Properties

Label 150.8.a.d.1.1
Level $150$
Weight $8$
Character 150.1
Self dual yes
Analytic conductor $46.858$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [150,8,Mod(1,150)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(150, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("150.1");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 150 = 2 \cdot 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 150.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(46.8577538226\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 30)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 150.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-8.00000 q^{2} -27.0000 q^{3} +64.0000 q^{4} +216.000 q^{6} +1126.00 q^{7} -512.000 q^{8} +729.000 q^{9} -5518.00 q^{11} -1728.00 q^{12} -12798.0 q^{13} -9008.00 q^{14} +4096.00 q^{16} +32206.0 q^{17} -5832.00 q^{18} -4440.00 q^{19} -30402.0 q^{21} +44144.0 q^{22} +95452.0 q^{23} +13824.0 q^{24} +102384. q^{26} -19683.0 q^{27} +72064.0 q^{28} +19440.0 q^{29} -240248. q^{31} -32768.0 q^{32} +148986. q^{33} -257648. q^{34} +46656.0 q^{36} -77834.0 q^{37} +35520.0 q^{38} +345546. q^{39} +299522. q^{41} +243216. q^{42} +416212. q^{43} -353152. q^{44} -763616. q^{46} +322976. q^{47} -110592. q^{48} +444333. q^{49} -869562. q^{51} -819072. q^{52} -880878. q^{53} +157464. q^{54} -576512. q^{56} +119880. q^{57} -155520. q^{58} -1.84511e6 q^{59} -861718. q^{61} +1.92198e6 q^{62} +820854. q^{63} +262144. q^{64} -1.19189e6 q^{66} -673864. q^{67} +2.06118e6 q^{68} -2.57720e6 q^{69} -3.42695e6 q^{71} -373248. q^{72} -4.67875e6 q^{73} +622672. q^{74} -284160. q^{76} -6.21327e6 q^{77} -2.76437e6 q^{78} -3.13776e6 q^{79} +531441. q^{81} -2.39618e6 q^{82} +484132. q^{83} -1.94573e6 q^{84} -3.32970e6 q^{86} -524880. q^{87} +2.82522e6 q^{88} +6.25871e6 q^{89} -1.44105e7 q^{91} +6.10893e6 q^{92} +6.48670e6 q^{93} -2.58381e6 q^{94} +884736. q^{96} +8.65758e6 q^{97} -3.55466e6 q^{98} -4.02262e6 q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −8.00000 −0.707107
\(3\) −27.0000 −0.577350
\(4\) 64.0000 0.500000
\(5\) 0 0
\(6\) 216.000 0.408248
\(7\) 1126.00 1.24078 0.620391 0.784293i \(-0.286974\pi\)
0.620391 + 0.784293i \(0.286974\pi\)
\(8\) −512.000 −0.353553
\(9\) 729.000 0.333333
\(10\) 0 0
\(11\) −5518.00 −1.24999 −0.624996 0.780628i \(-0.714899\pi\)
−0.624996 + 0.780628i \(0.714899\pi\)
\(12\) −1728.00 −0.288675
\(13\) −12798.0 −1.61562 −0.807812 0.589440i \(-0.799348\pi\)
−0.807812 + 0.589440i \(0.799348\pi\)
\(14\) −9008.00 −0.877365
\(15\) 0 0
\(16\) 4096.00 0.250000
\(17\) 32206.0 1.58988 0.794942 0.606685i \(-0.207501\pi\)
0.794942 + 0.606685i \(0.207501\pi\)
\(18\) −5832.00 −0.235702
\(19\) −4440.00 −0.148506 −0.0742532 0.997239i \(-0.523657\pi\)
−0.0742532 + 0.997239i \(0.523657\pi\)
\(20\) 0 0
\(21\) −30402.0 −0.716365
\(22\) 44144.0 0.883878
\(23\) 95452.0 1.63583 0.817914 0.575341i \(-0.195130\pi\)
0.817914 + 0.575341i \(0.195130\pi\)
\(24\) 13824.0 0.204124
\(25\) 0 0
\(26\) 102384. 1.14242
\(27\) −19683.0 −0.192450
\(28\) 72064.0 0.620391
\(29\) 19440.0 0.148014 0.0740071 0.997258i \(-0.476421\pi\)
0.0740071 + 0.997258i \(0.476421\pi\)
\(30\) 0 0
\(31\) −240248. −1.44842 −0.724209 0.689581i \(-0.757795\pi\)
−0.724209 + 0.689581i \(0.757795\pi\)
\(32\) −32768.0 −0.176777
\(33\) 148986. 0.721683
\(34\) −257648. −1.12422
\(35\) 0 0
\(36\) 46656.0 0.166667
\(37\) −77834.0 −0.252617 −0.126309 0.991991i \(-0.540313\pi\)
−0.126309 + 0.991991i \(0.540313\pi\)
\(38\) 35520.0 0.105010
\(39\) 345546. 0.932781
\(40\) 0 0
\(41\) 299522. 0.678712 0.339356 0.940658i \(-0.389791\pi\)
0.339356 + 0.940658i \(0.389791\pi\)
\(42\) 243216. 0.506547
\(43\) 416212. 0.798316 0.399158 0.916882i \(-0.369302\pi\)
0.399158 + 0.916882i \(0.369302\pi\)
\(44\) −353152. −0.624996
\(45\) 0 0
\(46\) −763616. −1.15670
\(47\) 322976. 0.453762 0.226881 0.973923i \(-0.427147\pi\)
0.226881 + 0.973923i \(0.427147\pi\)
\(48\) −110592. −0.144338
\(49\) 444333. 0.539538
\(50\) 0 0
\(51\) −869562. −0.917920
\(52\) −819072. −0.807812
\(53\) −880878. −0.812737 −0.406369 0.913709i \(-0.633205\pi\)
−0.406369 + 0.913709i \(0.633205\pi\)
\(54\) 157464. 0.136083
\(55\) 0 0
\(56\) −576512. −0.438682
\(57\) 119880. 0.0857402
\(58\) −155520. −0.104662
\(59\) −1.84511e6 −1.16961 −0.584804 0.811175i \(-0.698829\pi\)
−0.584804 + 0.811175i \(0.698829\pi\)
\(60\) 0 0
\(61\) −861718. −0.486083 −0.243042 0.970016i \(-0.578145\pi\)
−0.243042 + 0.970016i \(0.578145\pi\)
\(62\) 1.92198e6 1.02419
\(63\) 820854. 0.413594
\(64\) 262144. 0.125000
\(65\) 0 0
\(66\) −1.19189e6 −0.510307
\(67\) −673864. −0.273722 −0.136861 0.990590i \(-0.543701\pi\)
−0.136861 + 0.990590i \(0.543701\pi\)
\(68\) 2.06118e6 0.794942
\(69\) −2.57720e6 −0.944446
\(70\) 0 0
\(71\) −3.42695e6 −1.13633 −0.568163 0.822916i \(-0.692346\pi\)
−0.568163 + 0.822916i \(0.692346\pi\)
\(72\) −373248. −0.117851
\(73\) −4.67875e6 −1.40767 −0.703833 0.710365i \(-0.748530\pi\)
−0.703833 + 0.710365i \(0.748530\pi\)
\(74\) 622672. 0.178627
\(75\) 0 0
\(76\) −284160. −0.0742532
\(77\) −6.21327e6 −1.55097
\(78\) −2.76437e6 −0.659576
\(79\) −3.13776e6 −0.716020 −0.358010 0.933718i \(-0.616545\pi\)
−0.358010 + 0.933718i \(0.616545\pi\)
\(80\) 0 0
\(81\) 531441. 0.111111
\(82\) −2.39618e6 −0.479922
\(83\) 484132. 0.0929374 0.0464687 0.998920i \(-0.485203\pi\)
0.0464687 + 0.998920i \(0.485203\pi\)
\(84\) −1.94573e6 −0.358183
\(85\) 0 0
\(86\) −3.32970e6 −0.564495
\(87\) −524880. −0.0854560
\(88\) 2.82522e6 0.441939
\(89\) 6.25871e6 0.941065 0.470533 0.882383i \(-0.344062\pi\)
0.470533 + 0.882383i \(0.344062\pi\)
\(90\) 0 0
\(91\) −1.44105e7 −2.00464
\(92\) 6.10893e6 0.817914
\(93\) 6.48670e6 0.836244
\(94\) −2.58381e6 −0.320858
\(95\) 0 0
\(96\) 884736. 0.102062
\(97\) 8.65758e6 0.963153 0.481576 0.876404i \(-0.340064\pi\)
0.481576 + 0.876404i \(0.340064\pi\)
\(98\) −3.55466e6 −0.381511
\(99\) −4.02262e6 −0.416664
\(100\) 0 0
\(101\) −7.52329e6 −0.726579 −0.363290 0.931676i \(-0.618346\pi\)
−0.363290 + 0.931676i \(0.618346\pi\)
\(102\) 6.95650e6 0.649068
\(103\) −1.40261e7 −1.26476 −0.632380 0.774659i \(-0.717922\pi\)
−0.632380 + 0.774659i \(0.717922\pi\)
\(104\) 6.55258e6 0.571209
\(105\) 0 0
\(106\) 7.04702e6 0.574692
\(107\) −1.59380e6 −0.125774 −0.0628871 0.998021i \(-0.520031\pi\)
−0.0628871 + 0.998021i \(0.520031\pi\)
\(108\) −1.25971e6 −0.0962250
\(109\) −1.66129e7 −1.22872 −0.614360 0.789026i \(-0.710586\pi\)
−0.614360 + 0.789026i \(0.710586\pi\)
\(110\) 0 0
\(111\) 2.10152e6 0.145849
\(112\) 4.61210e6 0.310195
\(113\) −536598. −0.0349844 −0.0174922 0.999847i \(-0.505568\pi\)
−0.0174922 + 0.999847i \(0.505568\pi\)
\(114\) −959040. −0.0606275
\(115\) 0 0
\(116\) 1.24416e6 0.0740071
\(117\) −9.32974e6 −0.538541
\(118\) 1.47609e7 0.827038
\(119\) 3.62640e7 1.97270
\(120\) 0 0
\(121\) 1.09612e7 0.562480
\(122\) 6.89374e6 0.343713
\(123\) −8.08709e6 −0.391854
\(124\) −1.53759e7 −0.724209
\(125\) 0 0
\(126\) −6.56683e6 −0.292455
\(127\) −3.90459e7 −1.69146 −0.845732 0.533608i \(-0.820836\pi\)
−0.845732 + 0.533608i \(0.820836\pi\)
\(128\) −2.09715e6 −0.0883883
\(129\) −1.12377e7 −0.460908
\(130\) 0 0
\(131\) 4.08046e6 0.158584 0.0792921 0.996851i \(-0.474734\pi\)
0.0792921 + 0.996851i \(0.474734\pi\)
\(132\) 9.53510e6 0.360842
\(133\) −4.99944e6 −0.184264
\(134\) 5.39091e6 0.193551
\(135\) 0 0
\(136\) −1.64895e7 −0.562109
\(137\) −2.34170e7 −0.778052 −0.389026 0.921227i \(-0.627188\pi\)
−0.389026 + 0.921227i \(0.627188\pi\)
\(138\) 2.06176e7 0.667824
\(139\) −1.35950e6 −0.0429366 −0.0214683 0.999770i \(-0.506834\pi\)
−0.0214683 + 0.999770i \(0.506834\pi\)
\(140\) 0 0
\(141\) −8.72035e6 −0.261979
\(142\) 2.74156e7 0.803504
\(143\) 7.06194e7 2.01952
\(144\) 2.98598e6 0.0833333
\(145\) 0 0
\(146\) 3.74300e7 0.995370
\(147\) −1.19970e7 −0.311503
\(148\) −4.98138e6 −0.126309
\(149\) −6.79776e7 −1.68350 −0.841752 0.539865i \(-0.818475\pi\)
−0.841752 + 0.539865i \(0.818475\pi\)
\(150\) 0 0
\(151\) 3.00991e7 0.711434 0.355717 0.934594i \(-0.384237\pi\)
0.355717 + 0.934594i \(0.384237\pi\)
\(152\) 2.27328e6 0.0525050
\(153\) 2.34782e7 0.529961
\(154\) 4.97061e7 1.09670
\(155\) 0 0
\(156\) 2.21149e7 0.466391
\(157\) 1.09929e7 0.226706 0.113353 0.993555i \(-0.463841\pi\)
0.113353 + 0.993555i \(0.463841\pi\)
\(158\) 2.51021e7 0.506302
\(159\) 2.37837e7 0.469234
\(160\) 0 0
\(161\) 1.07479e8 2.02970
\(162\) −4.25153e6 −0.0785674
\(163\) −8.99208e7 −1.62631 −0.813155 0.582047i \(-0.802252\pi\)
−0.813155 + 0.582047i \(0.802252\pi\)
\(164\) 1.91694e7 0.339356
\(165\) 0 0
\(166\) −3.87306e6 −0.0657167
\(167\) 4.57557e7 0.760217 0.380108 0.924942i \(-0.375887\pi\)
0.380108 + 0.924942i \(0.375887\pi\)
\(168\) 1.55658e7 0.253273
\(169\) 1.01040e8 1.61024
\(170\) 0 0
\(171\) −3.23676e6 −0.0495022
\(172\) 2.66376e7 0.399158
\(173\) −9.47012e7 −1.39057 −0.695287 0.718732i \(-0.744723\pi\)
−0.695287 + 0.718732i \(0.744723\pi\)
\(174\) 4.19904e6 0.0604265
\(175\) 0 0
\(176\) −2.26017e7 −0.312498
\(177\) 4.98180e7 0.675273
\(178\) −5.00697e7 −0.665434
\(179\) 7.12070e7 0.927977 0.463989 0.885841i \(-0.346418\pi\)
0.463989 + 0.885841i \(0.346418\pi\)
\(180\) 0 0
\(181\) 6.10292e7 0.765003 0.382501 0.923955i \(-0.375063\pi\)
0.382501 + 0.923955i \(0.375063\pi\)
\(182\) 1.15284e8 1.41749
\(183\) 2.32664e7 0.280640
\(184\) −4.88714e7 −0.578352
\(185\) 0 0
\(186\) −5.18936e7 −0.591314
\(187\) −1.77713e8 −1.98734
\(188\) 2.06705e7 0.226881
\(189\) −2.21631e7 −0.238788
\(190\) 0 0
\(191\) 5.63172e7 0.584823 0.292411 0.956293i \(-0.405542\pi\)
0.292411 + 0.956293i \(0.405542\pi\)
\(192\) −7.07789e6 −0.0721688
\(193\) −9.97730e7 −0.998993 −0.499496 0.866316i \(-0.666482\pi\)
−0.499496 + 0.866316i \(0.666482\pi\)
\(194\) −6.92606e7 −0.681052
\(195\) 0 0
\(196\) 2.84373e7 0.269769
\(197\) −1.25457e8 −1.16913 −0.584566 0.811346i \(-0.698735\pi\)
−0.584566 + 0.811346i \(0.698735\pi\)
\(198\) 3.21810e7 0.294626
\(199\) −2.32320e6 −0.0208978 −0.0104489 0.999945i \(-0.503326\pi\)
−0.0104489 + 0.999945i \(0.503326\pi\)
\(200\) 0 0
\(201\) 1.81943e7 0.158034
\(202\) 6.01863e7 0.513769
\(203\) 2.18894e7 0.183653
\(204\) −5.56520e7 −0.458960
\(205\) 0 0
\(206\) 1.12209e8 0.894320
\(207\) 6.95845e7 0.545276
\(208\) −5.24206e7 −0.403906
\(209\) 2.44999e7 0.185632
\(210\) 0 0
\(211\) 8.85076e7 0.648622 0.324311 0.945950i \(-0.394868\pi\)
0.324311 + 0.945950i \(0.394868\pi\)
\(212\) −5.63762e7 −0.406369
\(213\) 9.25276e7 0.656059
\(214\) 1.27504e7 0.0889358
\(215\) 0 0
\(216\) 1.00777e7 0.0680414
\(217\) −2.70519e8 −1.79717
\(218\) 1.32903e8 0.868836
\(219\) 1.26326e8 0.812716
\(220\) 0 0
\(221\) −4.12172e8 −2.56866
\(222\) −1.68121e7 −0.103131
\(223\) −629858. −0.00380343 −0.00190172 0.999998i \(-0.500605\pi\)
−0.00190172 + 0.999998i \(0.500605\pi\)
\(224\) −3.68968e7 −0.219341
\(225\) 0 0
\(226\) 4.29278e6 0.0247377
\(227\) 1.74337e8 0.989236 0.494618 0.869111i \(-0.335308\pi\)
0.494618 + 0.869111i \(0.335308\pi\)
\(228\) 7.67232e6 0.0428701
\(229\) −2.00644e8 −1.10408 −0.552042 0.833816i \(-0.686151\pi\)
−0.552042 + 0.833816i \(0.686151\pi\)
\(230\) 0 0
\(231\) 1.67758e8 0.895451
\(232\) −9.95328e6 −0.0523309
\(233\) 1.66522e8 0.862434 0.431217 0.902248i \(-0.358084\pi\)
0.431217 + 0.902248i \(0.358084\pi\)
\(234\) 7.46379e7 0.380806
\(235\) 0 0
\(236\) −1.18087e8 −0.584804
\(237\) 8.47195e7 0.413394
\(238\) −2.90112e8 −1.39491
\(239\) −1.17669e8 −0.557531 −0.278765 0.960359i \(-0.589925\pi\)
−0.278765 + 0.960359i \(0.589925\pi\)
\(240\) 0 0
\(241\) −4.04961e8 −1.86360 −0.931802 0.362967i \(-0.881764\pi\)
−0.931802 + 0.362967i \(0.881764\pi\)
\(242\) −8.76892e7 −0.397734
\(243\) −1.43489e7 −0.0641500
\(244\) −5.51500e7 −0.243042
\(245\) 0 0
\(246\) 6.46968e7 0.277083
\(247\) 5.68231e7 0.239931
\(248\) 1.23007e8 0.512093
\(249\) −1.30716e7 −0.0536574
\(250\) 0 0
\(251\) −5.93170e7 −0.236767 −0.118383 0.992968i \(-0.537771\pi\)
−0.118383 + 0.992968i \(0.537771\pi\)
\(252\) 5.25347e7 0.206797
\(253\) −5.26704e8 −2.04477
\(254\) 3.12367e8 1.19605
\(255\) 0 0
\(256\) 1.67772e7 0.0625000
\(257\) 2.48636e7 0.0913688 0.0456844 0.998956i \(-0.485453\pi\)
0.0456844 + 0.998956i \(0.485453\pi\)
\(258\) 8.99018e7 0.325911
\(259\) −8.76411e7 −0.313443
\(260\) 0 0
\(261\) 1.41718e7 0.0493381
\(262\) −3.26437e7 −0.112136
\(263\) −5.36503e6 −0.0181856 −0.00909278 0.999959i \(-0.502894\pi\)
−0.00909278 + 0.999959i \(0.502894\pi\)
\(264\) −7.62808e7 −0.255154
\(265\) 0 0
\(266\) 3.99955e7 0.130294
\(267\) −1.68985e8 −0.543324
\(268\) −4.31273e7 −0.136861
\(269\) −1.83159e8 −0.573713 −0.286856 0.957974i \(-0.592610\pi\)
−0.286856 + 0.957974i \(0.592610\pi\)
\(270\) 0 0
\(271\) 2.54405e8 0.776486 0.388243 0.921557i \(-0.373082\pi\)
0.388243 + 0.921557i \(0.373082\pi\)
\(272\) 1.31916e8 0.397471
\(273\) 3.89085e8 1.15738
\(274\) 1.87336e8 0.550166
\(275\) 0 0
\(276\) −1.64941e8 −0.472223
\(277\) 5.92863e8 1.67601 0.838003 0.545666i \(-0.183723\pi\)
0.838003 + 0.545666i \(0.183723\pi\)
\(278\) 1.08760e7 0.0303607
\(279\) −1.75141e8 −0.482806
\(280\) 0 0
\(281\) −6.22030e8 −1.67240 −0.836199 0.548427i \(-0.815227\pi\)
−0.836199 + 0.548427i \(0.815227\pi\)
\(282\) 6.97628e7 0.185247
\(283\) 3.94755e8 1.03532 0.517661 0.855586i \(-0.326803\pi\)
0.517661 + 0.855586i \(0.326803\pi\)
\(284\) −2.19325e8 −0.568163
\(285\) 0 0
\(286\) −5.64955e8 −1.42801
\(287\) 3.37262e8 0.842133
\(288\) −2.38879e7 −0.0589256
\(289\) 6.26888e8 1.52773
\(290\) 0 0
\(291\) −2.33755e8 −0.556077
\(292\) −2.99440e8 −0.703833
\(293\) 6.89404e8 1.60117 0.800585 0.599220i \(-0.204522\pi\)
0.800585 + 0.599220i \(0.204522\pi\)
\(294\) 9.59759e7 0.220266
\(295\) 0 0
\(296\) 3.98510e7 0.0893137
\(297\) 1.08611e8 0.240561
\(298\) 5.43821e8 1.19042
\(299\) −1.22159e9 −2.64288
\(300\) 0 0
\(301\) 4.68655e8 0.990536
\(302\) −2.40793e8 −0.503060
\(303\) 2.03129e8 0.419491
\(304\) −1.81862e7 −0.0371266
\(305\) 0 0
\(306\) −1.87825e8 −0.374739
\(307\) −2.67769e8 −0.528174 −0.264087 0.964499i \(-0.585071\pi\)
−0.264087 + 0.964499i \(0.585071\pi\)
\(308\) −3.97649e8 −0.775483
\(309\) 3.78706e8 0.730209
\(310\) 0 0
\(311\) −1.94551e8 −0.366752 −0.183376 0.983043i \(-0.558703\pi\)
−0.183376 + 0.983043i \(0.558703\pi\)
\(312\) −1.76920e8 −0.329788
\(313\) −8.81802e8 −1.62542 −0.812711 0.582667i \(-0.802009\pi\)
−0.812711 + 0.582667i \(0.802009\pi\)
\(314\) −8.79429e7 −0.160305
\(315\) 0 0
\(316\) −2.00817e8 −0.358010
\(317\) −4.88296e8 −0.860946 −0.430473 0.902603i \(-0.641653\pi\)
−0.430473 + 0.902603i \(0.641653\pi\)
\(318\) −1.90270e8 −0.331799
\(319\) −1.07270e8 −0.185017
\(320\) 0 0
\(321\) 4.30327e7 0.0726158
\(322\) −8.59832e8 −1.43522
\(323\) −1.42995e8 −0.236108
\(324\) 3.40122e7 0.0555556
\(325\) 0 0
\(326\) 7.19366e8 1.14997
\(327\) 4.48549e8 0.709402
\(328\) −1.53355e8 −0.239961
\(329\) 3.63671e8 0.563019
\(330\) 0 0
\(331\) −7.08199e8 −1.07339 −0.536695 0.843777i \(-0.680327\pi\)
−0.536695 + 0.843777i \(0.680327\pi\)
\(332\) 3.09844e7 0.0464687
\(333\) −5.67410e7 −0.0842058
\(334\) −3.66045e8 −0.537554
\(335\) 0 0
\(336\) −1.24527e8 −0.179091
\(337\) 6.69707e8 0.953192 0.476596 0.879122i \(-0.341870\pi\)
0.476596 + 0.879122i \(0.341870\pi\)
\(338\) −8.08322e8 −1.13861
\(339\) 1.44881e7 0.0201983
\(340\) 0 0
\(341\) 1.32569e9 1.81051
\(342\) 2.58941e7 0.0350033
\(343\) −4.26990e8 −0.571332
\(344\) −2.13101e8 −0.282247
\(345\) 0 0
\(346\) 7.57609e8 0.983284
\(347\) 1.01172e9 1.29989 0.649945 0.759982i \(-0.274792\pi\)
0.649945 + 0.759982i \(0.274792\pi\)
\(348\) −3.35923e7 −0.0427280
\(349\) 3.46636e8 0.436501 0.218250 0.975893i \(-0.429965\pi\)
0.218250 + 0.975893i \(0.429965\pi\)
\(350\) 0 0
\(351\) 2.51903e8 0.310927
\(352\) 1.80814e8 0.220969
\(353\) 2.93766e6 0.00355460 0.00177730 0.999998i \(-0.499434\pi\)
0.00177730 + 0.999998i \(0.499434\pi\)
\(354\) −3.98544e8 −0.477490
\(355\) 0 0
\(356\) 4.00557e8 0.470533
\(357\) −9.79127e8 −1.13894
\(358\) −5.69656e8 −0.656179
\(359\) 1.64977e9 1.88188 0.940942 0.338568i \(-0.109942\pi\)
0.940942 + 0.338568i \(0.109942\pi\)
\(360\) 0 0
\(361\) −8.74158e8 −0.977946
\(362\) −4.88234e8 −0.540939
\(363\) −2.95951e8 −0.324748
\(364\) −9.22275e8 −1.00232
\(365\) 0 0
\(366\) −1.86131e8 −0.198443
\(367\) −4.33054e8 −0.457311 −0.228655 0.973507i \(-0.573433\pi\)
−0.228655 + 0.973507i \(0.573433\pi\)
\(368\) 3.90971e8 0.408957
\(369\) 2.18352e8 0.226237
\(370\) 0 0
\(371\) −9.91869e8 −1.00843
\(372\) 4.15149e8 0.418122
\(373\) −7.13249e8 −0.711640 −0.355820 0.934555i \(-0.615798\pi\)
−0.355820 + 0.934555i \(0.615798\pi\)
\(374\) 1.42170e9 1.40526
\(375\) 0 0
\(376\) −1.65364e8 −0.160429
\(377\) −2.48793e8 −0.239135
\(378\) 1.77304e8 0.168849
\(379\) 1.92795e8 0.181911 0.0909555 0.995855i \(-0.471008\pi\)
0.0909555 + 0.995855i \(0.471008\pi\)
\(380\) 0 0
\(381\) 1.05424e9 0.976567
\(382\) −4.50538e8 −0.413532
\(383\) 1.30544e9 1.18730 0.593649 0.804724i \(-0.297687\pi\)
0.593649 + 0.804724i \(0.297687\pi\)
\(384\) 5.66231e7 0.0510310
\(385\) 0 0
\(386\) 7.98184e8 0.706395
\(387\) 3.03419e8 0.266105
\(388\) 5.54085e8 0.481576
\(389\) 2.53075e7 0.0217985 0.0108992 0.999941i \(-0.496531\pi\)
0.0108992 + 0.999941i \(0.496531\pi\)
\(390\) 0 0
\(391\) 3.07413e9 2.60078
\(392\) −2.27498e8 −0.190756
\(393\) −1.10172e8 −0.0915586
\(394\) 1.00366e9 0.826702
\(395\) 0 0
\(396\) −2.57448e8 −0.208332
\(397\) 1.34997e9 1.08282 0.541410 0.840759i \(-0.317891\pi\)
0.541410 + 0.840759i \(0.317891\pi\)
\(398\) 1.85856e7 0.0147770
\(399\) 1.34985e8 0.106385
\(400\) 0 0
\(401\) −9.20762e7 −0.0713086 −0.0356543 0.999364i \(-0.511352\pi\)
−0.0356543 + 0.999364i \(0.511352\pi\)
\(402\) −1.45555e8 −0.111747
\(403\) 3.07469e9 2.34010
\(404\) −4.81490e8 −0.363290
\(405\) 0 0
\(406\) −1.75116e8 −0.129862
\(407\) 4.29488e8 0.315770
\(408\) 4.45216e8 0.324534
\(409\) −2.68396e9 −1.93975 −0.969874 0.243609i \(-0.921669\pi\)
−0.969874 + 0.243609i \(0.921669\pi\)
\(410\) 0 0
\(411\) 6.32258e8 0.449209
\(412\) −8.97673e8 −0.632380
\(413\) −2.07759e9 −1.45123
\(414\) −5.56676e8 −0.385568
\(415\) 0 0
\(416\) 4.19365e8 0.285605
\(417\) 3.67065e7 0.0247894
\(418\) −1.95999e8 −0.131262
\(419\) 8.45201e8 0.561320 0.280660 0.959807i \(-0.409447\pi\)
0.280660 + 0.959807i \(0.409447\pi\)
\(420\) 0 0
\(421\) 2.66227e9 1.73886 0.869430 0.494056i \(-0.164486\pi\)
0.869430 + 0.494056i \(0.164486\pi\)
\(422\) −7.08061e8 −0.458645
\(423\) 2.35450e8 0.151254
\(424\) 4.51010e8 0.287346
\(425\) 0 0
\(426\) −7.40221e8 −0.463904
\(427\) −9.70294e8 −0.603123
\(428\) −1.02003e8 −0.0628871
\(429\) −1.90672e9 −1.16597
\(430\) 0 0
\(431\) −9.83169e8 −0.591504 −0.295752 0.955265i \(-0.595570\pi\)
−0.295752 + 0.955265i \(0.595570\pi\)
\(432\) −8.06216e7 −0.0481125
\(433\) 8.30277e8 0.491491 0.245745 0.969334i \(-0.420967\pi\)
0.245745 + 0.969334i \(0.420967\pi\)
\(434\) 2.16415e9 1.27079
\(435\) 0 0
\(436\) −1.06323e9 −0.614360
\(437\) −4.23807e8 −0.242931
\(438\) −1.01061e9 −0.574677
\(439\) 2.79662e9 1.57764 0.788820 0.614625i \(-0.210692\pi\)
0.788820 + 0.614625i \(0.210692\pi\)
\(440\) 0 0
\(441\) 3.23919e8 0.179846
\(442\) 3.29738e9 1.81631
\(443\) 3.97081e8 0.217003 0.108502 0.994096i \(-0.465395\pi\)
0.108502 + 0.994096i \(0.465395\pi\)
\(444\) 1.34497e8 0.0729244
\(445\) 0 0
\(446\) 5.03886e6 0.00268943
\(447\) 1.83540e9 0.971971
\(448\) 2.95174e8 0.155098
\(449\) 1.74461e8 0.0909569 0.0454785 0.998965i \(-0.485519\pi\)
0.0454785 + 0.998965i \(0.485519\pi\)
\(450\) 0 0
\(451\) −1.65276e9 −0.848384
\(452\) −3.43423e7 −0.0174922
\(453\) −8.12676e8 −0.410746
\(454\) −1.39470e9 −0.699495
\(455\) 0 0
\(456\) −6.13786e7 −0.0303138
\(457\) 3.60027e8 0.176453 0.0882264 0.996100i \(-0.471880\pi\)
0.0882264 + 0.996100i \(0.471880\pi\)
\(458\) 1.60515e9 0.780705
\(459\) −6.33911e8 −0.305973
\(460\) 0 0
\(461\) −1.33487e8 −0.0634579 −0.0317290 0.999497i \(-0.510101\pi\)
−0.0317290 + 0.999497i \(0.510101\pi\)
\(462\) −1.34207e9 −0.633180
\(463\) 2.93605e9 1.37477 0.687384 0.726294i \(-0.258759\pi\)
0.687384 + 0.726294i \(0.258759\pi\)
\(464\) 7.96262e7 0.0370035
\(465\) 0 0
\(466\) −1.33218e9 −0.609833
\(467\) 1.72777e9 0.785011 0.392506 0.919750i \(-0.371608\pi\)
0.392506 + 0.919750i \(0.371608\pi\)
\(468\) −5.97103e8 −0.269271
\(469\) −7.58771e8 −0.339630
\(470\) 0 0
\(471\) −2.96807e8 −0.130889
\(472\) 9.44696e8 0.413519
\(473\) −2.29666e9 −0.997889
\(474\) −6.77756e8 −0.292314
\(475\) 0 0
\(476\) 2.32089e9 0.986349
\(477\) −6.42160e8 −0.270912
\(478\) 9.41351e8 0.394234
\(479\) −1.69230e9 −0.703562 −0.351781 0.936082i \(-0.614424\pi\)
−0.351781 + 0.936082i \(0.614424\pi\)
\(480\) 0 0
\(481\) 9.96120e8 0.408135
\(482\) 3.23969e9 1.31777
\(483\) −2.90193e9 −1.17185
\(484\) 7.01514e8 0.281240
\(485\) 0 0
\(486\) 1.14791e8 0.0453609
\(487\) −1.46319e9 −0.574048 −0.287024 0.957923i \(-0.592666\pi\)
−0.287024 + 0.957923i \(0.592666\pi\)
\(488\) 4.41200e8 0.171856
\(489\) 2.42786e9 0.938951
\(490\) 0 0
\(491\) −2.86378e9 −1.09183 −0.545915 0.837840i \(-0.683818\pi\)
−0.545915 + 0.837840i \(0.683818\pi\)
\(492\) −5.17574e8 −0.195927
\(493\) 6.26085e8 0.235325
\(494\) −4.54585e8 −0.169657
\(495\) 0 0
\(496\) −9.84056e8 −0.362104
\(497\) −3.85874e9 −1.40993
\(498\) 1.04573e8 0.0379415
\(499\) −1.17178e9 −0.422176 −0.211088 0.977467i \(-0.567701\pi\)
−0.211088 + 0.977467i \(0.567701\pi\)
\(500\) 0 0
\(501\) −1.23540e9 −0.438911
\(502\) 4.74536e8 0.167419
\(503\) −3.67913e9 −1.28901 −0.644506 0.764599i \(-0.722937\pi\)
−0.644506 + 0.764599i \(0.722937\pi\)
\(504\) −4.20277e8 −0.146227
\(505\) 0 0
\(506\) 4.21363e9 1.44587
\(507\) −2.72809e9 −0.929674
\(508\) −2.49894e9 −0.845732
\(509\) −4.56520e9 −1.53443 −0.767216 0.641389i \(-0.778359\pi\)
−0.767216 + 0.641389i \(0.778359\pi\)
\(510\) 0 0
\(511\) −5.26827e9 −1.74661
\(512\) −1.34218e8 −0.0441942
\(513\) 8.73925e7 0.0285801
\(514\) −1.98909e8 −0.0646075
\(515\) 0 0
\(516\) −7.19214e8 −0.230454
\(517\) −1.78218e9 −0.567198
\(518\) 7.01129e8 0.221638
\(519\) 2.55693e9 0.802848
\(520\) 0 0
\(521\) −5.34662e9 −1.65633 −0.828166 0.560484i \(-0.810615\pi\)
−0.828166 + 0.560484i \(0.810615\pi\)
\(522\) −1.13374e8 −0.0348873
\(523\) 5.14610e9 1.57298 0.786488 0.617605i \(-0.211897\pi\)
0.786488 + 0.617605i \(0.211897\pi\)
\(524\) 2.61150e8 0.0792921
\(525\) 0 0
\(526\) 4.29202e7 0.0128591
\(527\) −7.73743e9 −2.30282
\(528\) 6.10247e8 0.180421
\(529\) 5.70626e9 1.67593
\(530\) 0 0
\(531\) −1.34509e9 −0.389869
\(532\) −3.19964e8 −0.0921320
\(533\) −3.83328e9 −1.09654
\(534\) 1.35188e9 0.384188
\(535\) 0 0
\(536\) 3.45018e8 0.0967755
\(537\) −1.92259e9 −0.535768
\(538\) 1.46527e9 0.405676
\(539\) −2.45183e9 −0.674419
\(540\) 0 0
\(541\) −2.32073e8 −0.0630137 −0.0315069 0.999504i \(-0.510031\pi\)
−0.0315069 + 0.999504i \(0.510031\pi\)
\(542\) −2.03524e9 −0.549058
\(543\) −1.64779e9 −0.441675
\(544\) −1.05533e9 −0.281055
\(545\) 0 0
\(546\) −3.11268e9 −0.818389
\(547\) 7.09990e9 1.85480 0.927399 0.374075i \(-0.122040\pi\)
0.927399 + 0.374075i \(0.122040\pi\)
\(548\) −1.49869e9 −0.389026
\(549\) −6.28192e8 −0.162028
\(550\) 0 0
\(551\) −8.63136e7 −0.0219811
\(552\) 1.31953e9 0.333912
\(553\) −3.53312e9 −0.888424
\(554\) −4.74291e9 −1.18511
\(555\) 0 0
\(556\) −8.70080e7 −0.0214683
\(557\) 2.92398e9 0.716937 0.358469 0.933542i \(-0.383299\pi\)
0.358469 + 0.933542i \(0.383299\pi\)
\(558\) 1.40113e9 0.341395
\(559\) −5.32668e9 −1.28978
\(560\) 0 0
\(561\) 4.79824e9 1.14739
\(562\) 4.97624e9 1.18256
\(563\) 3.17221e9 0.749174 0.374587 0.927192i \(-0.377785\pi\)
0.374587 + 0.927192i \(0.377785\pi\)
\(564\) −5.58103e8 −0.130990
\(565\) 0 0
\(566\) −3.15804e9 −0.732083
\(567\) 5.98403e8 0.137865
\(568\) 1.75460e9 0.401752
\(569\) 2.75561e9 0.627082 0.313541 0.949575i \(-0.398485\pi\)
0.313541 + 0.949575i \(0.398485\pi\)
\(570\) 0 0
\(571\) 4.36061e9 0.980213 0.490107 0.871662i \(-0.336958\pi\)
0.490107 + 0.871662i \(0.336958\pi\)
\(572\) 4.51964e9 1.00976
\(573\) −1.52056e9 −0.337648
\(574\) −2.69809e9 −0.595478
\(575\) 0 0
\(576\) 1.91103e8 0.0416667
\(577\) −6.07328e9 −1.31616 −0.658079 0.752949i \(-0.728631\pi\)
−0.658079 + 0.752949i \(0.728631\pi\)
\(578\) −5.01510e9 −1.08027
\(579\) 2.69387e9 0.576769
\(580\) 0 0
\(581\) 5.45133e8 0.115315
\(582\) 1.87004e9 0.393206
\(583\) 4.86068e9 1.01592
\(584\) 2.39552e9 0.497685
\(585\) 0 0
\(586\) −5.51523e9 −1.13220
\(587\) 4.35319e9 0.888329 0.444165 0.895945i \(-0.353501\pi\)
0.444165 + 0.895945i \(0.353501\pi\)
\(588\) −7.67807e8 −0.155751
\(589\) 1.06670e9 0.215099
\(590\) 0 0
\(591\) 3.38734e9 0.674999
\(592\) −3.18808e8 −0.0631544
\(593\) −2.22483e9 −0.438133 −0.219067 0.975710i \(-0.570301\pi\)
−0.219067 + 0.975710i \(0.570301\pi\)
\(594\) −8.68886e8 −0.170102
\(595\) 0 0
\(596\) −4.35057e9 −0.841752
\(597\) 6.27264e7 0.0120654
\(598\) 9.77276e9 1.86880
\(599\) −3.63376e9 −0.690815 −0.345408 0.938453i \(-0.612259\pi\)
−0.345408 + 0.938453i \(0.612259\pi\)
\(600\) 0 0
\(601\) −6.00206e9 −1.12782 −0.563909 0.825837i \(-0.690703\pi\)
−0.563909 + 0.825837i \(0.690703\pi\)
\(602\) −3.74924e9 −0.700415
\(603\) −4.91247e8 −0.0912408
\(604\) 1.92634e9 0.355717
\(605\) 0 0
\(606\) −1.62503e9 −0.296625
\(607\) 2.80807e9 0.509621 0.254811 0.966991i \(-0.417987\pi\)
0.254811 + 0.966991i \(0.417987\pi\)
\(608\) 1.45490e8 0.0262525
\(609\) −5.91015e8 −0.106032
\(610\) 0 0
\(611\) −4.13345e9 −0.733108
\(612\) 1.50260e9 0.264981
\(613\) −8.34916e9 −1.46397 −0.731983 0.681323i \(-0.761405\pi\)
−0.731983 + 0.681323i \(0.761405\pi\)
\(614\) 2.14216e9 0.373475
\(615\) 0 0
\(616\) 3.18119e9 0.548350
\(617\) 2.16207e9 0.370571 0.185286 0.982685i \(-0.440679\pi\)
0.185286 + 0.982685i \(0.440679\pi\)
\(618\) −3.02965e9 −0.516336
\(619\) −2.82281e9 −0.478370 −0.239185 0.970974i \(-0.576880\pi\)
−0.239185 + 0.970974i \(0.576880\pi\)
\(620\) 0 0
\(621\) −1.87878e9 −0.314815
\(622\) 1.55641e9 0.259333
\(623\) 7.04731e9 1.16766
\(624\) 1.41536e9 0.233195
\(625\) 0 0
\(626\) 7.05442e9 1.14935
\(627\) −6.61498e8 −0.107175
\(628\) 7.03543e8 0.113353
\(629\) −2.50672e9 −0.401633
\(630\) 0 0
\(631\) 7.87109e9 1.24719 0.623595 0.781748i \(-0.285672\pi\)
0.623595 + 0.781748i \(0.285672\pi\)
\(632\) 1.60653e9 0.253151
\(633\) −2.38970e9 −0.374482
\(634\) 3.90637e9 0.608781
\(635\) 0 0
\(636\) 1.52216e9 0.234617
\(637\) −5.68657e9 −0.871691
\(638\) 8.58159e8 0.130826
\(639\) −2.49825e9 −0.378776
\(640\) 0 0
\(641\) −3.77527e9 −0.566168 −0.283084 0.959095i \(-0.591357\pi\)
−0.283084 + 0.959095i \(0.591357\pi\)
\(642\) −3.44262e8 −0.0513471
\(643\) −2.51923e9 −0.373705 −0.186852 0.982388i \(-0.559829\pi\)
−0.186852 + 0.982388i \(0.559829\pi\)
\(644\) 6.87865e9 1.01485
\(645\) 0 0
\(646\) 1.14396e9 0.166954
\(647\) −3.83911e9 −0.557269 −0.278635 0.960397i \(-0.589882\pi\)
−0.278635 + 0.960397i \(0.589882\pi\)
\(648\) −2.72098e8 −0.0392837
\(649\) 1.01813e10 1.46200
\(650\) 0 0
\(651\) 7.30402e9 1.03760
\(652\) −5.75493e9 −0.813155
\(653\) 1.00785e10 1.41644 0.708222 0.705989i \(-0.249497\pi\)
0.708222 + 0.705989i \(0.249497\pi\)
\(654\) −3.58839e9 −0.501623
\(655\) 0 0
\(656\) 1.22684e9 0.169678
\(657\) −3.41081e9 −0.469222
\(658\) −2.90937e9 −0.398115
\(659\) −8.94469e8 −0.121749 −0.0608746 0.998145i \(-0.519389\pi\)
−0.0608746 + 0.998145i \(0.519389\pi\)
\(660\) 0 0
\(661\) 1.19420e10 1.60832 0.804159 0.594414i \(-0.202616\pi\)
0.804159 + 0.594414i \(0.202616\pi\)
\(662\) 5.66559e9 0.759001
\(663\) 1.11287e10 1.48301
\(664\) −2.47876e8 −0.0328583
\(665\) 0 0
\(666\) 4.53928e8 0.0595425
\(667\) 1.85559e9 0.242126
\(668\) 2.92836e9 0.380108
\(669\) 1.70062e7 0.00219591
\(670\) 0 0
\(671\) 4.75496e9 0.607600
\(672\) 9.96213e8 0.126637
\(673\) 1.66611e9 0.210693 0.105347 0.994436i \(-0.466405\pi\)
0.105347 + 0.994436i \(0.466405\pi\)
\(674\) −5.35766e9 −0.674009
\(675\) 0 0
\(676\) 6.46658e9 0.805121
\(677\) −3.07840e9 −0.381298 −0.190649 0.981658i \(-0.561059\pi\)
−0.190649 + 0.981658i \(0.561059\pi\)
\(678\) −1.15905e8 −0.0142823
\(679\) 9.74843e9 1.19506
\(680\) 0 0
\(681\) −4.70711e9 −0.571135
\(682\) −1.06055e10 −1.28022
\(683\) 3.66304e9 0.439915 0.219958 0.975509i \(-0.429408\pi\)
0.219958 + 0.975509i \(0.429408\pi\)
\(684\) −2.07153e8 −0.0247511
\(685\) 0 0
\(686\) 3.41592e9 0.403993
\(687\) 5.41739e9 0.637443
\(688\) 1.70480e9 0.199579
\(689\) 1.12735e10 1.31308
\(690\) 0 0
\(691\) 1.03135e10 1.18914 0.594569 0.804045i \(-0.297323\pi\)
0.594569 + 0.804045i \(0.297323\pi\)
\(692\) −6.06088e9 −0.695287
\(693\) −4.52947e9 −0.516989
\(694\) −8.09374e9 −0.919161
\(695\) 0 0
\(696\) 2.68739e8 0.0302133
\(697\) 9.64641e9 1.07907
\(698\) −2.77309e9 −0.308653
\(699\) −4.49609e9 −0.497926
\(700\) 0 0
\(701\) −5.82173e9 −0.638321 −0.319161 0.947701i \(-0.603401\pi\)
−0.319161 + 0.947701i \(0.603401\pi\)
\(702\) −2.01522e9 −0.219859
\(703\) 3.45583e8 0.0375153
\(704\) −1.44651e9 −0.156249
\(705\) 0 0
\(706\) −2.35013e7 −0.00251348
\(707\) −8.47122e9 −0.901526
\(708\) 3.18835e9 0.337637
\(709\) −8.52806e9 −0.898645 −0.449323 0.893370i \(-0.648335\pi\)
−0.449323 + 0.893370i \(0.648335\pi\)
\(710\) 0 0
\(711\) −2.28743e9 −0.238673
\(712\) −3.20446e9 −0.332717
\(713\) −2.29322e10 −2.36936
\(714\) 7.83301e9 0.805351
\(715\) 0 0
\(716\) 4.55725e9 0.463989
\(717\) 3.17706e9 0.321891
\(718\) −1.31982e10 −1.33069
\(719\) 1.73546e9 0.174126 0.0870631 0.996203i \(-0.472252\pi\)
0.0870631 + 0.996203i \(0.472252\pi\)
\(720\) 0 0
\(721\) −1.57934e10 −1.56929
\(722\) 6.99327e9 0.691512
\(723\) 1.09339e10 1.07595
\(724\) 3.90587e9 0.382501
\(725\) 0 0
\(726\) 2.36761e9 0.229632
\(727\) 1.16762e10 1.12702 0.563509 0.826110i \(-0.309451\pi\)
0.563509 + 0.826110i \(0.309451\pi\)
\(728\) 7.37820e9 0.708746
\(729\) 3.87420e8 0.0370370
\(730\) 0 0
\(731\) 1.34045e10 1.26923
\(732\) 1.48905e9 0.140320
\(733\) −4.92260e9 −0.461669 −0.230834 0.972993i \(-0.574146\pi\)
−0.230834 + 0.972993i \(0.574146\pi\)
\(734\) 3.46444e9 0.323367
\(735\) 0 0
\(736\) −3.12777e9 −0.289176
\(737\) 3.71838e9 0.342151
\(738\) −1.74681e9 −0.159974
\(739\) −4.46577e9 −0.407043 −0.203522 0.979070i \(-0.565239\pi\)
−0.203522 + 0.979070i \(0.565239\pi\)
\(740\) 0 0
\(741\) −1.53422e9 −0.138524
\(742\) 7.93495e9 0.713067
\(743\) −8.36112e8 −0.0747831 −0.0373916 0.999301i \(-0.511905\pi\)
−0.0373916 + 0.999301i \(0.511905\pi\)
\(744\) −3.32119e9 −0.295657
\(745\) 0 0
\(746\) 5.70599e9 0.503205
\(747\) 3.52932e8 0.0309791
\(748\) −1.13736e10 −0.993672
\(749\) −1.79462e9 −0.156058
\(750\) 0 0
\(751\) −1.37161e10 −1.18166 −0.590829 0.806797i \(-0.701199\pi\)
−0.590829 + 0.806797i \(0.701199\pi\)
\(752\) 1.32291e9 0.113440
\(753\) 1.60156e9 0.136697
\(754\) 1.99034e9 0.169094
\(755\) 0 0
\(756\) −1.41844e9 −0.119394
\(757\) −1.41449e10 −1.18513 −0.592563 0.805524i \(-0.701884\pi\)
−0.592563 + 0.805524i \(0.701884\pi\)
\(758\) −1.54236e9 −0.128631
\(759\) 1.42210e10 1.18055
\(760\) 0 0
\(761\) 2.16828e10 1.78348 0.891741 0.452547i \(-0.149484\pi\)
0.891741 + 0.452547i \(0.149484\pi\)
\(762\) −8.43392e9 −0.690537
\(763\) −1.87061e10 −1.52457
\(764\) 3.60430e9 0.292411
\(765\) 0 0
\(766\) −1.04435e10 −0.839547
\(767\) 2.36137e10 1.88965
\(768\) −4.52985e8 −0.0360844
\(769\) −1.45804e10 −1.15618 −0.578092 0.815972i \(-0.696202\pi\)
−0.578092 + 0.815972i \(0.696202\pi\)
\(770\) 0 0
\(771\) −6.71317e8 −0.0527518
\(772\) −6.38547e9 −0.499496
\(773\) 1.83373e9 0.142793 0.0713966 0.997448i \(-0.477254\pi\)
0.0713966 + 0.997448i \(0.477254\pi\)
\(774\) −2.42735e9 −0.188165
\(775\) 0 0
\(776\) −4.43268e9 −0.340526
\(777\) 2.36631e9 0.180966
\(778\) −2.02460e8 −0.0154139
\(779\) −1.32988e9 −0.100793
\(780\) 0 0
\(781\) 1.89099e10 1.42040
\(782\) −2.45930e10 −1.83903
\(783\) −3.82638e8 −0.0284853
\(784\) 1.81999e9 0.134885
\(785\) 0 0
\(786\) 8.81380e8 0.0647417
\(787\) −1.48611e10 −1.08678 −0.543388 0.839482i \(-0.682859\pi\)
−0.543388 + 0.839482i \(0.682859\pi\)
\(788\) −8.02926e9 −0.584566
\(789\) 1.44856e8 0.0104994
\(790\) 0 0
\(791\) −6.04209e8 −0.0434080
\(792\) 2.05958e9 0.147313
\(793\) 1.10283e10 0.785328
\(794\) −1.07997e10 −0.765669
\(795\) 0 0
\(796\) −1.48685e8 −0.0104489
\(797\) 1.46595e10 1.02569 0.512843 0.858483i \(-0.328592\pi\)
0.512843 + 0.858483i \(0.328592\pi\)
\(798\) −1.07988e9 −0.0752255
\(799\) 1.04018e10 0.721429
\(800\) 0 0
\(801\) 4.56260e9 0.313688
\(802\) 7.36610e8 0.0504228
\(803\) 2.58173e10 1.75957
\(804\) 1.16444e9 0.0790169
\(805\) 0 0
\(806\) −2.45976e10 −1.65470
\(807\) 4.94528e9 0.331233
\(808\) 3.85192e9 0.256884
\(809\) −9.95193e9 −0.660827 −0.330413 0.943836i \(-0.607188\pi\)
−0.330413 + 0.943836i \(0.607188\pi\)
\(810\) 0 0
\(811\) −1.78463e10 −1.17483 −0.587415 0.809286i \(-0.699854\pi\)
−0.587415 + 0.809286i \(0.699854\pi\)
\(812\) 1.40092e9 0.0918266
\(813\) −6.86894e9 −0.448304
\(814\) −3.43590e9 −0.223283
\(815\) 0 0
\(816\) −3.56173e9 −0.229480
\(817\) −1.84798e9 −0.118555
\(818\) 2.14717e10 1.37161
\(819\) −1.05053e10 −0.668212
\(820\) 0 0
\(821\) −3.93673e9 −0.248276 −0.124138 0.992265i \(-0.539617\pi\)
−0.124138 + 0.992265i \(0.539617\pi\)
\(822\) −5.05807e9 −0.317639
\(823\) 8.31828e9 0.520156 0.260078 0.965588i \(-0.416252\pi\)
0.260078 + 0.965588i \(0.416252\pi\)
\(824\) 7.18138e9 0.447160
\(825\) 0 0
\(826\) 1.66208e10 1.02617
\(827\) 1.30781e10 0.804033 0.402017 0.915632i \(-0.368309\pi\)
0.402017 + 0.915632i \(0.368309\pi\)
\(828\) 4.45341e9 0.272638
\(829\) −1.78307e10 −1.08700 −0.543499 0.839410i \(-0.682901\pi\)
−0.543499 + 0.839410i \(0.682901\pi\)
\(830\) 0 0
\(831\) −1.60073e10 −0.967642
\(832\) −3.35492e9 −0.201953
\(833\) 1.43102e10 0.857804
\(834\) −2.93652e8 −0.0175288
\(835\) 0 0
\(836\) 1.56799e9 0.0928160
\(837\) 4.72880e9 0.278748
\(838\) −6.76160e9 −0.396913
\(839\) 2.05093e10 1.19890 0.599451 0.800411i \(-0.295386\pi\)
0.599451 + 0.800411i \(0.295386\pi\)
\(840\) 0 0
\(841\) −1.68720e10 −0.978092
\(842\) −2.12981e10 −1.22956
\(843\) 1.67948e10 0.965559
\(844\) 5.66448e9 0.324311
\(845\) 0 0
\(846\) −1.88360e9 −0.106953
\(847\) 1.23423e10 0.697915
\(848\) −3.60808e9 −0.203184
\(849\) −1.06584e10 −0.597744
\(850\) 0 0
\(851\) −7.42941e9 −0.413239
\(852\) 5.92177e9 0.328029
\(853\) −2.30130e10 −1.26955 −0.634777 0.772695i \(-0.718908\pi\)
−0.634777 + 0.772695i \(0.718908\pi\)
\(854\) 7.76236e9 0.426472
\(855\) 0 0
\(856\) 8.16028e8 0.0444679
\(857\) −1.45901e10 −0.791819 −0.395910 0.918289i \(-0.629571\pi\)
−0.395910 + 0.918289i \(0.629571\pi\)
\(858\) 1.52538e10 0.824465
\(859\) 3.04784e10 1.64065 0.820324 0.571898i \(-0.193793\pi\)
0.820324 + 0.571898i \(0.193793\pi\)
\(860\) 0 0
\(861\) −9.10607e9 −0.486205
\(862\) 7.86535e9 0.418257
\(863\) −1.15324e10 −0.610775 −0.305387 0.952228i \(-0.598786\pi\)
−0.305387 + 0.952228i \(0.598786\pi\)
\(864\) 6.44973e8 0.0340207
\(865\) 0 0
\(866\) −6.64222e9 −0.347536
\(867\) −1.69260e10 −0.882037
\(868\) −1.73132e10 −0.898585
\(869\) 1.73142e10 0.895019
\(870\) 0 0
\(871\) 8.62411e9 0.442233
\(872\) 8.50581e9 0.434418
\(873\) 6.31137e9 0.321051
\(874\) 3.39046e9 0.171778
\(875\) 0 0
\(876\) 8.08488e9 0.406358
\(877\) −1.15209e10 −0.576748 −0.288374 0.957518i \(-0.593115\pi\)
−0.288374 + 0.957518i \(0.593115\pi\)
\(878\) −2.23730e10 −1.11556
\(879\) −1.86139e10 −0.924436
\(880\) 0 0
\(881\) −7.26258e8 −0.0357829 −0.0178914 0.999840i \(-0.505695\pi\)
−0.0178914 + 0.999840i \(0.505695\pi\)
\(882\) −2.59135e9 −0.127170
\(883\) −1.81507e10 −0.887219 −0.443609 0.896220i \(-0.646302\pi\)
−0.443609 + 0.896220i \(0.646302\pi\)
\(884\) −2.63790e10 −1.28433
\(885\) 0 0
\(886\) −3.17665e9 −0.153444
\(887\) −8.91198e9 −0.428787 −0.214393 0.976747i \(-0.568777\pi\)
−0.214393 + 0.976747i \(0.568777\pi\)
\(888\) −1.07598e9 −0.0515653
\(889\) −4.39657e10 −2.09874
\(890\) 0 0
\(891\) −2.93249e9 −0.138888
\(892\) −4.03109e7 −0.00190172
\(893\) −1.43401e9 −0.0673865
\(894\) −1.46832e10 −0.687287
\(895\) 0 0
\(896\) −2.36139e9 −0.109671
\(897\) 3.29831e10 1.52587
\(898\) −1.39569e9 −0.0643163
\(899\) −4.67042e9 −0.214386
\(900\) 0 0
\(901\) −2.83696e10 −1.29216
\(902\) 1.32221e10 0.599898
\(903\) −1.26537e10 −0.571886
\(904\) 2.74738e8 0.0123689
\(905\) 0 0
\(906\) 6.50141e9 0.290442
\(907\) 1.76727e10 0.786462 0.393231 0.919440i \(-0.371357\pi\)
0.393231 + 0.919440i \(0.371357\pi\)
\(908\) 1.11576e10 0.494618
\(909\) −5.48448e9 −0.242193
\(910\) 0 0
\(911\) −2.84979e10 −1.24882 −0.624409 0.781098i \(-0.714660\pi\)
−0.624409 + 0.781098i \(0.714660\pi\)
\(912\) 4.91028e8 0.0214351
\(913\) −2.67144e9 −0.116171
\(914\) −2.88022e9 −0.124771
\(915\) 0 0
\(916\) −1.28412e10 −0.552042
\(917\) 4.59460e9 0.196768
\(918\) 5.07129e9 0.216356
\(919\) −9.46354e9 −0.402207 −0.201103 0.979570i \(-0.564453\pi\)
−0.201103 + 0.979570i \(0.564453\pi\)
\(920\) 0 0
\(921\) 7.22977e9 0.304941
\(922\) 1.06790e9 0.0448715
\(923\) 4.38581e10 1.83588
\(924\) 1.07365e10 0.447726
\(925\) 0 0
\(926\) −2.34884e10 −0.972108
\(927\) −1.02251e10 −0.421586
\(928\) −6.37010e8 −0.0261655
\(929\) 1.56995e10 0.642438 0.321219 0.947005i \(-0.395907\pi\)
0.321219 + 0.947005i \(0.395907\pi\)
\(930\) 0 0
\(931\) −1.97284e9 −0.0801249
\(932\) 1.06574e10 0.431217
\(933\) 5.25289e9 0.211745
\(934\) −1.38221e10 −0.555087
\(935\) 0 0
\(936\) 4.77683e9 0.190403
\(937\) −8.78711e9 −0.348946 −0.174473 0.984662i \(-0.555822\pi\)
−0.174473 + 0.984662i \(0.555822\pi\)
\(938\) 6.07017e9 0.240154
\(939\) 2.38087e10 0.938438
\(940\) 0 0
\(941\) −1.58721e10 −0.620971 −0.310485 0.950578i \(-0.600492\pi\)
−0.310485 + 0.950578i \(0.600492\pi\)
\(942\) 2.37446e9 0.0925522
\(943\) 2.85900e10 1.11026
\(944\) −7.55757e9 −0.292402
\(945\) 0 0
\(946\) 1.83733e10 0.705614
\(947\) 5.08496e9 0.194564 0.0972820 0.995257i \(-0.468985\pi\)
0.0972820 + 0.995257i \(0.468985\pi\)
\(948\) 5.42205e9 0.206697
\(949\) 5.98786e10 2.27426
\(950\) 0 0
\(951\) 1.31840e10 0.497068
\(952\) −1.85671e10 −0.697454
\(953\) −4.59917e10 −1.72129 −0.860645 0.509205i \(-0.829940\pi\)
−0.860645 + 0.509205i \(0.829940\pi\)
\(954\) 5.13728e9 0.191564
\(955\) 0 0
\(956\) −7.53081e9 −0.278765
\(957\) 2.89629e9 0.106819
\(958\) 1.35384e10 0.497493
\(959\) −2.63675e10 −0.965393
\(960\) 0 0
\(961\) 3.02065e10 1.09791
\(962\) −7.96896e9 −0.288595
\(963\) −1.16188e9 −0.0419247
\(964\) −2.59175e10 −0.931802
\(965\) 0 0
\(966\) 2.32155e10 0.828623
\(967\) −3.82819e10 −1.36145 −0.680723 0.732541i \(-0.738334\pi\)
−0.680723 + 0.732541i \(0.738334\pi\)
\(968\) −5.61211e9 −0.198867
\(969\) 3.86086e9 0.136317
\(970\) 0 0
\(971\) 2.85329e10 1.00018 0.500090 0.865974i \(-0.333300\pi\)
0.500090 + 0.865974i \(0.333300\pi\)
\(972\) −9.18330e8 −0.0320750
\(973\) −1.53080e9 −0.0532749
\(974\) 1.17055e10 0.405914
\(975\) 0 0
\(976\) −3.52960e9 −0.121521
\(977\) −8.40644e9 −0.288391 −0.144195 0.989549i \(-0.546059\pi\)
−0.144195 + 0.989549i \(0.546059\pi\)
\(978\) −1.94229e10 −0.663938
\(979\) −3.45356e10 −1.17632
\(980\) 0 0
\(981\) −1.21108e10 −0.409573
\(982\) 2.29103e10 0.772041
\(983\) 5.00100e10 1.67927 0.839633 0.543154i \(-0.182770\pi\)
0.839633 + 0.543154i \(0.182770\pi\)
\(984\) 4.14059e9 0.138541
\(985\) 0 0
\(986\) −5.00868e9 −0.166400
\(987\) −9.81912e9 −0.325059
\(988\) 3.63668e9 0.119965
\(989\) 3.97283e10 1.30591
\(990\) 0 0
\(991\) −1.17819e10 −0.384555 −0.192277 0.981341i \(-0.561587\pi\)
−0.192277 + 0.981341i \(0.561587\pi\)
\(992\) 7.87245e9 0.256047
\(993\) 1.91214e10 0.619722
\(994\) 3.08699e10 0.996973
\(995\) 0 0
\(996\) −8.36580e8 −0.0268287
\(997\) −2.36572e10 −0.756014 −0.378007 0.925803i \(-0.623391\pi\)
−0.378007 + 0.925803i \(0.623391\pi\)
\(998\) 9.37423e9 0.298524
\(999\) 1.53201e9 0.0486162
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 150.8.a.d.1.1 1
3.2 odd 2 450.8.a.y.1.1 1
5.2 odd 4 30.8.c.a.19.1 2
5.3 odd 4 30.8.c.a.19.2 yes 2
5.4 even 2 150.8.a.m.1.1 1
15.2 even 4 90.8.c.a.19.2 2
15.8 even 4 90.8.c.a.19.1 2
15.14 odd 2 450.8.a.b.1.1 1
20.3 even 4 240.8.f.a.49.2 2
20.7 even 4 240.8.f.a.49.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
30.8.c.a.19.1 2 5.2 odd 4
30.8.c.a.19.2 yes 2 5.3 odd 4
90.8.c.a.19.1 2 15.8 even 4
90.8.c.a.19.2 2 15.2 even 4
150.8.a.d.1.1 1 1.1 even 1 trivial
150.8.a.m.1.1 1 5.4 even 2
240.8.f.a.49.1 2 20.7 even 4
240.8.f.a.49.2 2 20.3 even 4
450.8.a.b.1.1 1 15.14 odd 2
450.8.a.y.1.1 1 3.2 odd 2