi
0.382501 + 0.923955i 0.375063π0.375063\pi
182182 1.15284e8 1.41749
183183 2.32664e7 0.280640
184184 −4.88714e7 −0.578352
185185 0 0
186186 −5.18936e7 −0.591314
187187 −1.77713e8 −1.98734
188188 2.06705e7 0.226881
189189 −2.21631e7 −0.238788
190190 0 0
191191 5.63172e7 0.584823 0.292411 0.956293i 0.405542π-0.405542\pi
0.292411 + 0.956293i 0.405542π0.405542\pi
192192 −7.07789e6 −0.0721688
193193 −9.97730e7 −0.998993 −0.499496 0.866316i 0.666482π-0.666482\pi
−0.499496 + 0.866316i 0.666482π0.666482\pi
194194 −6.92606e7 −0.681052
195195 0 0
196196 2.84373e7 0.269769
197197 −1.25457e8 −1.16913 −0.584566 0.811346i 0.698735π-0.698735\pi
−0.584566 + 0.811346i 0.698735π0.698735\pi
198198 3.21810e7 0.294626
199199 −2.32320e6 −0.0208978 −0.0104489 0.999945i 0.503326π-0.503326\pi
−0.0104489 + 0.999945i 0.503326π0.503326\pi
200200 0 0
201201 1.81943e7 0.158034
202202 6.01863e7 0.513769
203203 2.18894e7 0.183653
204204 −5.56520e7 −0.458960
205205 0 0
206206 1.12209e8 0.894320
207207 6.95845e7 0.545276
208208 −5.24206e7 −0.403906
209209 2.44999e7 0.185632
210210 0 0
211211 8.85076e7 0.648622 0.324311 0.945950i 0.394868π-0.394868\pi
0.324311 + 0.945950i 0.394868π0.394868\pi
212212 −5.63762e7 −0.406369
213213 9.25276e7 0.656059
214214 1.27504e7 0.0889358
215215 0 0
216216 1.00777e7 0.0680414
217217 −2.70519e8 −1.79717
218218 1.32903e8 0.868836
219219 1.26326e8 0.812716
220220 0 0
221221 −4.12172e8 −2.56866
222222 −1.68121e7 −0.103131
223223 −629858. −0.00380343 −0.00190172 0.999998i 0.500605π-0.500605\pi
−0.00190172 + 0.999998i 0.500605π0.500605\pi
224224 −3.68968e7 −0.219341
225225 0 0
226226 4.29278e6 0.0247377
227227 1.74337e8 0.989236 0.494618 0.869111i 0.335308π-0.335308\pi
0.494618 + 0.869111i 0.335308π0.335308\pi
228228 7.67232e6 0.0428701
229229 −2.00644e8 −1.10408 −0.552042 0.833816i 0.686151π-0.686151\pi
−0.552042 + 0.833816i 0.686151π0.686151\pi
230230 0 0
231231 1.67758e8 0.895451
232232 −9.95328e6 −0.0523309
233233 1.66522e8 0.862434 0.431217 0.902248i 0.358084π-0.358084\pi
0.431217 + 0.902248i 0.358084π0.358084\pi
234234 7.46379e7 0.380806
235235 0 0
236236 −1.18087e8 −0.584804
237237 8.47195e7 0.413394
238238 −2.90112e8 −1.39491
239239 −1.17669e8 −0.557531 −0.278765 0.960359i 0.589925π-0.589925\pi
−0.278765 + 0.960359i 0.589925π0.589925\pi
240240 0 0
241241 −4.04961e8 −1.86360 −0.931802 0.362967i 0.881764π-0.881764\pi
−0.931802 + 0.362967i 0.881764π0.881764\pi
242242 −8.76892e7 −0.397734
243243 −1.43489e7 −0.0641500
244244 −5.51500e7 −0.243042
245245 0 0
246246 6.46968e7 0.277083
247247 5.68231e7 0.239931
248248 1.23007e8 0.512093
249249 −1.30716e7 −0.0536574
250250 0 0
251251 −5.93170e7 −0.236767 −0.118383 0.992968i 0.537771π-0.537771\pi
−0.118383 + 0.992968i 0.537771π0.537771\pi
252252 5.25347e7 0.206797
253253 −5.26704e8 −2.04477
254254 3.12367e8 1.19605
255255 0 0
256256 1.67772e7 0.0625000
257257 2.48636e7 0.0913688 0.0456844 0.998956i 0.485453π-0.485453\pi
0.0456844 + 0.998956i 0.485453π0.485453\pi
258258 8.99018e7 0.325911
259259 −8.76411e7 −0.313443
260260 0 0
261261 1.41718e7 0.0493381
262262 −3.26437e7 −0.112136
263263 −5.36503e6 −0.0181856 −0.00909278 0.999959i 0.502894π-0.502894\pi
−0.00909278 + 0.999959i 0.502894π0.502894\pi
264264 −7.62808e7 −0.255154
265265 0 0
266266 3.99955e7 0.130294
267267 −1.68985e8 −0.543324
268268 −4.31273e7 −0.136861
269269 −1.83159e8 −0.573713 −0.286856 0.957974i 0.592610π-0.592610\pi
−0.286856 + 0.957974i 0.592610π0.592610\pi
270270 0 0
271271 2.54405e8 0.776486 0.388243 0.921557i 0.373082π-0.373082\pi
0.388243 + 0.921557i 0.373082π0.373082\pi
272272 1.31916e8 0.397471
273273 3.89085e8 1.15738
274274 1.87336e8 0.550166
275275 0 0
276276 −1.64941e8 −0.472223
277277 5.92863e8 1.67601 0.838003 0.545666i 0.183723π-0.183723\pi
0.838003 + 0.545666i 0.183723π0.183723\pi
278278 1.08760e7 0.0303607
279279 −1.75141e8 −0.482806
280280 0 0
281281 −6.22030e8 −1.67240 −0.836199 0.548427i 0.815227π-0.815227\pi
−0.836199 + 0.548427i 0.815227π0.815227\pi
282282 6.97628e7 0.185247
283283 3.94755e8 1.03532 0.517661 0.855586i 0.326803π-0.326803\pi
0.517661 + 0.855586i 0.326803π0.326803\pi
284284 −2.19325e8 −0.568163
285285 0 0
286286 −5.64955e8 −1.42801
287287 3.37262e8 0.842133
288288 −2.38879e7 −0.0589256
289289 6.26888e8 1.52773
290290 0 0
291291 −2.33755e8 −0.556077
292292 −2.99440e8 −0.703833
293293 6.89404e8 1.60117 0.800585 0.599220i 0.204522π-0.204522\pi
0.800585 + 0.599220i 0.204522π0.204522\pi
294294 9.59759e7 0.220266
295295 0 0
296296 3.98510e7 0.0893137
297297 1.08611e8 0.240561
298298 5.43821e8 1.19042
299299 −1.22159e9 −2.64288
300300 0 0
301301 4.68655e8 0.990536
302302 −2.40793e8 −0.503060
303303 2.03129e8 0.419491
304304 −1.81862e7 −0.0371266
305305 0 0
306306 −1.87825e8 −0.374739
307307 −2.67769e8 −0.528174 −0.264087 0.964499i 0.585071π-0.585071\pi
−0.264087 + 0.964499i 0.585071π0.585071\pi
308308 −3.97649e8 −0.775483
309309 3.78706e8 0.730209
310310 0 0
311311 −1.94551e8 −0.366752 −0.183376 0.983043i 0.558703π-0.558703\pi
−0.183376 + 0.983043i 0.558703π0.558703\pi
312312 −1.76920e8 −0.329788
313313 −8.81802e8 −1.62542 −0.812711 0.582667i 0.802009π-0.802009\pi
−0.812711 + 0.582667i 0.802009π0.802009\pi
314314 −8.79429e7 −0.160305
315315 0 0
316316 −2.00817e8 −0.358010
317317 −4.88296e8 −0.860946 −0.430473 0.902603i 0.641653π-0.641653\pi
−0.430473 + 0.902603i 0.641653π0.641653\pi
318318 −1.90270e8 −0.331799
319319 −1.07270e8 −0.185017
320320 0 0
321321 4.30327e7 0.0726158
322322 −8.59832e8 −1.43522
323323 −1.42995e8 −0.236108
324324 3.40122e7 0.0555556
325325 0 0
326326 7.19366e8 1.14997
327327 4.48549e8 0.709402
328328 −1.53355e8 −0.239961
329329 3.63671e8 0.563019
330330 0 0
331331 −7.08199e8 −1.07339 −0.536695 0.843777i 0.680327π-0.680327\pi
−0.536695 + 0.843777i 0.680327π0.680327\pi
332332 3.09844e7 0.0464687
333333 −5.67410e7 −0.0842058
334334 −3.66045e8 −0.537554
335335 0 0
336336 −1.24527e8 −0.179091
337337 6.69707e8 0.953192 0.476596 0.879122i 0.341870π-0.341870\pi
0.476596 + 0.879122i 0.341870π0.341870\pi
338338 −8.08322e8 −1.13861
339339 1.44881e7 0.0201983
340340 0 0
341341 1.32569e9 1.81051
342342 2.58941e7 0.0350033
343343 −4.26990e8 −0.571332
344344 −2.13101e8 −0.282247
345345 0 0
346346 7.57609e8 0.983284
347347 1.01172e9 1.29989 0.649945 0.759982i 0.274792π-0.274792\pi
0.649945 + 0.759982i 0.274792π0.274792\pi
348348 −3.35923e7 −0.0427280
349349 3.46636e8 0.436501 0.218250 0.975893i 0.429965π-0.429965\pi
0.218250 + 0.975893i 0.429965π0.429965\pi
350350 0 0
351351 2.51903e8 0.310927
352352 1.80814e8 0.220969
353353 2.93766e6 0.00355460 0.00177730 0.999998i 0.499434π-0.499434\pi
0.00177730 + 0.999998i 0.499434π0.499434\pi
354354 −3.98544e8 −0.477490
355355 0 0
356356 4.00557e8 0.470533
357357 −9.79127e8 −1.13894
358358 −5.69656e8 −0.656179
359359 1.64977e9 1.88188 0.940942 0.338568i 0.109942π-0.109942\pi
0.940942 + 0.338568i 0.109942π0.109942\pi
360360 0 0
361361 −8.74158e8 −0.977946
362362 −4.88234e8 −0.540939
363363 −2.95951e8 −0.324748
364364 −9.22275e8 −1.00232
365365 0 0
366366 −1.86131e8 −0.198443
367367 −4.33054e8 −0.457311 −0.228655 0.973507i 0.573433π-0.573433\pi
−0.228655 + 0.973507i 0.573433π0.573433\pi
368368 3.90971e8 0.408957
369369 2.18352e8 0.226237
370370 0 0
371371 −9.91869e8 −1.00843
372372 4.15149e8 0.418122
373373 −7.13249e8 −0.711640 −0.355820 0.934555i 0.615798π-0.615798\pi
−0.355820 + 0.934555i 0.615798π0.615798\pi
374374 1.42170e9 1.40526
375375 0 0
376376 −1.65364e8 −0.160429
377377 −2.48793e8 −0.239135
378378 1.77304e8 0.168849
379379 1.92795e8 0.181911 0.0909555 0.995855i 0.471008π-0.471008\pi
0.0909555 + 0.995855i 0.471008π0.471008\pi
380380 0 0
381381 1.05424e9 0.976567
382382 −4.50538e8 −0.413532
383383 1.30544e9 1.18730 0.593649 0.804724i 0.297687π-0.297687\pi
0.593649 + 0.804724i 0.297687π0.297687\pi
384384 5.66231e7 0.0510310
385385 0 0
386386 7.98184e8 0.706395
387387 3.03419e8 0.266105
388388 5.54085e8 0.481576
389389 2.53075e7 0.0217985 0.0108992 0.999941i 0.496531π-0.496531\pi
0.0108992 + 0.999941i 0.496531π0.496531\pi
390390 0 0
391391 3.07413e9 2.60078
392392 −2.27498e8 −0.190756
393393 −1.10172e8 −0.0915586
394394 1.00366e9 0.826702
395395 0 0
396396 −2.57448e8 −0.208332
397397 1.34997e9 1.08282 0.541410 0.840759i 0.317891π-0.317891\pi
0.541410 + 0.840759i 0.317891π0.317891\pi
398398 1.85856e7 0.0147770
399399 1.34985e8 0.106385
400400 0 0
401401 −9.20762e7 −0.0713086 −0.0356543 0.999364i 0.511352π-0.511352\pi
−0.0356543 + 0.999364i 0.511352π0.511352\pi
402402 −1.45555e8 −0.111747
403403 3.07469e9 2.34010
404404 −4.81490e8 −0.363290
405405 0 0
406406 −1.75116e8 −0.129862
407407 4.29488e8 0.315770
408408 4.45216e8 0.324534
409409 −2.68396e9 −1.93975 −0.969874 0.243609i 0.921669π-0.921669\pi
−0.969874 + 0.243609i 0.921669π0.921669\pi
410410 0 0
411411 6.32258e8 0.449209
412412 −8.97673e8 −0.632380
413413 −2.07759e9 −1.45123
414414 −5.56676e8 −0.385568
415415 0 0
416416 4.19365e8 0.285605
417417 3.67065e7 0.0247894
418418 −1.95999e8 −0.131262
419419 8.45201e8 0.561320 0.280660 0.959807i 0.409447π-0.409447\pi
0.280660 + 0.959807i 0.409447π0.409447\pi
420420 0 0
421421 2.66227e9 1.73886 0.869430 0.494056i 0.164486π-0.164486\pi
0.869430 + 0.494056i 0.164486π0.164486\pi
422422 −7.08061e8 −0.458645
423423 2.35450e8 0.151254
424424 4.51010e8 0.287346
425425 0 0
426426 −7.40221e8 −0.463904
427427 −9.70294e8 −0.603123
428428 −1.02003e8 −0.0628871
429429 −1.90672e9 −1.16597
430430 0 0
431431 −9.83169e8 −0.591504 −0.295752 0.955265i 0.595570π-0.595570\pi
−0.295752 + 0.955265i 0.595570π0.595570\pi
432432 −8.06216e7 −0.0481125
433433 8.30277e8 0.491491 0.245745 0.969334i 0.420967π-0.420967\pi
0.245745 + 0.969334i 0.420967π0.420967\pi
434434 2.16415e9 1.27079
435435 0 0
436436 −1.06323e9 −0.614360
437437 −4.23807e8 −0.242931
438438 −1.01061e9 −0.574677
439439 2.79662e9 1.57764 0.788820 0.614625i 0.210692π-0.210692\pi
0.788820 + 0.614625i 0.210692π0.210692\pi
440440 0 0
441441 3.23919e8 0.179846
442442 3.29738e9 1.81631
443443 3.97081e8 0.217003 0.108502 0.994096i 0.465395π-0.465395\pi
0.108502 + 0.994096i 0.465395π0.465395\pi
444444 1.34497e8 0.0729244
445445 0 0
446446 5.03886e6 0.00268943
447447 1.83540e9 0.971971
448448 2.95174e8 0.155098
449449 1.74461e8 0.0909569 0.0454785 0.998965i 0.485519π-0.485519\pi
0.0454785 + 0.998965i 0.485519π0.485519\pi
450450 0 0
451451 −1.65276e9 −0.848384
452452 −3.43423e7 −0.0174922
453453 −8.12676e8 −0.410746
454454 −1.39470e9 −0.699495
455455 0 0
456456 −6.13786e7 −0.0303138
457457 3.60027e8 0.176453 0.0882264 0.996100i 0.471880π-0.471880\pi
0.0882264 + 0.996100i 0.471880π0.471880\pi
458458 1.60515e9 0.780705
459459 −6.33911e8 −0.305973
460460 0 0
461461 −1.33487e8 −0.0634579 −0.0317290 0.999497i 0.510101π-0.510101\pi
−0.0317290 + 0.999497i 0.510101π0.510101\pi
462462 −1.34207e9 −0.633180
463463 2.93605e9 1.37477 0.687384 0.726294i 0.258759π-0.258759\pi
0.687384 + 0.726294i 0.258759π0.258759\pi
464464 7.96262e7 0.0370035
465465 0 0
466466 −1.33218e9 −0.609833
467467 1.72777e9 0.785011 0.392506 0.919750i 0.371608π-0.371608\pi
0.392506 + 0.919750i 0.371608π0.371608\pi
468468 −5.97103e8 −0.269271
469469 −7.58771e8 −0.339630
470470 0 0
471471 −2.96807e8 −0.130889
472472 9.44696e8 0.413519
473473 −2.29666e9 −0.997889
474474 −6.77756e8 −0.292314
475475 0 0
476476 2.32089e9 0.986349
477477 −6.42160e8 −0.270912
478478 9.41351e8 0.394234
479479 −1.69230e9 −0.703562 −0.351781 0.936082i 0.614424π-0.614424\pi
−0.351781 + 0.936082i 0.614424π0.614424\pi
480480 0 0
481481 9.96120e8 0.408135
482482 3.23969e9 1.31777
483483 −2.90193e9 −1.17185
484484 7.01514e8 0.281240
485485 0 0
486486 1.14791e8 0.0453609
487487 −1.46319e9 −0.574048 −0.287024 0.957923i 0.592666π-0.592666\pi
−0.287024 + 0.957923i 0.592666π0.592666\pi
488488 4.41200e8 0.171856
489489 2.42786e9 0.938951
490490 0 0
491491 −2.86378e9 −1.09183 −0.545915 0.837840i 0.683818π-0.683818\pi
−0.545915 + 0.837840i 0.683818π0.683818\pi
492492 −5.17574e8 −0.195927
493493 6.26085e8 0.235325
494494 −4.54585e8 −0.169657
495495 0 0
496496 −9.84056e8 −0.362104
497497 −3.85874e9 −1.40993
498498 1.04573e8 0.0379415
499499 −1.17178e9 −0.422176 −0.211088 0.977467i 0.567701π-0.567701\pi
−0.211088 + 0.977467i 0.567701π0.567701\pi
500500 0 0
501501 −1.23540e9 −0.438911
502502 4.74536e8 0.167419
503503 −3.67913e9 −1.28901 −0.644506 0.764599i 0.722937π-0.722937\pi
−0.644506 + 0.764599i 0.722937π0.722937\pi
504504 −4.20277e8 −0.146227
505505 0 0
506506 4.21363e9 1.44587
507507 −2.72809e9 −0.929674
508508 −2.49894e9 −0.845732
509509 −4.56520e9 −1.53443 −0.767216 0.641389i 0.778359π-0.778359\pi
−0.767216 + 0.641389i 0.778359π0.778359\pi
510510 0 0
511511 −5.26827e9 −1.74661
512512 −1.34218e8 −0.0441942
513513 8.73925e7 0.0285801
514514 −1.98909e8 −0.0646075
515515 0 0
516516 −7.19214e8 −0.230454
517517 −1.78218e9 −0.567198
518518 7.01129e8 0.221638
519519 2.55693e9 0.802848
520520 0 0
521521 −5.34662e9 −1.65633 −0.828166 0.560484i 0.810615π-0.810615\pi
−0.828166 + 0.560484i 0.810615π0.810615\pi
522522 −1.13374e8 −0.0348873
523523 5.14610e9 1.57298 0.786488 0.617605i 0.211897π-0.211897\pi
0.786488 + 0.617605i 0.211897π0.211897\pi
524524 2.61150e8 0.0792921
525525 0 0
526526 4.29202e7 0.0128591
527527 −7.73743e9 −2.30282
528528 6.10247e8 0.180421
529529 5.70626e9 1.67593
530530 0 0
531531 −1.34509e9 −0.389869
532532 −3.19964e8 −0.0921320
533533 −3.83328e9 −1.09654
534534 1.35188e9 0.384188
535535 0 0
536536 3.45018e8 0.0967755
537537 −1.92259e9 −0.535768
538538 1.46527e9 0.405676
539539 −2.45183e9 −0.674419
540540 0 0
541541 −2.32073e8 −0.0630137 −0.0315069 0.999504i 0.510031π-0.510031\pi
−0.0315069 + 0.999504i 0.510031π0.510031\pi
542542 −2.03524e9 −0.549058
543543 −1.64779e9 −0.441675
544544 −1.05533e9 −0.281055
545545 0 0
546546 −3.11268e9 −0.818389
547547 7.09990e9 1.85480 0.927399 0.374075i 0.122040π-0.122040\pi
0.927399 + 0.374075i 0.122040π0.122040\pi
548548 −1.49869e9 −0.389026
549549 −6.28192e8 −0.162028
550550 0 0
551551 −8.63136e7 −0.0219811
552552 1.31953e9 0.333912
553553 −3.53312e9 −0.888424
554554 −4.74291e9 −1.18511
555555 0 0
556556 −8.70080e7 −0.0214683
557557 2.92398e9 0.716937 0.358469 0.933542i 0.383299π-0.383299\pi
0.358469 + 0.933542i 0.383299π0.383299\pi
558558 1.40113e9 0.341395
559559 −5.32668e9 −1.28978
560560 0 0
561561 4.79824e9 1.14739
562562 4.97624e9 1.18256
563563 3.17221e9 0.749174 0.374587 0.927192i 0.377785π-0.377785\pi
0.374587 + 0.927192i 0.377785π0.377785\pi
564564 −5.58103e8 −0.130990
565565 0 0
566566 −3.15804e9 −0.732083
567567 5.98403e8 0.137865
568568 1.75460e9 0.401752
569569 2.75561e9 0.627082 0.313541 0.949575i 0.398485π-0.398485\pi
0.313541 + 0.949575i 0.398485π0.398485\pi
570570 0 0
571571 4.36061e9 0.980213 0.490107 0.871662i 0.336958π-0.336958\pi
0.490107 + 0.871662i 0.336958π0.336958\pi
572572 4.51964e9 1.00976
573573 −1.52056e9 −0.337648
574574 −2.69809e9 −0.595478
575575 0 0
576576 1.91103e8 0.0416667
577577 −6.07328e9 −1.31616 −0.658079 0.752949i 0.728631π-0.728631\pi
−0.658079 + 0.752949i 0.728631π0.728631\pi
578578 −5.01510e9 −1.08027
579579 2.69387e9 0.576769
580580 0 0
581581 5.45133e8 0.115315
582582 1.87004e9 0.393206
583583 4.86068e9 1.01592
584584 2.39552e9 0.497685
585585 0 0
586586 −5.51523e9 −1.13220
587587 4.35319e9 0.888329 0.444165 0.895945i 0.353501π-0.353501\pi
0.444165 + 0.895945i 0.353501π0.353501\pi
588588 −7.67807e8 −0.155751
589589 1.06670e9 0.215099
590590 0 0
591591 3.38734e9 0.674999
592592 −3.18808e8 −0.0631544
593593 −2.22483e9 −0.438133 −0.219067 0.975710i 0.570301π-0.570301\pi
−0.219067 + 0.975710i 0.570301π0.570301\pi
594594 −8.68886e8 −0.170102
595595 0 0
596596 −4.35057e9 −0.841752
597597 6.27264e7 0.0120654
598598 9.77276e9 1.86880
599599 −3.63376e9 −0.690815 −0.345408 0.938453i 0.612259π-0.612259\pi
−0.345408 + 0.938453i 0.612259π0.612259\pi
600600 0 0
601601 −6.00206e9 −1.12782 −0.563909 0.825837i 0.690703π-0.690703\pi
−0.563909 + 0.825837i 0.690703π0.690703\pi
602602 −3.74924e9 −0.700415
603603 −4.91247e8 −0.0912408
604604 1.92634e9 0.355717
605605 0 0
606606 −1.62503e9 −0.296625
607607 2.80807e9 0.509621 0.254811 0.966991i 0.417987π-0.417987\pi
0.254811 + 0.966991i 0.417987π0.417987\pi
608608 1.45490e8 0.0262525
609609 −5.91015e8 −0.106032
610610 0 0
611611 −4.13345e9 −0.733108
612612 1.50260e9 0.264981
613613 −8.34916e9 −1.46397 −0.731983 0.681323i 0.761405π-0.761405\pi
−0.731983 + 0.681323i 0.761405π0.761405\pi
614614 2.14216e9 0.373475
615615 0 0
616616 3.18119e9 0.548350
617617 2.16207e9 0.370571 0.185286 0.982685i 0.440679π-0.440679\pi
0.185286 + 0.982685i 0.440679π0.440679\pi
618618 −3.02965e9 −0.516336
619619 −2.82281e9 −0.478370 −0.239185 0.970974i 0.576880π-0.576880\pi
−0.239185 + 0.970974i 0.576880π0.576880\pi
620620 0 0
621621 −1.87878e9 −0.314815
622622 1.55641e9 0.259333
623623 7.04731e9 1.16766
624624 1.41536e9 0.233195
625625 0 0
626626 7.05442e9 1.14935
627627 −6.61498e8 −0.107175
628628 7.03543e8 0.113353
629629 −2.50672e9 −0.401633
630630 0 0
631631 7.87109e9 1.24719 0.623595 0.781748i 0.285672π-0.285672\pi
0.623595 + 0.781748i 0.285672π0.285672\pi
632632 1.60653e9 0.253151
633633 −2.38970e9 −0.374482
634634 3.90637e9 0.608781
635635 0 0
636636 1.52216e9 0.234617
637637 −5.68657e9 −0.871691
638638 8.58159e8 0.130826
639639 −2.49825e9 −0.378776
640640 0 0
641641 −3.77527e9 −0.566168 −0.283084 0.959095i 0.591357π-0.591357\pi
−0.283084 + 0.959095i 0.591357π0.591357\pi
642642 −3.44262e8 −0.0513471
643643 −2.51923e9 −0.373705 −0.186852 0.982388i 0.559829π-0.559829\pi
−0.186852 + 0.982388i 0.559829π0.559829\pi
644644 6.87865e9 1.01485
645645 0 0
646646 1.14396e9 0.166954
647647 −3.83911e9 −0.557269 −0.278635 0.960397i 0.589882π-0.589882\pi
−0.278635 + 0.960397i 0.589882π0.589882\pi
648648 −2.72098e8 −0.0392837
649649 1.01813e10 1.46200
650650 0 0
651651 7.30402e9 1.03760
652652 −5.75493e9 −0.813155
653653 1.00785e10 1.41644 0.708222 0.705989i 0.249497π-0.249497\pi
0.708222 + 0.705989i 0.249497π0.249497\pi
654654 −3.58839e9 −0.501623
655655 0 0
656656 1.22684e9 0.169678
657657 −3.41081e9 −0.469222
658658 −2.90937e9 −0.398115
659659 −8.94469e8 −0.121749 −0.0608746 0.998145i 0.519389π-0.519389\pi
−0.0608746 + 0.998145i 0.519389π0.519389\pi
660660 0 0
661661 1.19420e10 1.60832 0.804159 0.594414i 0.202616π-0.202616\pi
0.804159 + 0.594414i 0.202616π0.202616\pi
662662 5.66559e9 0.759001
663663 1.11287e10 1.48301
664664 −2.47876e8 −0.0328583
665665 0 0
666666 4.53928e8 0.0595425
667667 1.85559e9 0.242126
668668 2.92836e9 0.380108
669669 1.70062e7 0.00219591
670670 0 0
671671 4.75496e9 0.607600
672672 9.96213e8 0.126637
673673 1.66611e9 0.210693 0.105347 0.994436i 0.466405π-0.466405\pi
0.105347 + 0.994436i 0.466405π0.466405\pi
674674 −5.35766e9 −0.674009
675675 0 0
676676 6.46658e9 0.805121
677677 −3.07840e9 −0.381298 −0.190649 0.981658i 0.561059π-0.561059\pi
−0.190649 + 0.981658i 0.561059π0.561059\pi
678678 −1.15905e8 −0.0142823
679679 9.74843e9 1.19506
680680 0 0
681681 −4.70711e9 −0.571135
682682 −1.06055e10 −1.28022
683683 3.66304e9 0.439915 0.219958 0.975509i 0.429408π-0.429408\pi
0.219958 + 0.975509i 0.429408π0.429408\pi
684684 −2.07153e8 −0.0247511
685685 0 0
686686 3.41592e9 0.403993
687687 5.41739e9 0.637443
688688 1.70480e9 0.199579
689689 1.12735e10 1.31308
690690 0 0
691691 1.03135e10 1.18914 0.594569 0.804045i 0.297323π-0.297323\pi
0.594569 + 0.804045i 0.297323π0.297323\pi
692692 −6.06088e9 −0.695287
693693 −4.52947e9 −0.516989
694694 −8.09374e9 −0.919161
695695 0 0
696696 2.68739e8 0.0302133
697697 9.64641e9 1.07907
698698 −2.77309e9 −0.308653
699699 −4.49609e9 −0.497926
700700 0 0
701701 −5.82173e9 −0.638321 −0.319161 0.947701i 0.603401π-0.603401\pi
−0.319161 + 0.947701i 0.603401π0.603401\pi
702702 −2.01522e9 −0.219859
703703 3.45583e8 0.0375153
704704 −1.44651e9 −0.156249
705705 0 0
706706 −2.35013e7 −0.00251348
707707 −8.47122e9 −0.901526
708708 3.18835e9 0.337637
709709 −8.52806e9 −0.898645 −0.449323 0.893370i 0.648335π-0.648335\pi
−0.449323 + 0.893370i 0.648335π0.648335\pi
710710 0 0
711711 −2.28743e9 −0.238673
712712 −3.20446e9 −0.332717
713713 −2.29322e10 −2.36936
714714 7.83301e9 0.805351
715715 0 0
716716 4.55725e9 0.463989
717717 3.17706e9 0.321891
718718 −1.31982e10 −1.33069
719719 1.73546e9 0.174126 0.0870631 0.996203i 0.472252π-0.472252\pi
0.0870631 + 0.996203i 0.472252π0.472252\pi
720720 0 0
721721 −1.57934e10 −1.56929
722722 6.99327e9 0.691512
723723 1.09339e10 1.07595
724724 3.90587e9 0.382501
725725 0 0
726726 2.36761e9 0.229632
727727 1.16762e10 1.12702 0.563509 0.826110i 0.309451π-0.309451\pi
0.563509 + 0.826110i 0.309451π0.309451\pi
728728 7.37820e9 0.708746
729729 3.87420e8 0.0370370
730730 0 0
731731 1.34045e10 1.26923
732732 1.48905e9 0.140320
733733 −4.92260e9 −0.461669 −0.230834 0.972993i 0.574146π-0.574146\pi
−0.230834 + 0.972993i 0.574146π0.574146\pi
734734 3.46444e9 0.323367
735735 0 0
736736 −3.12777e9 −0.289176
737737 3.71838e9 0.342151
738738 −1.74681e9 −0.159974
739739 −4.46577e9 −0.407043 −0.203522 0.979070i 0.565239π-0.565239\pi
−0.203522 + 0.979070i 0.565239π0.565239\pi
740740 0 0
741741 −1.53422e9 −0.138524
742742 7.93495e9 0.713067
743743 −8.36112e8 −0.0747831 −0.0373916 0.999301i 0.511905π-0.511905\pi
−0.0373916 + 0.999301i 0.511905π0.511905\pi
744744 −3.32119e9 −0.295657
745745 0 0
746746 5.70599e9 0.503205
747747 3.52932e8 0.0309791
748748 −1.13736e10 −0.993672
749749 −1.79462e9 −0.156058
750750 0 0
751751 −1.37161e10 −1.18166 −0.590829 0.806797i 0.701199π-0.701199\pi
−0.590829 + 0.806797i 0.701199π0.701199\pi
752752 1.32291e9 0.113440
753753 1.60156e9 0.136697
754754 1.99034e9 0.169094
755755 0 0
756756 −1.41844e9 −0.119394
757757 −1.41449e10 −1.18513 −0.592563 0.805524i 0.701884π-0.701884\pi
−0.592563 + 0.805524i 0.701884π0.701884\pi
758758 −1.54236e9 −0.128631
759759 1.42210e10 1.18055
760760 0 0
761761 2.16828e10 1.78348 0.891741 0.452547i 0.149484π-0.149484\pi
0.891741 + 0.452547i 0.149484π0.149484\pi
762762 −8.43392e9 −0.690537
763763 −1.87061e10 −1.52457
764764 3.60430e9 0.292411
765765 0 0
766766 −1.04435e10 −0.839547
767767 2.36137e10 1.88965
768768 −4.52985e8 −0.0360844
769769 −1.45804e10 −1.15618 −0.578092 0.815972i 0.696202π-0.696202\pi
−0.578092 + 0.815972i 0.696202π0.696202\pi
770770 0 0
771771 −6.71317e8 −0.0527518
772772 −6.38547e9 −0.499496
773773 1.83373e9 0.142793 0.0713966 0.997448i 0.477254π-0.477254\pi
0.0713966 + 0.997448i 0.477254π0.477254\pi
774774 −2.42735e9 −0.188165
775775 0 0
776776 −4.43268e9 −0.340526
777777 2.36631e9 0.180966
778778 −2.02460e8 −0.0154139
779779 −1.32988e9 −0.100793
780780 0 0
781781 1.89099e10 1.42040
782782 −2.45930e10 −1.83903
783783 −3.82638e8 −0.0284853
784784 1.81999e9 0.134885
785785 0 0
786786 8.81380e8 0.0647417
787787 −1.48611e10 −1.08678 −0.543388 0.839482i 0.682859π-0.682859\pi
−0.543388 + 0.839482i 0.682859π0.682859\pi
788788 −8.02926e9 −0.584566
789789 1.44856e8 0.0104994
790790 0 0
791791 −6.04209e8 −0.0434080
792792 2.05958e9 0.147313
793793 1.10283e10 0.785328
794794 −1.07997e10 −0.765669
795795 0 0
796796 −1.48685e8 −0.0104489
797797 1.46595e10 1.02569 0.512843 0.858483i 0.328592π-0.328592\pi
0.512843 + 0.858483i 0.328592π0.328592\pi
798798 −1.07988e9 −0.0752255
799799 1.04018e10 0.721429
800800 0 0
801801 4.56260e9 0.313688
802802 7.36610e8 0.0504228
803803 2.58173e10 1.75957
804804 1.16444e9 0.0790169
805805 0 0
806806 −2.45976e10 −1.65470
807807 4.94528e9 0.331233
808808 3.85192e9 0.256884
809809 −9.95193e9 −0.660827 −0.330413 0.943836i 0.607188π-0.607188\pi
−0.330413 + 0.943836i 0.607188π0.607188\pi
810810 0 0
811811 −1.78463e10 −1.17483 −0.587415 0.809286i 0.699854π-0.699854\pi
−0.587415 + 0.809286i 0.699854π0.699854\pi
812812 1.40092e9 0.0918266
813813 −6.86894e9 −0.448304
814814 −3.43590e9 −0.223283
815815 0 0
816816 −3.56173e9 −0.229480
817817 −1.84798e9 −0.118555
818818 2.14717e10 1.37161
819819 −1.05053e10 −0.668212
820820 0 0
821821 −3.93673e9 −0.248276 −0.124138 0.992265i 0.539617π-0.539617\pi
−0.124138 + 0.992265i 0.539617π0.539617\pi
822822 −5.05807e9 −0.317639
823823 8.31828e9 0.520156 0.260078 0.965588i 0.416252π-0.416252\pi
0.260078 + 0.965588i 0.416252π0.416252\pi
824824 7.18138e9 0.447160
825825 0 0
826826 1.66208e10 1.02617
827827 1.30781e10 0.804033 0.402017 0.915632i 0.368309π-0.368309\pi
0.402017 + 0.915632i 0.368309π0.368309\pi
828828 4.45341e9 0.272638
829829 −1.78307e10 −1.08700 −0.543499 0.839410i 0.682901π-0.682901\pi
−0.543499 + 0.839410i 0.682901π0.682901\pi
830830 0 0
831831 −1.60073e10 −0.967642
832832 −3.35492e9 −0.201953
833833 1.43102e10 0.857804
834834 −2.93652e8 −0.0175288
835835 0 0
836836 1.56799e9 0.0928160
837837 4.72880e9 0.278748
838838 −6.76160e9 −0.396913
839839 2.05093e10 1.19890 0.599451 0.800411i 0.295386π-0.295386\pi
0.599451 + 0.800411i 0.295386π0.295386\pi
840840 0 0
841841 −1.68720e10 −0.978092
842842 −2.12981e10 −1.22956
843843 1.67948e10 0.965559
844844 5.66448e9 0.324311
845845 0 0
846846 −1.88360e9 −0.106953
847847 1.23423e10 0.697915
848848 −3.60808e9 −0.203184
849849 −1.06584e10 −0.597744
850850 0 0
851851 −7.42941e9 −0.413239
852852 5.92177e9 0.328029
853853 −2.30130e10 −1.26955 −0.634777 0.772695i 0.718908π-0.718908\pi
−0.634777 + 0.772695i 0.718908π0.718908\pi
854854 7.76236e9 0.426472
855855 0 0
856856 8.16028e8 0.0444679
857857 −1.45901e10 −0.791819 −0.395910 0.918289i 0.629571π-0.629571\pi
−0.395910 + 0.918289i 0.629571π0.629571\pi
858858 1.52538e10 0.824465
859859 3.04784e10 1.64065 0.820324 0.571898i 0.193793π-0.193793\pi
0.820324 + 0.571898i 0.193793π0.193793\pi
860860 0 0
861861 −9.10607e9 −0.486205
862862 7.86535e9 0.418257
863863 −1.15324e10 −0.610775 −0.305387 0.952228i 0.598786π-0.598786\pi
−0.305387 + 0.952228i 0.598786π0.598786\pi
864864 6.44973e8 0.0340207
865865 0 0
866866 −6.64222e9 −0.347536
867867 −1.69260e10 −0.882037
868868 −1.73132e10 −0.898585
869869 1.73142e10 0.895019
870870 0 0
871871 8.62411e9 0.442233
872872 8.50581e9 0.434418
873873 6.31137e9 0.321051
874874 3.39046e9 0.171778
875875 0 0
876876 8.08488e9 0.406358
877877 −1.15209e10 −0.576748 −0.288374 0.957518i 0.593115π-0.593115\pi
−0.288374 + 0.957518i 0.593115π0.593115\pi
878878 −2.23730e10 −1.11556
879879 −1.86139e10 −0.924436
880880 0 0
881881 −7.26258e8 −0.0357829 −0.0178914 0.999840i 0.505695π-0.505695\pi
−0.0178914 + 0.999840i 0.505695π0.505695\pi
882882 −2.59135e9 −0.127170
883883 −1.81507e10 −0.887219 −0.443609 0.896220i 0.646302π-0.646302\pi
−0.443609 + 0.896220i 0.646302π0.646302\pi
884884 −2.63790e10 −1.28433
885885 0 0
886886 −3.17665e9 −0.153444
887887 −8.91198e9 −0.428787 −0.214393 0.976747i 0.568777π-0.568777\pi
−0.214393 + 0.976747i 0.568777π0.568777\pi
888888 −1.07598e9 −0.0515653
889889 −4.39657e10 −2.09874
890890 0 0
891891 −2.93249e9 −0.138888
892892 −4.03109e7 −0.00190172
893893 −1.43401e9 −0.0673865
894894 −1.46832e10 −0.687287
895895 0 0
896896 −2.36139e9 −0.109671
897897 3.29831e10 1.52587
898898 −1.39569e9 −0.0643163
899899 −4.67042e9 −0.214386
900900 0 0
901901 −2.83696e10 −1.29216
902902 1.32221e10 0.599898
903903 −1.26537e10 −0.571886
904904 2.74738e8 0.0123689
905905 0 0
906906 6.50141e9 0.290442
907907 1.76727e10 0.786462 0.393231 0.919440i 0.371357π-0.371357\pi
0.393231 + 0.919440i 0.371357π0.371357\pi
908908 1.11576e10 0.494618
909909 −5.48448e9 −0.242193
910910 0 0
911911 −2.84979e10 −1.24882 −0.624409 0.781098i 0.714660π-0.714660\pi
−0.624409 + 0.781098i 0.714660π0.714660\pi
912912 4.91028e8 0.0214351
913913 −2.67144e9 −0.116171
914914 −2.88022e9 −0.124771
915915 0 0
916916 −1.28412e10 −0.552042
917917 4.59460e9 0.196768
918918 5.07129e9 0.216356
919919 −9.46354e9 −0.402207 −0.201103 0.979570i 0.564453π-0.564453\pi
−0.201103 + 0.979570i 0.564453π0.564453\pi
920920 0 0
921921 7.22977e9 0.304941
922922 1.06790e9 0.0448715
923923 4.38581e10 1.83588
924924 1.07365e10 0.447726
925925 0 0
926926 −2.34884e10 −0.972108
927927 −1.02251e10 −0.421586
928928 −6.37010e8 −0.0261655
929929 1.56995e10 0.642438 0.321219 0.947005i 0.395907π-0.395907\pi
0.321219 + 0.947005i 0.395907π0.395907\pi
930930 0 0
931931 −1.97284e9 −0.0801249
932932 1.06574e10 0.431217
933933 5.25289e9 0.211745
934934 −1.38221e10 −0.555087
935935 0 0
936936 4.77683e9 0.190403
937937 −8.78711e9 −0.348946 −0.174473 0.984662i 0.555822π-0.555822\pi
−0.174473 + 0.984662i 0.555822π0.555822\pi
938938 6.07017e9 0.240154
939939 2.38087e10 0.938438
940940 0 0
941941 −1.58721e10 −0.620971 −0.310485 0.950578i 0.600492π-0.600492\pi
−0.310485 + 0.950578i 0.600492π0.600492\pi
942942 2.37446e9 0.0925522
943943 2.85900e10 1.11026
944944 −7.55757e9 −0.292402
945945 0 0
946946 1.83733e10 0.705614
947947 5.08496e9 0.194564 0.0972820 0.995257i 0.468985π-0.468985\pi
0.0972820 + 0.995257i 0.468985π0.468985\pi
948948 5.42205e9 0.206697
949949 5.98786e10 2.27426
950950 0 0
951951 1.31840e10 0.497068
952952 −1.85671e10 −0.697454
953953 −4.59917e10 −1.72129 −0.860645 0.509205i 0.829940π-0.829940\pi
−0.860645 + 0.509205i 0.829940π0.829940\pi
954954 5.13728e9 0.191564
955955 0 0
956956 −7.53081e9 −0.278765
957957 2.89629e9 0.106819
958958 1.35384e10 0.497493
959959 −2.63675e10 −0.965393
960960 0 0
961961 3.02065e10 1.09791
962962 −7.96896e9 −0.288595
963963 −1.16188e9 −0.0419247
964964 −2.59175e10 −0.931802
965965 0 0
966966 2.32155e10 0.828623
967967 −3.82819e10 −1.36145 −0.680723 0.732541i 0.738334π-0.738334\pi
−0.680723 + 0.732541i 0.738334π0.738334\pi
968968 −5.61211e9 −0.198867
969969 3.86086e9 0.136317
970970 0 0
971971 2.85329e10 1.00018 0.500090 0.865974i 0.333300π-0.333300\pi
0.500090 + 0.865974i 0.333300π0.333300\pi
972972 −9.18330e8 −0.0320750
973973 −1.53080e9 −0.0532749
974974 1.17055e10 0.405914
975975 0 0
976976 −3.52960e9 −0.121521
977977 −8.40644e9 −0.288391 −0.144195 0.989549i 0.546059π-0.546059\pi
−0.144195 + 0.989549i 0.546059π0.546059\pi
978978 −1.94229e10 −0.663938
979979 −3.45356e10 −1.17632
980980 0 0
981981 −1.21108e10 −0.409573
982982 2.29103e10 0.772041
983983 5.00100e10 1.67927 0.839633 0.543154i 0.182770π-0.182770\pi
0.839633 + 0.543154i 0.182770π0.182770\pi
984984 4.14059e9 0.138541
985985 0 0
986986 −5.00868e9 −0.166400
987987 −9.81912e9 −0.325059
988988 3.63668e9 0.119965
989989 3.97283e10 1.30591
990990 0 0
991991 −1.17819e10 −0.384555 −0.192277 0.981341i 0.561587π-0.561587\pi
−0.192277 + 0.981341i 0.561587π0.561587\pi
992992 7.87245e9 0.256047
993993 1.91214e10 0.619722
994994 3.08699e10 0.996973
995995 0 0
996996 −8.36580e8 −0.0268287
997997 −2.36572e10 −0.756014 −0.378007 0.925803i 0.623391π-0.623391\pi
−0.378007 + 0.925803i 0.623391π0.623391\pi
998998 9.37423e9 0.298524
999999 1.53201e9 0.0486162
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 150.8.a.d.1.1 1
3.2 odd 2 450.8.a.y.1.1 1
5.2 odd 4 30.8.c.a.19.1 2
5.3 odd 4 30.8.c.a.19.2 yes 2
5.4 even 2 150.8.a.m.1.1 1
15.2 even 4 90.8.c.a.19.2 2
15.8 even 4 90.8.c.a.19.1 2
15.14 odd 2 450.8.a.b.1.1 1
20.3 even 4 240.8.f.a.49.2 2
20.7 even 4 240.8.f.a.49.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
30.8.c.a.19.1 2 5.2 odd 4
30.8.c.a.19.2 yes 2 5.3 odd 4
90.8.c.a.19.1 2 15.8 even 4
90.8.c.a.19.2 2 15.2 even 4
150.8.a.d.1.1 1 1.1 even 1 trivial
150.8.a.m.1.1 1 5.4 even 2
240.8.f.a.49.1 2 20.7 even 4
240.8.f.a.49.2 2 20.3 even 4
450.8.a.b.1.1 1 15.14 odd 2
450.8.a.y.1.1 1 3.2 odd 2