Properties

Label 2-150-1.1-c7-0-20
Degree $2$
Conductor $150$
Sign $-1$
Analytic cond. $46.8577$
Root an. cond. $6.84527$
Motivic weight $7$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 8·2-s + 27·3-s + 64·4-s + 216·6-s − 391·7-s + 512·8-s + 729·9-s − 4.39e3·11-s + 1.72e3·12-s − 1.34e4·13-s − 3.12e3·14-s + 4.09e3·16-s − 7.68e3·17-s + 5.83e3·18-s − 1.37e4·19-s − 1.05e4·21-s − 3.51e4·22-s + 3.54e4·23-s + 1.38e4·24-s − 1.07e5·26-s + 1.96e4·27-s − 2.50e4·28-s − 1.57e5·29-s − 9.93e4·31-s + 3.27e4·32-s − 1.18e5·33-s − 6.14e4·34-s + ⋯
L(s)  = 1  + 0.707·2-s + 0.577·3-s + 1/2·4-s + 0.408·6-s − 0.430·7-s + 0.353·8-s + 1/3·9-s − 0.996·11-s + 0.288·12-s − 1.69·13-s − 0.304·14-s + 1/4·16-s − 0.379·17-s + 0.235·18-s − 0.458·19-s − 0.248·21-s − 0.704·22-s + 0.608·23-s + 0.204·24-s − 1.20·26-s + 0.192·27-s − 0.215·28-s − 1.19·29-s − 0.598·31-s + 0.176·32-s − 0.575·33-s − 0.268·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 150 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 150 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(150\)    =    \(2 \cdot 3 \cdot 5^{2}\)
Sign: $-1$
Analytic conductor: \(46.8577\)
Root analytic conductor: \(6.84527\)
Motivic weight: \(7\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 150,\ (\ :7/2),\ -1)\)

Particular Values

\(L(4)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{9}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - p^{3} T \)
3 \( 1 - p^{3} T \)
5 \( 1 \)
good7 \( 1 + 391 T + p^{7} T^{2} \)
11 \( 1 + 4398 T + p^{7} T^{2} \)
13 \( 1 + 13447 T + p^{7} T^{2} \)
17 \( 1 + 7686 T + p^{7} T^{2} \)
19 \( 1 + 13705 T + p^{7} T^{2} \)
23 \( 1 - 35478 T + p^{7} T^{2} \)
29 \( 1 + 5430 p T + p^{7} T^{2} \)
31 \( 1 + 99343 T + p^{7} T^{2} \)
37 \( 1 + 161926 T + p^{7} T^{2} \)
41 \( 1 - 521952 T + p^{7} T^{2} \)
43 \( 1 - 340973 T + p^{7} T^{2} \)
47 \( 1 + 50886 T + p^{7} T^{2} \)
53 \( 1 + 891132 T + p^{7} T^{2} \)
59 \( 1 + 1344210 T + p^{7} T^{2} \)
61 \( 1 - 3394127 T + p^{7} T^{2} \)
67 \( 1 + 2248951 T + p^{7} T^{2} \)
71 \( 1 - 2731872 T + p^{7} T^{2} \)
73 \( 1 + 5028622 T + p^{7} T^{2} \)
79 \( 1 - 1571480 T + p^{7} T^{2} \)
83 \( 1 + 7792962 T + p^{7} T^{2} \)
89 \( 1 + 5802240 T + p^{7} T^{2} \)
97 \( 1 + 2498311 T + p^{7} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.25258841772625242200787624769, −10.17748336722637566584502320095, −9.201494523341263027758106765818, −7.77774472272720924015286335605, −6.98729722911055328112727009382, −5.51668565121613846202165143927, −4.44201189174248336926615464622, −3.03836250160917733438050963707, −2.12331544147576611804086231581, 0, 2.12331544147576611804086231581, 3.03836250160917733438050963707, 4.44201189174248336926615464622, 5.51668565121613846202165143927, 6.98729722911055328112727009382, 7.77774472272720924015286335605, 9.201494523341263027758106765818, 10.17748336722637566584502320095, 11.25258841772625242200787624769

Graph of the $Z$-function along the critical line