L(s) = 1 | − 27i·3-s + (−50 − 275i)5-s − 1.12e3i·7-s − 729·9-s + 5.51e3·11-s + 1.27e4i·13-s + (−7.42e3 + 1.35e3i)15-s + 3.22e4i·17-s − 4.44e3·19-s − 3.04e4·21-s + 9.54e4i·23-s + (−7.31e4 + 2.75e4i)25-s + 1.96e4i·27-s − 1.94e4·29-s + 2.40e5·31-s + ⋯ |
L(s) = 1 | − 0.577i·3-s + (−0.178 − 0.983i)5-s − 1.24i·7-s − 0.333·9-s + 1.24·11-s + 1.61i·13-s + (−0.568 + 0.103i)15-s + 1.58i·17-s − 0.148·19-s − 0.716·21-s + 1.63i·23-s + (−0.935 + 0.351i)25-s + 0.192i·27-s − 0.148·29-s + 1.44·31-s + ⋯ |
Λ(s)=(=(240s/2ΓC(s)L(s)(0.983−0.178i)Λ(8−s)
Λ(s)=(=(240s/2ΓC(s+7/2)L(s)(0.983−0.178i)Λ(1−s)
Degree: |
2 |
Conductor: |
240
= 24⋅3⋅5
|
Sign: |
0.983−0.178i
|
Analytic conductor: |
74.9724 |
Root analytic conductor: |
8.65866 |
Motivic weight: |
7 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ240(49,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 240, ( :7/2), 0.983−0.178i)
|
Particular Values
L(4) |
≈ |
1.790612024 |
L(21) |
≈ |
1.790612024 |
L(29) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1+27iT |
| 5 | 1+(50+275i)T |
good | 7 | 1+1.12e3iT−8.23e5T2 |
| 11 | 1−5.51e3T+1.94e7T2 |
| 13 | 1−1.27e4iT−6.27e7T2 |
| 17 | 1−3.22e4iT−4.10e8T2 |
| 19 | 1+4.44e3T+8.93e8T2 |
| 23 | 1−9.54e4iT−3.40e9T2 |
| 29 | 1+1.94e4T+1.72e10T2 |
| 31 | 1−2.40e5T+2.75e10T2 |
| 37 | 1+7.78e4iT−9.49e10T2 |
| 41 | 1−2.99e5T+1.94e11T2 |
| 43 | 1−4.16e5iT−2.71e11T2 |
| 47 | 1+3.22e5iT−5.06e11T2 |
| 53 | 1−8.80e5iT−1.17e12T2 |
| 59 | 1+1.84e6T+2.48e12T2 |
| 61 | 1+8.61e5T+3.14e12T2 |
| 67 | 1−6.73e5iT−6.06e12T2 |
| 71 | 1−3.42e6T+9.09e12T2 |
| 73 | 1−4.67e6iT−1.10e13T2 |
| 79 | 1+3.13e6T+1.92e13T2 |
| 83 | 1−4.84e5iT−2.71e13T2 |
| 89 | 1+6.25e6T+4.42e13T2 |
| 97 | 1−8.65e6iT−8.07e13T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.14931798973250606745281236462, −9.766915284900454074061281284781, −8.931319039748286747761811299794, −7.923303658622125574836983466099, −6.92947250545652704520116508396, −6.02989049755201405842633898233, −4.37758051169004290143331145397, −3.84438424475241208460636317415, −1.62500074384728403654676001951, −1.11370687485318844825772264989,
0.47572912326310605033162534962, 2.50985481554923884598977710924, 3.18236816214765662281668435874, 4.62085819448578978027097544718, 5.81282741096414993949558300298, 6.68910779745843748694578937287, 8.012834059151936220076938224074, 9.000419861640643039304646869310, 9.908196050424788283761642943052, 10.83057860108615198882948220536