Properties

Label 150.8.a.o
Level $150$
Weight $8$
Character orbit 150.a
Self dual yes
Analytic conductor $46.858$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [150,8,Mod(1,150)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(150, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("150.1");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 150 = 2 \cdot 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 150.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(46.8577538226\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q + 8 q^{2} + 27 q^{3} + 64 q^{4} + 216 q^{6} - 391 q^{7} + 512 q^{8} + 729 q^{9} - 4398 q^{11} + 1728 q^{12} - 13447 q^{13} - 3128 q^{14} + 4096 q^{16} - 7686 q^{17} + 5832 q^{18} - 13705 q^{19} - 10557 q^{21}+ \cdots - 3206142 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
8.00000 27.0000 64.0000 0 216.000 −391.000 512.000 729.000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(3\) \( -1 \)
\(5\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 150.8.a.o yes 1
3.b odd 2 1 450.8.a.f 1
5.b even 2 1 150.8.a.c 1
5.c odd 4 2 150.8.c.f 2
15.d odd 2 1 450.8.a.v 1
15.e even 4 2 450.8.c.o 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
150.8.a.c 1 5.b even 2 1
150.8.a.o yes 1 1.a even 1 1 trivial
150.8.c.f 2 5.c odd 4 2
450.8.a.f 1 3.b odd 2 1
450.8.a.v 1 15.d odd 2 1
450.8.c.o 2 15.e even 4 2

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{7} + 391 \) acting on \(S_{8}^{\mathrm{new}}(\Gamma_0(150))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T - 8 \) Copy content Toggle raw display
$3$ \( T - 27 \) Copy content Toggle raw display
$5$ \( T \) Copy content Toggle raw display
$7$ \( T + 391 \) Copy content Toggle raw display
$11$ \( T + 4398 \) Copy content Toggle raw display
$13$ \( T + 13447 \) Copy content Toggle raw display
$17$ \( T + 7686 \) Copy content Toggle raw display
$19$ \( T + 13705 \) Copy content Toggle raw display
$23$ \( T - 35478 \) Copy content Toggle raw display
$29$ \( T + 157470 \) Copy content Toggle raw display
$31$ \( T + 99343 \) Copy content Toggle raw display
$37$ \( T + 161926 \) Copy content Toggle raw display
$41$ \( T - 521952 \) Copy content Toggle raw display
$43$ \( T - 340973 \) Copy content Toggle raw display
$47$ \( T + 50886 \) Copy content Toggle raw display
$53$ \( T + 891132 \) Copy content Toggle raw display
$59$ \( T + 1344210 \) Copy content Toggle raw display
$61$ \( T - 3394127 \) Copy content Toggle raw display
$67$ \( T + 2248951 \) Copy content Toggle raw display
$71$ \( T - 2731872 \) Copy content Toggle raw display
$73$ \( T + 5028622 \) Copy content Toggle raw display
$79$ \( T - 1571480 \) Copy content Toggle raw display
$83$ \( T + 7792962 \) Copy content Toggle raw display
$89$ \( T + 5802240 \) Copy content Toggle raw display
$97$ \( T + 2498311 \) Copy content Toggle raw display
show more
show less