Properties

Label 240.8.f.a.49.1
Level $240$
Weight $8$
Character 240.49
Analytic conductor $74.972$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [240,8,Mod(49,240)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(240, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 1]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("240.49");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 240 = 2^{4} \cdot 3 \cdot 5 \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 240.f (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(74.9724061162\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 30)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 49.1
Root \(-1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 240.49
Dual form 240.8.f.a.49.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-27.0000i q^{3} +(-50.0000 - 275.000i) q^{5} -1126.00i q^{7} -729.000 q^{9} +5518.00 q^{11} +12798.0i q^{13} +(-7425.00 + 1350.00i) q^{15} +32206.0i q^{17} -4440.00 q^{19} -30402.0 q^{21} +95452.0i q^{23} +(-73125.0 + 27500.0i) q^{25} +19683.0i q^{27} -19440.0 q^{29} +240248. q^{31} -148986. i q^{33} +(-309650. + 56300.0i) q^{35} -77834.0i q^{37} +345546. q^{39} +299522. q^{41} +416212. i q^{43} +(36450.0 + 200475. i) q^{45} -322976. i q^{47} -444333. q^{49} +869562. q^{51} +880878. i q^{53} +(-275900. - 1.51745e6i) q^{55} +119880. i q^{57} -1.84511e6 q^{59} -861718. q^{61} +820854. i q^{63} +(3.51945e6 - 639900. i) q^{65} +673864. i q^{67} +2.57720e6 q^{69} +3.42695e6 q^{71} +4.67875e6i q^{73} +(742500. + 1.97438e6i) q^{75} -6.21327e6i q^{77} -3.13776e6 q^{79} +531441. q^{81} +484132. i q^{83} +(8.85665e6 - 1.61030e6i) q^{85} +524880. i q^{87} -6.25871e6 q^{89} +1.44105e7 q^{91} -6.48670e6i q^{93} +(222000. + 1.22100e6i) q^{95} +8.65758e6i q^{97} -4.02262e6 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 100 q^{5} - 1458 q^{9} + 11036 q^{11} - 14850 q^{15} - 8880 q^{19} - 60804 q^{21} - 146250 q^{25} - 38880 q^{29} + 480496 q^{31} - 619300 q^{35} + 691092 q^{39} + 599044 q^{41} + 72900 q^{45} - 888666 q^{49}+ \cdots - 8045244 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/240\mathbb{Z}\right)^\times\).

\(n\) \(31\) \(97\) \(161\) \(181\)
\(\chi(n)\) \(1\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 27.0000i 0.577350i
\(4\) 0 0
\(5\) −50.0000 275.000i −0.178885 0.983870i
\(6\) 0 0
\(7\) 1126.00i 1.24078i −0.784293 0.620391i \(-0.786974\pi\)
0.784293 0.620391i \(-0.213026\pi\)
\(8\) 0 0
\(9\) −729.000 −0.333333
\(10\) 0 0
\(11\) 5518.00 1.24999 0.624996 0.780628i \(-0.285101\pi\)
0.624996 + 0.780628i \(0.285101\pi\)
\(12\) 0 0
\(13\) 12798.0i 1.61562i 0.589440 + 0.807812i \(0.299348\pi\)
−0.589440 + 0.807812i \(0.700652\pi\)
\(14\) 0 0
\(15\) −7425.00 + 1350.00i −0.568038 + 0.103280i
\(16\) 0 0
\(17\) 32206.0i 1.58988i 0.606685 + 0.794942i \(0.292499\pi\)
−0.606685 + 0.794942i \(0.707501\pi\)
\(18\) 0 0
\(19\) −4440.00 −0.148506 −0.0742532 0.997239i \(-0.523657\pi\)
−0.0742532 + 0.997239i \(0.523657\pi\)
\(20\) 0 0
\(21\) −30402.0 −0.716365
\(22\) 0 0
\(23\) 95452.0i 1.63583i 0.575341 + 0.817914i \(0.304870\pi\)
−0.575341 + 0.817914i \(0.695130\pi\)
\(24\) 0 0
\(25\) −73125.0 + 27500.0i −0.936000 + 0.352000i
\(26\) 0 0
\(27\) 19683.0i 0.192450i
\(28\) 0 0
\(29\) −19440.0 −0.148014 −0.0740071 0.997258i \(-0.523579\pi\)
−0.0740071 + 0.997258i \(0.523579\pi\)
\(30\) 0 0
\(31\) 240248. 1.44842 0.724209 0.689581i \(-0.242205\pi\)
0.724209 + 0.689581i \(0.242205\pi\)
\(32\) 0 0
\(33\) 148986.i 0.721683i
\(34\) 0 0
\(35\) −309650. + 56300.0i −1.22077 + 0.221958i
\(36\) 0 0
\(37\) 77834.0i 0.252617i −0.991991 0.126309i \(-0.959687\pi\)
0.991991 0.126309i \(-0.0403130\pi\)
\(38\) 0 0
\(39\) 345546. 0.932781
\(40\) 0 0
\(41\) 299522. 0.678712 0.339356 0.940658i \(-0.389791\pi\)
0.339356 + 0.940658i \(0.389791\pi\)
\(42\) 0 0
\(43\) 416212.i 0.798316i 0.916882 + 0.399158i \(0.130698\pi\)
−0.916882 + 0.399158i \(0.869302\pi\)
\(44\) 0 0
\(45\) 36450.0 + 200475.i 0.0596285 + 0.327957i
\(46\) 0 0
\(47\) 322976.i 0.453762i −0.973923 0.226881i \(-0.927147\pi\)
0.973923 0.226881i \(-0.0728528\pi\)
\(48\) 0 0
\(49\) −444333. −0.539538
\(50\) 0 0
\(51\) 869562. 0.917920
\(52\) 0 0
\(53\) 880878.i 0.812737i 0.913709 + 0.406369i \(0.133205\pi\)
−0.913709 + 0.406369i \(0.866795\pi\)
\(54\) 0 0
\(55\) −275900. 1.51745e6i −0.223605 1.22983i
\(56\) 0 0
\(57\) 119880.i 0.0857402i
\(58\) 0 0
\(59\) −1.84511e6 −1.16961 −0.584804 0.811175i \(-0.698829\pi\)
−0.584804 + 0.811175i \(0.698829\pi\)
\(60\) 0 0
\(61\) −861718. −0.486083 −0.243042 0.970016i \(-0.578145\pi\)
−0.243042 + 0.970016i \(0.578145\pi\)
\(62\) 0 0
\(63\) 820854.i 0.413594i
\(64\) 0 0
\(65\) 3.51945e6 639900.i 1.58956 0.289012i
\(66\) 0 0
\(67\) 673864.i 0.273722i 0.990590 + 0.136861i \(0.0437014\pi\)
−0.990590 + 0.136861i \(0.956299\pi\)
\(68\) 0 0
\(69\) 2.57720e6 0.944446
\(70\) 0 0
\(71\) 3.42695e6 1.13633 0.568163 0.822916i \(-0.307654\pi\)
0.568163 + 0.822916i \(0.307654\pi\)
\(72\) 0 0
\(73\) 4.67875e6i 1.40767i 0.710365 + 0.703833i \(0.248530\pi\)
−0.710365 + 0.703833i \(0.751470\pi\)
\(74\) 0 0
\(75\) 742500. + 1.97438e6i 0.203227 + 0.540400i
\(76\) 0 0
\(77\) 6.21327e6i 1.55097i
\(78\) 0 0
\(79\) −3.13776e6 −0.716020 −0.358010 0.933718i \(-0.616545\pi\)
−0.358010 + 0.933718i \(0.616545\pi\)
\(80\) 0 0
\(81\) 531441. 0.111111
\(82\) 0 0
\(83\) 484132.i 0.0929374i 0.998920 + 0.0464687i \(0.0147968\pi\)
−0.998920 + 0.0464687i \(0.985203\pi\)
\(84\) 0 0
\(85\) 8.85665e6 1.61030e6i 1.56424 0.284407i
\(86\) 0 0
\(87\) 524880.i 0.0854560i
\(88\) 0 0
\(89\) −6.25871e6 −0.941065 −0.470533 0.882383i \(-0.655938\pi\)
−0.470533 + 0.882383i \(0.655938\pi\)
\(90\) 0 0
\(91\) 1.44105e7 2.00464
\(92\) 0 0
\(93\) 6.48670e6i 0.836244i
\(94\) 0 0
\(95\) 222000. + 1.22100e6i 0.0265656 + 0.146111i
\(96\) 0 0
\(97\) 8.65758e6i 0.963153i 0.876404 + 0.481576i \(0.159936\pi\)
−0.876404 + 0.481576i \(0.840064\pi\)
\(98\) 0 0
\(99\) −4.02262e6 −0.416664
\(100\) 0 0
\(101\) −7.52329e6 −0.726579 −0.363290 0.931676i \(-0.618346\pi\)
−0.363290 + 0.931676i \(0.618346\pi\)
\(102\) 0 0
\(103\) 1.40261e7i 1.26476i −0.774659 0.632380i \(-0.782078\pi\)
0.774659 0.632380i \(-0.217922\pi\)
\(104\) 0 0
\(105\) 1.52010e6 + 8.36055e6i 0.128147 + 0.704810i
\(106\) 0 0
\(107\) 1.59380e6i 0.125774i 0.998021 + 0.0628871i \(0.0200308\pi\)
−0.998021 + 0.0628871i \(0.979969\pi\)
\(108\) 0 0
\(109\) 1.66129e7 1.22872 0.614360 0.789026i \(-0.289414\pi\)
0.614360 + 0.789026i \(0.289414\pi\)
\(110\) 0 0
\(111\) −2.10152e6 −0.145849
\(112\) 0 0
\(113\) 536598.i 0.0349844i 0.999847 + 0.0174922i \(0.00556823\pi\)
−0.999847 + 0.0174922i \(0.994432\pi\)
\(114\) 0 0
\(115\) 2.62493e7 4.77260e6i 1.60944 0.292626i
\(116\) 0 0
\(117\) 9.32974e6i 0.538541i
\(118\) 0 0
\(119\) 3.62640e7 1.97270
\(120\) 0 0
\(121\) 1.09612e7 0.562480
\(122\) 0 0
\(123\) 8.08709e6i 0.391854i
\(124\) 0 0
\(125\) 1.12188e7 + 1.87344e7i 0.513759 + 0.857935i
\(126\) 0 0
\(127\) 3.90459e7i 1.69146i 0.533608 + 0.845732i \(0.320836\pi\)
−0.533608 + 0.845732i \(0.679164\pi\)
\(128\) 0 0
\(129\) 1.12377e7 0.460908
\(130\) 0 0
\(131\) −4.08046e6 −0.158584 −0.0792921 0.996851i \(-0.525266\pi\)
−0.0792921 + 0.996851i \(0.525266\pi\)
\(132\) 0 0
\(133\) 4.99944e6i 0.184264i
\(134\) 0 0
\(135\) 5.41282e6 984150.i 0.189346 0.0344265i
\(136\) 0 0
\(137\) 2.34170e7i 0.778052i −0.921227 0.389026i \(-0.872812\pi\)
0.921227 0.389026i \(-0.127188\pi\)
\(138\) 0 0
\(139\) −1.35950e6 −0.0429366 −0.0214683 0.999770i \(-0.506834\pi\)
−0.0214683 + 0.999770i \(0.506834\pi\)
\(140\) 0 0
\(141\) −8.72035e6 −0.261979
\(142\) 0 0
\(143\) 7.06194e7i 2.01952i
\(144\) 0 0
\(145\) 972000. + 5.34600e6i 0.0264776 + 0.145627i
\(146\) 0 0
\(147\) 1.19970e7i 0.311503i
\(148\) 0 0
\(149\) 6.79776e7 1.68350 0.841752 0.539865i \(-0.181525\pi\)
0.841752 + 0.539865i \(0.181525\pi\)
\(150\) 0 0
\(151\) −3.00991e7 −0.711434 −0.355717 0.934594i \(-0.615763\pi\)
−0.355717 + 0.934594i \(0.615763\pi\)
\(152\) 0 0
\(153\) 2.34782e7i 0.529961i
\(154\) 0 0
\(155\) −1.20124e7 6.60682e7i −0.259101 1.42505i
\(156\) 0 0
\(157\) 1.09929e7i 0.226706i 0.993555 + 0.113353i \(0.0361590\pi\)
−0.993555 + 0.113353i \(0.963841\pi\)
\(158\) 0 0
\(159\) 2.37837e7 0.469234
\(160\) 0 0
\(161\) 1.07479e8 2.02970
\(162\) 0 0
\(163\) 8.99208e7i 1.62631i −0.582047 0.813155i \(-0.697748\pi\)
0.582047 0.813155i \(-0.302252\pi\)
\(164\) 0 0
\(165\) −4.09711e7 + 7.44930e6i −0.710043 + 0.129099i
\(166\) 0 0
\(167\) 4.57557e7i 0.760217i −0.924942 0.380108i \(-0.875887\pi\)
0.924942 0.380108i \(-0.124113\pi\)
\(168\) 0 0
\(169\) −1.01040e8 −1.61024
\(170\) 0 0
\(171\) 3.23676e6 0.0495022
\(172\) 0 0
\(173\) 9.47012e7i 1.39057i 0.718732 + 0.695287i \(0.244723\pi\)
−0.718732 + 0.695287i \(0.755277\pi\)
\(174\) 0 0
\(175\) 3.09650e7 + 8.23388e7i 0.436755 + 1.16137i
\(176\) 0 0
\(177\) 4.98180e7i 0.675273i
\(178\) 0 0
\(179\) 7.12070e7 0.927977 0.463989 0.885841i \(-0.346418\pi\)
0.463989 + 0.885841i \(0.346418\pi\)
\(180\) 0 0
\(181\) 6.10292e7 0.765003 0.382501 0.923955i \(-0.375063\pi\)
0.382501 + 0.923955i \(0.375063\pi\)
\(182\) 0 0
\(183\) 2.32664e7i 0.280640i
\(184\) 0 0
\(185\) −2.14044e7 + 3.89170e6i −0.248543 + 0.0451896i
\(186\) 0 0
\(187\) 1.77713e8i 1.98734i
\(188\) 0 0
\(189\) 2.21631e7 0.238788
\(190\) 0 0
\(191\) −5.63172e7 −0.584823 −0.292411 0.956293i \(-0.594458\pi\)
−0.292411 + 0.956293i \(0.594458\pi\)
\(192\) 0 0
\(193\) 9.97730e7i 0.998993i 0.866316 + 0.499496i \(0.166482\pi\)
−0.866316 + 0.499496i \(0.833518\pi\)
\(194\) 0 0
\(195\) −1.72773e7 9.50252e7i −0.166861 0.917735i
\(196\) 0 0
\(197\) 1.25457e8i 1.16913i −0.811346 0.584566i \(-0.801265\pi\)
0.811346 0.584566i \(-0.198735\pi\)
\(198\) 0 0
\(199\) −2.32320e6 −0.0208978 −0.0104489 0.999945i \(-0.503326\pi\)
−0.0104489 + 0.999945i \(0.503326\pi\)
\(200\) 0 0
\(201\) 1.81943e7 0.158034
\(202\) 0 0
\(203\) 2.18894e7i 0.183653i
\(204\) 0 0
\(205\) −1.49761e7 8.23686e7i −0.121412 0.667764i
\(206\) 0 0
\(207\) 6.95845e7i 0.545276i
\(208\) 0 0
\(209\) −2.44999e7 −0.185632
\(210\) 0 0
\(211\) −8.85076e7 −0.648622 −0.324311 0.945950i \(-0.605132\pi\)
−0.324311 + 0.945950i \(0.605132\pi\)
\(212\) 0 0
\(213\) 9.25276e7i 0.656059i
\(214\) 0 0
\(215\) 1.14458e8 2.08106e7i 0.785439 0.142807i
\(216\) 0 0
\(217\) 2.70519e8i 1.79717i
\(218\) 0 0
\(219\) 1.26326e8 0.812716
\(220\) 0 0
\(221\) −4.12172e8 −2.56866
\(222\) 0 0
\(223\) 629858.i 0.00380343i −0.999998 0.00190172i \(-0.999395\pi\)
0.999998 0.00190172i \(-0.000605335\pi\)
\(224\) 0 0
\(225\) 5.33081e7 2.00475e7i 0.312000 0.117333i
\(226\) 0 0
\(227\) 1.74337e8i 0.989236i −0.869111 0.494618i \(-0.835308\pi\)
0.869111 0.494618i \(-0.164692\pi\)
\(228\) 0 0
\(229\) 2.00644e8 1.10408 0.552042 0.833816i \(-0.313849\pi\)
0.552042 + 0.833816i \(0.313849\pi\)
\(230\) 0 0
\(231\) −1.67758e8 −0.895451
\(232\) 0 0
\(233\) 1.66522e8i 0.862434i −0.902248 0.431217i \(-0.858084\pi\)
0.902248 0.431217i \(-0.141916\pi\)
\(234\) 0 0
\(235\) −8.88184e7 + 1.61488e7i −0.446442 + 0.0811713i
\(236\) 0 0
\(237\) 8.47195e7i 0.413394i
\(238\) 0 0
\(239\) −1.17669e8 −0.557531 −0.278765 0.960359i \(-0.589925\pi\)
−0.278765 + 0.960359i \(0.589925\pi\)
\(240\) 0 0
\(241\) −4.04961e8 −1.86360 −0.931802 0.362967i \(-0.881764\pi\)
−0.931802 + 0.362967i \(0.881764\pi\)
\(242\) 0 0
\(243\) 1.43489e7i 0.0641500i
\(244\) 0 0
\(245\) 2.22166e7 + 1.22192e8i 0.0965155 + 0.530836i
\(246\) 0 0
\(247\) 5.68231e7i 0.239931i
\(248\) 0 0
\(249\) 1.30716e7 0.0536574
\(250\) 0 0
\(251\) 5.93170e7 0.236767 0.118383 0.992968i \(-0.462229\pi\)
0.118383 + 0.992968i \(0.462229\pi\)
\(252\) 0 0
\(253\) 5.26704e8i 2.04477i
\(254\) 0 0
\(255\) −4.34781e7 2.39130e8i −0.164203 0.903114i
\(256\) 0 0
\(257\) 2.48636e7i 0.0913688i 0.998956 + 0.0456844i \(0.0145469\pi\)
−0.998956 + 0.0456844i \(0.985453\pi\)
\(258\) 0 0
\(259\) −8.76411e7 −0.313443
\(260\) 0 0
\(261\) 1.41718e7 0.0493381
\(262\) 0 0
\(263\) 5.36503e6i 0.0181856i −0.999959 0.00909278i \(-0.997106\pi\)
0.999959 0.00909278i \(-0.00289436\pi\)
\(264\) 0 0
\(265\) 2.42241e8 4.40439e7i 0.799628 0.145387i
\(266\) 0 0
\(267\) 1.68985e8i 0.543324i
\(268\) 0 0
\(269\) 1.83159e8 0.573713 0.286856 0.957974i \(-0.407390\pi\)
0.286856 + 0.957974i \(0.407390\pi\)
\(270\) 0 0
\(271\) −2.54405e8 −0.776486 −0.388243 0.921557i \(-0.626918\pi\)
−0.388243 + 0.921557i \(0.626918\pi\)
\(272\) 0 0
\(273\) 3.89085e8i 1.15738i
\(274\) 0 0
\(275\) −4.03504e8 + 1.51745e8i −1.16999 + 0.439997i
\(276\) 0 0
\(277\) 5.92863e8i 1.67601i 0.545666 + 0.838003i \(0.316277\pi\)
−0.545666 + 0.838003i \(0.683723\pi\)
\(278\) 0 0
\(279\) −1.75141e8 −0.482806
\(280\) 0 0
\(281\) −6.22030e8 −1.67240 −0.836199 0.548427i \(-0.815227\pi\)
−0.836199 + 0.548427i \(0.815227\pi\)
\(282\) 0 0
\(283\) 3.94755e8i 1.03532i 0.855586 + 0.517661i \(0.173197\pi\)
−0.855586 + 0.517661i \(0.826803\pi\)
\(284\) 0 0
\(285\) 3.29670e7 5.99400e6i 0.0843573 0.0153377i
\(286\) 0 0
\(287\) 3.37262e8i 0.842133i
\(288\) 0 0
\(289\) −6.26888e8 −1.52773
\(290\) 0 0
\(291\) 2.33755e8 0.556077
\(292\) 0 0
\(293\) 6.89404e8i 1.60117i −0.599220 0.800585i \(-0.704522\pi\)
0.599220 0.800585i \(-0.295478\pi\)
\(294\) 0 0
\(295\) 9.22555e7 + 5.07405e8i 0.209226 + 1.15074i
\(296\) 0 0
\(297\) 1.08611e8i 0.240561i
\(298\) 0 0
\(299\) −1.22159e9 −2.64288
\(300\) 0 0
\(301\) 4.68655e8 0.990536
\(302\) 0 0
\(303\) 2.03129e8i 0.419491i
\(304\) 0 0
\(305\) 4.30859e7 + 2.36972e8i 0.0869532 + 0.478243i
\(306\) 0 0
\(307\) 2.67769e8i 0.528174i 0.964499 + 0.264087i \(0.0850705\pi\)
−0.964499 + 0.264087i \(0.914929\pi\)
\(308\) 0 0
\(309\) −3.78706e8 −0.730209
\(310\) 0 0
\(311\) 1.94551e8 0.366752 0.183376 0.983043i \(-0.441297\pi\)
0.183376 + 0.983043i \(0.441297\pi\)
\(312\) 0 0
\(313\) 8.81802e8i 1.62542i 0.582667 + 0.812711i \(0.302009\pi\)
−0.582667 + 0.812711i \(0.697991\pi\)
\(314\) 0 0
\(315\) 2.25735e8 4.10427e7i 0.406922 0.0739859i
\(316\) 0 0
\(317\) 4.88296e8i 0.860946i −0.902603 0.430473i \(-0.858347\pi\)
0.902603 0.430473i \(-0.141653\pi\)
\(318\) 0 0
\(319\) −1.07270e8 −0.185017
\(320\) 0 0
\(321\) 4.30327e7 0.0726158
\(322\) 0 0
\(323\) 1.42995e8i 0.236108i
\(324\) 0 0
\(325\) −3.51945e8 9.35854e8i −0.568700 1.51222i
\(326\) 0 0
\(327\) 4.48549e8i 0.709402i
\(328\) 0 0
\(329\) −3.63671e8 −0.563019
\(330\) 0 0
\(331\) 7.08199e8 1.07339 0.536695 0.843777i \(-0.319673\pi\)
0.536695 + 0.843777i \(0.319673\pi\)
\(332\) 0 0
\(333\) 5.67410e7i 0.0842058i
\(334\) 0 0
\(335\) 1.85313e8 3.36932e7i 0.269307 0.0489650i
\(336\) 0 0
\(337\) 6.69707e8i 0.953192i 0.879122 + 0.476596i \(0.158130\pi\)
−0.879122 + 0.476596i \(0.841870\pi\)
\(338\) 0 0
\(339\) 1.44881e7 0.0201983
\(340\) 0 0
\(341\) 1.32569e9 1.81051
\(342\) 0 0
\(343\) 4.26990e8i 0.571332i
\(344\) 0 0
\(345\) −1.28860e8 7.08731e8i −0.168948 0.929212i
\(346\) 0 0
\(347\) 1.01172e9i 1.29989i −0.759982 0.649945i \(-0.774792\pi\)
0.759982 0.649945i \(-0.225208\pi\)
\(348\) 0 0
\(349\) −3.46636e8 −0.436501 −0.218250 0.975893i \(-0.570035\pi\)
−0.218250 + 0.975893i \(0.570035\pi\)
\(350\) 0 0
\(351\) −2.51903e8 −0.310927
\(352\) 0 0
\(353\) 2.93766e6i 0.00355460i −0.999998 0.00177730i \(-0.999434\pi\)
0.999998 0.00177730i \(-0.000565732\pi\)
\(354\) 0 0
\(355\) −1.71347e8 9.42411e8i −0.203272 1.11800i
\(356\) 0 0
\(357\) 9.79127e8i 1.13894i
\(358\) 0 0
\(359\) 1.64977e9 1.88188 0.940942 0.338568i \(-0.109942\pi\)
0.940942 + 0.338568i \(0.109942\pi\)
\(360\) 0 0
\(361\) −8.74158e8 −0.977946
\(362\) 0 0
\(363\) 2.95951e8i 0.324748i
\(364\) 0 0
\(365\) 1.28666e9 2.33937e8i 1.38496 0.251811i
\(366\) 0 0
\(367\) 4.33054e8i 0.457311i 0.973507 + 0.228655i \(0.0734329\pi\)
−0.973507 + 0.228655i \(0.926567\pi\)
\(368\) 0 0
\(369\) −2.18352e8 −0.226237
\(370\) 0 0
\(371\) 9.91869e8 1.00843
\(372\) 0 0
\(373\) 7.13249e8i 0.711640i 0.934555 + 0.355820i \(0.115798\pi\)
−0.934555 + 0.355820i \(0.884202\pi\)
\(374\) 0 0
\(375\) 5.05828e8 3.02906e8i 0.495329 0.296619i
\(376\) 0 0
\(377\) 2.48793e8i 0.239135i
\(378\) 0 0
\(379\) 1.92795e8 0.181911 0.0909555 0.995855i \(-0.471008\pi\)
0.0909555 + 0.995855i \(0.471008\pi\)
\(380\) 0 0
\(381\) 1.05424e9 0.976567
\(382\) 0 0
\(383\) 1.30544e9i 1.18730i 0.804724 + 0.593649i \(0.202313\pi\)
−0.804724 + 0.593649i \(0.797687\pi\)
\(384\) 0 0
\(385\) −1.70865e9 + 3.10663e8i −1.52595 + 0.277445i
\(386\) 0 0
\(387\) 3.03419e8i 0.266105i
\(388\) 0 0
\(389\) −2.53075e7 −0.0217985 −0.0108992 0.999941i \(-0.503469\pi\)
−0.0108992 + 0.999941i \(0.503469\pi\)
\(390\) 0 0
\(391\) −3.07413e9 −2.60078
\(392\) 0 0
\(393\) 1.10172e8i 0.0915586i
\(394\) 0 0
\(395\) 1.56888e8 + 8.62884e8i 0.128085 + 0.704470i
\(396\) 0 0
\(397\) 1.34997e9i 1.08282i 0.840759 + 0.541410i \(0.182109\pi\)
−0.840759 + 0.541410i \(0.817891\pi\)
\(398\) 0 0
\(399\) 1.34985e8 0.106385
\(400\) 0 0
\(401\) −9.20762e7 −0.0713086 −0.0356543 0.999364i \(-0.511352\pi\)
−0.0356543 + 0.999364i \(0.511352\pi\)
\(402\) 0 0
\(403\) 3.07469e9i 2.34010i
\(404\) 0 0
\(405\) −2.65720e7 1.46146e8i −0.0198762 0.109319i
\(406\) 0 0
\(407\) 4.29488e8i 0.315770i
\(408\) 0 0
\(409\) 2.68396e9 1.93975 0.969874 0.243609i \(-0.0783314\pi\)
0.969874 + 0.243609i \(0.0783314\pi\)
\(410\) 0 0
\(411\) −6.32258e8 −0.449209
\(412\) 0 0
\(413\) 2.07759e9i 1.45123i
\(414\) 0 0
\(415\) 1.33136e8 2.42066e7i 0.0914383 0.0166251i
\(416\) 0 0
\(417\) 3.67065e7i 0.0247894i
\(418\) 0 0
\(419\) 8.45201e8 0.561320 0.280660 0.959807i \(-0.409447\pi\)
0.280660 + 0.959807i \(0.409447\pi\)
\(420\) 0 0
\(421\) 2.66227e9 1.73886 0.869430 0.494056i \(-0.164486\pi\)
0.869430 + 0.494056i \(0.164486\pi\)
\(422\) 0 0
\(423\) 2.35450e8i 0.151254i
\(424\) 0 0
\(425\) −8.85665e8 2.35506e9i −0.559639 1.48813i
\(426\) 0 0
\(427\) 9.70294e8i 0.603123i
\(428\) 0 0
\(429\) 1.90672e9 1.16597
\(430\) 0 0
\(431\) 9.83169e8 0.591504 0.295752 0.955265i \(-0.404430\pi\)
0.295752 + 0.955265i \(0.404430\pi\)
\(432\) 0 0
\(433\) 8.30277e8i 0.491491i −0.969334 0.245745i \(-0.920967\pi\)
0.969334 0.245745i \(-0.0790327\pi\)
\(434\) 0 0
\(435\) 1.44342e8 2.62440e7i 0.0840776 0.0152868i
\(436\) 0 0
\(437\) 4.23807e8i 0.242931i
\(438\) 0 0
\(439\) 2.79662e9 1.57764 0.788820 0.614625i \(-0.210692\pi\)
0.788820 + 0.614625i \(0.210692\pi\)
\(440\) 0 0
\(441\) 3.23919e8 0.179846
\(442\) 0 0
\(443\) 3.97081e8i 0.217003i 0.994096 + 0.108502i \(0.0346052\pi\)
−0.994096 + 0.108502i \(0.965395\pi\)
\(444\) 0 0
\(445\) 3.12936e8 + 1.72115e9i 0.168343 + 0.925886i
\(446\) 0 0
\(447\) 1.83540e9i 0.971971i
\(448\) 0 0
\(449\) −1.74461e8 −0.0909569 −0.0454785 0.998965i \(-0.514481\pi\)
−0.0454785 + 0.998965i \(0.514481\pi\)
\(450\) 0 0
\(451\) 1.65276e9 0.848384
\(452\) 0 0
\(453\) 8.12676e8i 0.410746i
\(454\) 0 0
\(455\) −7.20527e8 3.96290e9i −0.358600 1.97230i
\(456\) 0 0
\(457\) 3.60027e8i 0.176453i 0.996100 + 0.0882264i \(0.0281199\pi\)
−0.996100 + 0.0882264i \(0.971880\pi\)
\(458\) 0 0
\(459\) −6.33911e8 −0.305973
\(460\) 0 0
\(461\) −1.33487e8 −0.0634579 −0.0317290 0.999497i \(-0.510101\pi\)
−0.0317290 + 0.999497i \(0.510101\pi\)
\(462\) 0 0
\(463\) 2.93605e9i 1.37477i 0.726294 + 0.687384i \(0.241241\pi\)
−0.726294 + 0.687384i \(0.758759\pi\)
\(464\) 0 0
\(465\) −1.78384e9 + 3.24335e8i −0.822756 + 0.149592i
\(466\) 0 0
\(467\) 1.72777e9i 0.785011i −0.919750 0.392506i \(-0.871608\pi\)
0.919750 0.392506i \(-0.128392\pi\)
\(468\) 0 0
\(469\) 7.58771e8 0.339630
\(470\) 0 0
\(471\) 2.96807e8 0.130889
\(472\) 0 0
\(473\) 2.29666e9i 0.997889i
\(474\) 0 0
\(475\) 3.24675e8 1.22100e8i 0.139002 0.0522743i
\(476\) 0 0
\(477\) 6.42160e8i 0.270912i
\(478\) 0 0
\(479\) −1.69230e9 −0.703562 −0.351781 0.936082i \(-0.614424\pi\)
−0.351781 + 0.936082i \(0.614424\pi\)
\(480\) 0 0
\(481\) 9.96120e8 0.408135
\(482\) 0 0
\(483\) 2.90193e9i 1.17185i
\(484\) 0 0
\(485\) 2.38083e9 4.32879e8i 0.947617 0.172294i
\(486\) 0 0
\(487\) 1.46319e9i 0.574048i 0.957923 + 0.287024i \(0.0926660\pi\)
−0.957923 + 0.287024i \(0.907334\pi\)
\(488\) 0 0
\(489\) −2.42786e9 −0.938951
\(490\) 0 0
\(491\) 2.86378e9 1.09183 0.545915 0.837840i \(-0.316182\pi\)
0.545915 + 0.837840i \(0.316182\pi\)
\(492\) 0 0
\(493\) 6.26085e8i 0.235325i
\(494\) 0 0
\(495\) 2.01131e8 + 1.10622e9i 0.0745351 + 0.409943i
\(496\) 0 0
\(497\) 3.85874e9i 1.40993i
\(498\) 0 0
\(499\) −1.17178e9 −0.422176 −0.211088 0.977467i \(-0.567701\pi\)
−0.211088 + 0.977467i \(0.567701\pi\)
\(500\) 0 0
\(501\) −1.23540e9 −0.438911
\(502\) 0 0
\(503\) 3.67913e9i 1.28901i −0.764599 0.644506i \(-0.777063\pi\)
0.764599 0.644506i \(-0.222937\pi\)
\(504\) 0 0
\(505\) 3.76164e8 + 2.06890e9i 0.129974 + 0.714859i
\(506\) 0 0
\(507\) 2.72809e9i 0.929674i
\(508\) 0 0
\(509\) 4.56520e9 1.53443 0.767216 0.641389i \(-0.221641\pi\)
0.767216 + 0.641389i \(0.221641\pi\)
\(510\) 0 0
\(511\) 5.26827e9 1.74661
\(512\) 0 0
\(513\) 8.73925e7i 0.0285801i
\(514\) 0 0
\(515\) −3.85719e9 + 7.01307e8i −1.24436 + 0.226247i
\(516\) 0 0
\(517\) 1.78218e9i 0.567198i
\(518\) 0 0
\(519\) 2.55693e9 0.802848
\(520\) 0 0
\(521\) −5.34662e9 −1.65633 −0.828166 0.560484i \(-0.810615\pi\)
−0.828166 + 0.560484i \(0.810615\pi\)
\(522\) 0 0
\(523\) 5.14610e9i 1.57298i 0.617605 + 0.786488i \(0.288103\pi\)
−0.617605 + 0.786488i \(0.711897\pi\)
\(524\) 0 0
\(525\) 2.22315e9 8.36055e8i 0.670518 0.252161i
\(526\) 0 0
\(527\) 7.73743e9i 2.30282i
\(528\) 0 0
\(529\) −5.70626e9 −1.67593
\(530\) 0 0
\(531\) 1.34509e9 0.389869
\(532\) 0 0
\(533\) 3.83328e9i 1.09654i
\(534\) 0 0
\(535\) 4.38296e8 7.96902e7i 0.123745 0.0224992i
\(536\) 0 0
\(537\) 1.92259e9i 0.535768i
\(538\) 0 0
\(539\) −2.45183e9 −0.674419
\(540\) 0 0
\(541\) −2.32073e8 −0.0630137 −0.0315069 0.999504i \(-0.510031\pi\)
−0.0315069 + 0.999504i \(0.510031\pi\)
\(542\) 0 0
\(543\) 1.64779e9i 0.441675i
\(544\) 0 0
\(545\) −8.30646e8 4.56855e9i −0.219800 1.20890i
\(546\) 0 0
\(547\) 7.09990e9i 1.85480i −0.374075 0.927399i \(-0.622040\pi\)
0.374075 0.927399i \(-0.377960\pi\)
\(548\) 0 0
\(549\) 6.28192e8 0.162028
\(550\) 0 0
\(551\) 8.63136e7 0.0219811
\(552\) 0 0
\(553\) 3.53312e9i 0.888424i
\(554\) 0 0
\(555\) 1.05076e8 + 5.77917e8i 0.0260902 + 0.143496i
\(556\) 0 0
\(557\) 2.92398e9i 0.716937i 0.933542 + 0.358469i \(0.116701\pi\)
−0.933542 + 0.358469i \(0.883299\pi\)
\(558\) 0 0
\(559\) −5.32668e9 −1.28978
\(560\) 0 0
\(561\) 4.79824e9 1.14739
\(562\) 0 0
\(563\) 3.17221e9i 0.749174i 0.927192 + 0.374587i \(0.122215\pi\)
−0.927192 + 0.374587i \(0.877785\pi\)
\(564\) 0 0
\(565\) 1.47564e8 2.68299e7i 0.0344201 0.00625820i
\(566\) 0 0
\(567\) 5.98403e8i 0.137865i
\(568\) 0 0
\(569\) −2.75561e9 −0.627082 −0.313541 0.949575i \(-0.601515\pi\)
−0.313541 + 0.949575i \(0.601515\pi\)
\(570\) 0 0
\(571\) −4.36061e9 −0.980213 −0.490107 0.871662i \(-0.663042\pi\)
−0.490107 + 0.871662i \(0.663042\pi\)
\(572\) 0 0
\(573\) 1.52056e9i 0.337648i
\(574\) 0 0
\(575\) −2.62493e9 6.97993e9i −0.575811 1.53113i
\(576\) 0 0
\(577\) 6.07328e9i 1.31616i −0.752949 0.658079i \(-0.771369\pi\)
0.752949 0.658079i \(-0.228631\pi\)
\(578\) 0 0
\(579\) 2.69387e9 0.576769
\(580\) 0 0
\(581\) 5.45133e8 0.115315
\(582\) 0 0
\(583\) 4.86068e9i 1.01592i
\(584\) 0 0
\(585\) −2.56568e9 + 4.66487e8i −0.529855 + 0.0963372i
\(586\) 0 0
\(587\) 4.35319e9i 0.888329i −0.895945 0.444165i \(-0.853501\pi\)
0.895945 0.444165i \(-0.146499\pi\)
\(588\) 0 0
\(589\) −1.06670e9 −0.215099
\(590\) 0 0
\(591\) −3.38734e9 −0.674999
\(592\) 0 0
\(593\) 2.22483e9i 0.438133i 0.975710 + 0.219067i \(0.0703012\pi\)
−0.975710 + 0.219067i \(0.929699\pi\)
\(594\) 0 0
\(595\) −1.81320e9 9.97259e9i −0.352887 1.94088i
\(596\) 0 0
\(597\) 6.27264e7i 0.0120654i
\(598\) 0 0
\(599\) −3.63376e9 −0.690815 −0.345408 0.938453i \(-0.612259\pi\)
−0.345408 + 0.938453i \(0.612259\pi\)
\(600\) 0 0
\(601\) −6.00206e9 −1.12782 −0.563909 0.825837i \(-0.690703\pi\)
−0.563909 + 0.825837i \(0.690703\pi\)
\(602\) 0 0
\(603\) 4.91247e8i 0.0912408i
\(604\) 0 0
\(605\) −5.48058e8 3.01432e9i −0.100620 0.553408i
\(606\) 0 0
\(607\) 2.80807e9i 0.509621i −0.966991 0.254811i \(-0.917987\pi\)
0.966991 0.254811i \(-0.0820131\pi\)
\(608\) 0 0
\(609\) 5.91015e8 0.106032
\(610\) 0 0
\(611\) 4.13345e9 0.733108
\(612\) 0 0
\(613\) 8.34916e9i 1.46397i 0.681323 + 0.731983i \(0.261405\pi\)
−0.681323 + 0.731983i \(0.738595\pi\)
\(614\) 0 0
\(615\) −2.22395e9 + 4.04355e8i −0.385534 + 0.0700970i
\(616\) 0 0
\(617\) 2.16207e9i 0.370571i 0.982685 + 0.185286i \(0.0593211\pi\)
−0.982685 + 0.185286i \(0.940679\pi\)
\(618\) 0 0
\(619\) −2.82281e9 −0.478370 −0.239185 0.970974i \(-0.576880\pi\)
−0.239185 + 0.970974i \(0.576880\pi\)
\(620\) 0 0
\(621\) −1.87878e9 −0.314815
\(622\) 0 0
\(623\) 7.04731e9i 1.16766i
\(624\) 0 0
\(625\) 4.59102e9 4.02188e9i 0.752192 0.658944i
\(626\) 0 0
\(627\) 6.61498e8i 0.107175i
\(628\) 0 0
\(629\) 2.50672e9 0.401633
\(630\) 0 0
\(631\) −7.87109e9 −1.24719 −0.623595 0.781748i \(-0.714328\pi\)
−0.623595 + 0.781748i \(0.714328\pi\)
\(632\) 0 0
\(633\) 2.38970e9i 0.374482i
\(634\) 0 0
\(635\) 1.07376e10 1.95230e9i 1.66418 0.302578i
\(636\) 0 0
\(637\) 5.68657e9i 0.871691i
\(638\) 0 0
\(639\) −2.49825e9 −0.378776
\(640\) 0 0
\(641\) −3.77527e9 −0.566168 −0.283084 0.959095i \(-0.591357\pi\)
−0.283084 + 0.959095i \(0.591357\pi\)
\(642\) 0 0
\(643\) 2.51923e9i 0.373705i −0.982388 0.186852i \(-0.940171\pi\)
0.982388 0.186852i \(-0.0598286\pi\)
\(644\) 0 0
\(645\) −5.61886e8 3.09037e9i −0.0824498 0.453474i
\(646\) 0 0
\(647\) 3.83911e9i 0.557269i 0.960397 + 0.278635i \(0.0898819\pi\)
−0.960397 + 0.278635i \(0.910118\pi\)
\(648\) 0 0
\(649\) −1.01813e10 −1.46200
\(650\) 0 0
\(651\) −7.30402e9 −1.03760
\(652\) 0 0
\(653\) 1.00785e10i 1.41644i −0.705989 0.708222i \(-0.749497\pi\)
0.705989 0.708222i \(-0.250503\pi\)
\(654\) 0 0
\(655\) 2.04023e8 + 1.12213e9i 0.0283684 + 0.156026i
\(656\) 0 0
\(657\) 3.41081e9i 0.469222i
\(658\) 0 0
\(659\) −8.94469e8 −0.121749 −0.0608746 0.998145i \(-0.519389\pi\)
−0.0608746 + 0.998145i \(0.519389\pi\)
\(660\) 0 0
\(661\) 1.19420e10 1.60832 0.804159 0.594414i \(-0.202616\pi\)
0.804159 + 0.594414i \(0.202616\pi\)
\(662\) 0 0
\(663\) 1.11287e10i 1.48301i
\(664\) 0 0
\(665\) 1.37485e9 2.49972e8i 0.181292 0.0329622i
\(666\) 0 0
\(667\) 1.85559e9i 0.242126i
\(668\) 0 0
\(669\) −1.70062e7 −0.00219591
\(670\) 0 0
\(671\) −4.75496e9 −0.607600
\(672\) 0 0
\(673\) 1.66611e9i 0.210693i −0.994436 0.105347i \(-0.966405\pi\)
0.994436 0.105347i \(-0.0335952\pi\)
\(674\) 0 0
\(675\) −5.41282e8 1.43932e9i −0.0677424 0.180133i
\(676\) 0 0
\(677\) 3.07840e9i 0.381298i −0.981658 0.190649i \(-0.938941\pi\)
0.981658 0.190649i \(-0.0610592\pi\)
\(678\) 0 0
\(679\) 9.74843e9 1.19506
\(680\) 0 0
\(681\) −4.70711e9 −0.571135
\(682\) 0 0
\(683\) 3.66304e9i 0.439915i 0.975509 + 0.219958i \(0.0705919\pi\)
−0.975509 + 0.219958i \(0.929408\pi\)
\(684\) 0 0
\(685\) −6.43967e9 + 1.17085e9i −0.765502 + 0.139182i
\(686\) 0 0
\(687\) 5.41739e9i 0.637443i
\(688\) 0 0
\(689\) −1.12735e10 −1.31308
\(690\) 0 0
\(691\) −1.03135e10 −1.18914 −0.594569 0.804045i \(-0.702677\pi\)
−0.594569 + 0.804045i \(0.702677\pi\)
\(692\) 0 0
\(693\) 4.52947e9i 0.516989i
\(694\) 0 0
\(695\) 6.79750e7 + 3.73862e8i 0.00768073 + 0.0422440i
\(696\) 0 0
\(697\) 9.64641e9i 1.07907i
\(698\) 0 0
\(699\) −4.49609e9 −0.497926
\(700\) 0 0
\(701\) −5.82173e9 −0.638321 −0.319161 0.947701i \(-0.603401\pi\)
−0.319161 + 0.947701i \(0.603401\pi\)
\(702\) 0 0
\(703\) 3.45583e8i 0.0375153i
\(704\) 0 0
\(705\) 4.36018e8 + 2.39810e9i 0.0468643 + 0.257754i
\(706\) 0 0
\(707\) 8.47122e9i 0.901526i
\(708\) 0 0
\(709\) 8.52806e9 0.898645 0.449323 0.893370i \(-0.351665\pi\)
0.449323 + 0.893370i \(0.351665\pi\)
\(710\) 0 0
\(711\) 2.28743e9 0.238673
\(712\) 0 0
\(713\) 2.29322e10i 2.36936i
\(714\) 0 0
\(715\) 1.94203e10 3.53097e9i 1.98694 0.361262i
\(716\) 0 0
\(717\) 3.17706e9i 0.321891i
\(718\) 0 0
\(719\) 1.73546e9 0.174126 0.0870631 0.996203i \(-0.472252\pi\)
0.0870631 + 0.996203i \(0.472252\pi\)
\(720\) 0 0
\(721\) −1.57934e10 −1.56929
\(722\) 0 0
\(723\) 1.09339e10i 1.07595i
\(724\) 0 0
\(725\) 1.42155e9 5.34600e8i 0.138541 0.0521010i
\(726\) 0 0
\(727\) 1.16762e10i 1.12702i −0.826110 0.563509i \(-0.809451\pi\)
0.826110 0.563509i \(-0.190549\pi\)
\(728\) 0 0
\(729\) −3.87420e8 −0.0370370
\(730\) 0 0
\(731\) −1.34045e10 −1.26923
\(732\) 0 0
\(733\) 4.92260e9i 0.461669i 0.972993 + 0.230834i \(0.0741456\pi\)
−0.972993 + 0.230834i \(0.925854\pi\)
\(734\) 0 0
\(735\) 3.29917e9 5.99850e8i 0.306478 0.0557233i
\(736\) 0 0
\(737\) 3.71838e9i 0.342151i
\(738\) 0 0
\(739\) −4.46577e9 −0.407043 −0.203522 0.979070i \(-0.565239\pi\)
−0.203522 + 0.979070i \(0.565239\pi\)
\(740\) 0 0
\(741\) −1.53422e9 −0.138524
\(742\) 0 0
\(743\) 8.36112e8i 0.0747831i −0.999301 0.0373916i \(-0.988095\pi\)
0.999301 0.0373916i \(-0.0119049\pi\)
\(744\) 0 0
\(745\) −3.39888e9 1.86938e10i −0.301154 1.65635i
\(746\) 0 0
\(747\) 3.52932e8i 0.0309791i
\(748\) 0 0
\(749\) 1.79462e9 0.156058
\(750\) 0 0
\(751\) 1.37161e10 1.18166 0.590829 0.806797i \(-0.298801\pi\)
0.590829 + 0.806797i \(0.298801\pi\)
\(752\) 0 0
\(753\) 1.60156e9i 0.136697i
\(754\) 0 0
\(755\) 1.50496e9 + 8.27726e9i 0.127265 + 0.699958i
\(756\) 0 0
\(757\) 1.41449e10i 1.18513i −0.805524 0.592563i \(-0.798116\pi\)
0.805524 0.592563i \(-0.201884\pi\)
\(758\) 0 0
\(759\) 1.42210e10 1.18055
\(760\) 0 0
\(761\) 2.16828e10 1.78348 0.891741 0.452547i \(-0.149484\pi\)
0.891741 + 0.452547i \(0.149484\pi\)
\(762\) 0 0
\(763\) 1.87061e10i 1.52457i
\(764\) 0 0
\(765\) −6.45650e9 + 1.17391e9i −0.521413 + 0.0948024i
\(766\) 0 0
\(767\) 2.36137e10i 1.88965i
\(768\) 0 0
\(769\) 1.45804e10 1.15618 0.578092 0.815972i \(-0.303798\pi\)
0.578092 + 0.815972i \(0.303798\pi\)
\(770\) 0 0
\(771\) 6.71317e8 0.0527518
\(772\) 0 0
\(773\) 1.83373e9i 0.142793i −0.997448 0.0713966i \(-0.977254\pi\)
0.997448 0.0713966i \(-0.0227456\pi\)
\(774\) 0 0
\(775\) −1.75681e10 + 6.60682e9i −1.35572 + 0.509843i
\(776\) 0 0
\(777\) 2.36631e9i 0.180966i
\(778\) 0 0
\(779\) −1.32988e9 −0.100793
\(780\) 0 0
\(781\) 1.89099e10 1.42040
\(782\) 0 0
\(783\) 3.82638e8i 0.0284853i
\(784\) 0 0
\(785\) 3.02304e9 5.49643e8i 0.223049 0.0405543i
\(786\) 0 0
\(787\) 1.48611e10i 1.08678i 0.839482 + 0.543388i \(0.182859\pi\)
−0.839482 + 0.543388i \(0.817141\pi\)
\(788\) 0 0
\(789\) −1.44856e8 −0.0104994
\(790\) 0 0
\(791\) 6.04209e8 0.0434080
\(792\) 0 0
\(793\) 1.10283e10i 0.785328i
\(794\) 0 0
\(795\) −1.18919e9 6.54052e9i −0.0839392 0.461665i
\(796\) 0 0
\(797\) 1.46595e10i 1.02569i 0.858483 + 0.512843i \(0.171408\pi\)
−0.858483 + 0.512843i \(0.828592\pi\)
\(798\) 0 0
\(799\) 1.04018e10 0.721429
\(800\) 0 0
\(801\) 4.56260e9 0.313688
\(802\) 0 0
\(803\) 2.58173e10i 1.75957i
\(804\) 0 0
\(805\) −5.37395e9 2.95567e10i −0.363085 1.99697i
\(806\) 0 0
\(807\) 4.94528e9i 0.331233i
\(808\) 0 0
\(809\) 9.95193e9 0.660827 0.330413 0.943836i \(-0.392812\pi\)
0.330413 + 0.943836i \(0.392812\pi\)
\(810\) 0 0
\(811\) 1.78463e10 1.17483 0.587415 0.809286i \(-0.300146\pi\)
0.587415 + 0.809286i \(0.300146\pi\)
\(812\) 0 0
\(813\) 6.86894e9i 0.448304i
\(814\) 0 0
\(815\) −2.47282e10 + 4.49604e9i −1.60008 + 0.290923i
\(816\) 0 0
\(817\) 1.84798e9i 0.118555i
\(818\) 0 0
\(819\) −1.05053e10 −0.668212
\(820\) 0 0
\(821\) −3.93673e9 −0.248276 −0.124138 0.992265i \(-0.539617\pi\)
−0.124138 + 0.992265i \(0.539617\pi\)
\(822\) 0 0
\(823\) 8.31828e9i 0.520156i 0.965588 + 0.260078i \(0.0837483\pi\)
−0.965588 + 0.260078i \(0.916252\pi\)
\(824\) 0 0
\(825\) 4.09712e9 + 1.08946e10i 0.254033 + 0.675496i
\(826\) 0 0
\(827\) 1.30781e10i 0.804033i −0.915632 0.402017i \(-0.868309\pi\)
0.915632 0.402017i \(-0.131691\pi\)
\(828\) 0 0
\(829\) 1.78307e10 1.08700 0.543499 0.839410i \(-0.317099\pi\)
0.543499 + 0.839410i \(0.317099\pi\)
\(830\) 0 0
\(831\) 1.60073e10 0.967642
\(832\) 0 0
\(833\) 1.43102e10i 0.857804i
\(834\) 0 0
\(835\) −1.25828e10 + 2.28778e9i −0.747954 + 0.135992i
\(836\) 0 0
\(837\) 4.72880e9i 0.278748i
\(838\) 0 0
\(839\) 2.05093e10 1.19890 0.599451 0.800411i \(-0.295386\pi\)
0.599451 + 0.800411i \(0.295386\pi\)
\(840\) 0 0
\(841\) −1.68720e10 −0.978092
\(842\) 0 0
\(843\) 1.67948e10i 0.965559i
\(844\) 0 0
\(845\) 5.05201e9 + 2.77861e10i 0.288049 + 1.58427i
\(846\) 0 0
\(847\) 1.23423e10i 0.697915i
\(848\) 0 0
\(849\) 1.06584e10 0.597744
\(850\) 0 0
\(851\) 7.42941e9 0.413239
\(852\) 0 0
\(853\) 2.30130e10i 1.26955i 0.772695 + 0.634777i \(0.218908\pi\)
−0.772695 + 0.634777i \(0.781092\pi\)
\(854\) 0 0
\(855\) −1.61838e8 8.90109e8i −0.00885521 0.0487037i
\(856\) 0 0
\(857\) 1.45901e10i 0.791819i −0.918289 0.395910i \(-0.870429\pi\)
0.918289 0.395910i \(-0.129571\pi\)
\(858\) 0 0
\(859\) 3.04784e10 1.64065 0.820324 0.571898i \(-0.193793\pi\)
0.820324 + 0.571898i \(0.193793\pi\)
\(860\) 0 0
\(861\) −9.10607e9 −0.486205
\(862\) 0 0
\(863\) 1.15324e10i 0.610775i −0.952228 0.305387i \(-0.901214\pi\)
0.952228 0.305387i \(-0.0987860\pi\)
\(864\) 0 0
\(865\) 2.60428e10 4.73506e9i 1.36814 0.248753i
\(866\) 0 0
\(867\) 1.69260e10i 0.882037i
\(868\) 0 0
\(869\) −1.73142e10 −0.895019
\(870\) 0 0
\(871\) −8.62411e9 −0.442233
\(872\) 0 0
\(873\) 6.31137e9i 0.321051i
\(874\) 0 0
\(875\) 2.10949e10 1.26323e10i 1.06451 0.637463i
\(876\) 0 0
\(877\) 1.15209e10i 0.576748i −0.957518 0.288374i \(-0.906885\pi\)
0.957518 0.288374i \(-0.0931146\pi\)
\(878\) 0 0
\(879\) −1.86139e10 −0.924436
\(880\) 0 0
\(881\) −7.26258e8 −0.0357829 −0.0178914 0.999840i \(-0.505695\pi\)
−0.0178914 + 0.999840i \(0.505695\pi\)
\(882\) 0 0
\(883\) 1.81507e10i 0.887219i −0.896220 0.443609i \(-0.853698\pi\)
0.896220 0.443609i \(-0.146302\pi\)
\(884\) 0 0
\(885\) 1.36999e10 2.49090e9i 0.664381 0.120797i
\(886\) 0 0
\(887\) 8.91198e9i 0.428787i 0.976747 + 0.214393i \(0.0687775\pi\)
−0.976747 + 0.214393i \(0.931223\pi\)
\(888\) 0 0
\(889\) 4.39657e10 2.09874
\(890\) 0 0
\(891\) 2.93249e9 0.138888
\(892\) 0 0
\(893\) 1.43401e9i 0.0673865i
\(894\) 0 0
\(895\) −3.56035e9 1.95819e10i −0.166002 0.913009i
\(896\) 0 0
\(897\) 3.29831e10i 1.52587i
\(898\) 0 0
\(899\) −4.67042e9 −0.214386
\(900\) 0 0
\(901\) −2.83696e10 −1.29216
\(902\) 0 0
\(903\) 1.26537e10i 0.571886i
\(904\) 0 0
\(905\) −3.05146e9 1.67830e10i −0.136848 0.752663i
\(906\) 0 0
\(907\) 1.76727e10i 0.786462i −0.919440 0.393231i \(-0.871357\pi\)
0.919440 0.393231i \(-0.128643\pi\)
\(908\) 0 0
\(909\) 5.48448e9 0.242193
\(910\) 0 0
\(911\) 2.84979e10 1.24882 0.624409 0.781098i \(-0.285340\pi\)
0.624409 + 0.781098i \(0.285340\pi\)
\(912\) 0 0
\(913\) 2.67144e9i 0.116171i
\(914\) 0 0
\(915\) 6.39826e9 1.16332e9i 0.276114 0.0502025i
\(916\) 0 0
\(917\) 4.59460e9i 0.196768i
\(918\) 0 0
\(919\) −9.46354e9 −0.402207 −0.201103 0.979570i \(-0.564453\pi\)
−0.201103 + 0.979570i \(0.564453\pi\)
\(920\) 0 0
\(921\) 7.22977e9 0.304941
\(922\) 0 0
\(923\) 4.38581e10i 1.83588i
\(924\) 0 0
\(925\) 2.14043e9 + 5.69161e9i 0.0889213 + 0.236450i
\(926\) 0 0
\(927\) 1.02251e10i 0.421586i
\(928\) 0 0
\(929\) −1.56995e10 −0.642438 −0.321219 0.947005i \(-0.604093\pi\)
−0.321219 + 0.947005i \(0.604093\pi\)
\(930\) 0 0
\(931\) 1.97284e9 0.0801249
\(932\) 0 0
\(933\) 5.25289e9i 0.211745i
\(934\) 0 0
\(935\) 4.88710e10 8.88564e9i 1.95529 0.355507i
\(936\) 0 0
\(937\) 8.78711e9i 0.348946i −0.984662 0.174473i \(-0.944178\pi\)
0.984662 0.174473i \(-0.0558221\pi\)
\(938\) 0 0
\(939\) 2.38087e10 0.938438
\(940\) 0 0
\(941\) −1.58721e10 −0.620971 −0.310485 0.950578i \(-0.600492\pi\)
−0.310485 + 0.950578i \(0.600492\pi\)
\(942\) 0 0
\(943\) 2.85900e10i 1.11026i
\(944\) 0 0
\(945\) −1.10815e9 6.09484e9i −0.0427158 0.234937i
\(946\) 0 0
\(947\) 5.08496e9i 0.194564i −0.995257 0.0972820i \(-0.968985\pi\)
0.995257 0.0972820i \(-0.0310149\pi\)
\(948\) 0 0
\(949\) −5.98786e10 −2.27426
\(950\) 0 0
\(951\) −1.31840e10 −0.497068
\(952\) 0 0
\(953\) 4.59917e10i 1.72129i 0.509205 + 0.860645i \(0.329940\pi\)
−0.509205 + 0.860645i \(0.670060\pi\)
\(954\) 0 0
\(955\) 2.81586e9 + 1.54872e10i 0.104616 + 0.575390i
\(956\) 0 0
\(957\) 2.89629e9i 0.106819i
\(958\) 0 0
\(959\) −2.63675e10 −0.965393
\(960\) 0 0
\(961\) 3.02065e10 1.09791
\(962\) 0 0
\(963\) 1.16188e9i 0.0419247i
\(964\) 0 0
\(965\) 2.74376e10 4.98865e9i 0.982879 0.178705i
\(966\) 0 0
\(967\) 3.82819e10i 1.36145i 0.732541 + 0.680723i \(0.238334\pi\)
−0.732541 + 0.680723i \(0.761666\pi\)
\(968\) 0 0
\(969\) −3.86086e9 −0.136317
\(970\) 0 0
\(971\) −2.85329e10 −1.00018 −0.500090 0.865974i \(-0.666700\pi\)
−0.500090 + 0.865974i \(0.666700\pi\)
\(972\) 0 0
\(973\) 1.53080e9i 0.0532749i
\(974\) 0 0
\(975\) −2.52681e10 + 9.50252e9i −0.873083 + 0.328339i
\(976\) 0 0
\(977\) 8.40644e9i 0.288391i −0.989549 0.144195i \(-0.953941\pi\)
0.989549 0.144195i \(-0.0460594\pi\)
\(978\) 0 0
\(979\) −3.45356e10 −1.17632
\(980\) 0 0
\(981\) −1.21108e10 −0.409573
\(982\) 0 0
\(983\) 5.00100e10i 1.67927i 0.543154 + 0.839633i \(0.317230\pi\)
−0.543154 + 0.839633i \(0.682770\pi\)
\(984\) 0 0
\(985\) −3.45007e10 + 6.27286e9i −1.15027 + 0.209141i
\(986\) 0 0
\(987\) 9.81912e9i 0.325059i
\(988\) 0 0
\(989\) −3.97283e10 −1.30591
\(990\) 0 0
\(991\) 1.17819e10 0.384555 0.192277 0.981341i \(-0.438413\pi\)
0.192277 + 0.981341i \(0.438413\pi\)
\(992\) 0 0
\(993\) 1.91214e10i 0.619722i
\(994\) 0 0
\(995\) 1.16160e8 + 6.38880e8i 0.00373831 + 0.0205607i
\(996\) 0 0
\(997\) 2.36572e10i 0.756014i −0.925803 0.378007i \(-0.876609\pi\)
0.925803 0.378007i \(-0.123391\pi\)
\(998\) 0 0
\(999\) 1.53201e9 0.0486162
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 240.8.f.a.49.1 2
4.3 odd 2 30.8.c.a.19.1 2
5.4 even 2 inner 240.8.f.a.49.2 2
12.11 even 2 90.8.c.a.19.2 2
20.3 even 4 150.8.a.d.1.1 1
20.7 even 4 150.8.a.m.1.1 1
20.19 odd 2 30.8.c.a.19.2 yes 2
60.23 odd 4 450.8.a.y.1.1 1
60.47 odd 4 450.8.a.b.1.1 1
60.59 even 2 90.8.c.a.19.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
30.8.c.a.19.1 2 4.3 odd 2
30.8.c.a.19.2 yes 2 20.19 odd 2
90.8.c.a.19.1 2 60.59 even 2
90.8.c.a.19.2 2 12.11 even 2
150.8.a.d.1.1 1 20.3 even 4
150.8.a.m.1.1 1 20.7 even 4
240.8.f.a.49.1 2 1.1 even 1 trivial
240.8.f.a.49.2 2 5.4 even 2 inner
450.8.a.b.1.1 1 60.47 odd 4
450.8.a.y.1.1 1 60.23 odd 4