Properties

Label 150.8.c.f
Level $150$
Weight $8$
Character orbit 150.c
Analytic conductor $46.858$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [150,8,Mod(49,150)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(150, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("150.49");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 150 = 2 \cdot 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 150.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(46.8577538226\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-1}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(i = \sqrt{-1}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - 8 i q^{2} + 27 i q^{3} - 64 q^{4} + 216 q^{6} + 391 i q^{7} + 512 i q^{8} - 729 q^{9} - 4398 q^{11} - 1728 i q^{12} - 13447 i q^{13} + 3128 q^{14} + 4096 q^{16} + 7686 i q^{17} + 5832 i q^{18} + 13705 q^{19} + \cdots + 3206142 q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 128 q^{4} + 432 q^{6} - 1458 q^{9} - 8796 q^{11} + 6256 q^{14} + 8192 q^{16} + 27410 q^{19} - 21114 q^{21} - 27648 q^{24} - 215152 q^{26} + 314940 q^{29} - 198686 q^{31} + 122976 q^{34} + 93312 q^{36}+ \cdots + 6412284 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/150\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(127\)
\(\chi(n)\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
49.1
1.00000i
1.00000i
8.00000i 27.0000i −64.0000 0 216.000 391.000i 512.000i −729.000 0
49.2 8.00000i 27.0000i −64.0000 0 216.000 391.000i 512.000i −729.000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 150.8.c.f 2
3.b odd 2 1 450.8.c.o 2
5.b even 2 1 inner 150.8.c.f 2
5.c odd 4 1 150.8.a.c 1
5.c odd 4 1 150.8.a.o yes 1
15.d odd 2 1 450.8.c.o 2
15.e even 4 1 450.8.a.f 1
15.e even 4 1 450.8.a.v 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
150.8.a.c 1 5.c odd 4 1
150.8.a.o yes 1 5.c odd 4 1
150.8.c.f 2 1.a even 1 1 trivial
150.8.c.f 2 5.b even 2 1 inner
450.8.a.f 1 15.e even 4 1
450.8.a.v 1 15.e even 4 1
450.8.c.o 2 3.b odd 2 1
450.8.c.o 2 15.d odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{7}^{2} + 152881 \) acting on \(S_{8}^{\mathrm{new}}(150, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} + 64 \) Copy content Toggle raw display
$3$ \( T^{2} + 729 \) Copy content Toggle raw display
$5$ \( T^{2} \) Copy content Toggle raw display
$7$ \( T^{2} + 152881 \) Copy content Toggle raw display
$11$ \( (T + 4398)^{2} \) Copy content Toggle raw display
$13$ \( T^{2} + 180821809 \) Copy content Toggle raw display
$17$ \( T^{2} + 59074596 \) Copy content Toggle raw display
$19$ \( (T - 13705)^{2} \) Copy content Toggle raw display
$23$ \( T^{2} + 1258688484 \) Copy content Toggle raw display
$29$ \( (T - 157470)^{2} \) Copy content Toggle raw display
$31$ \( (T + 99343)^{2} \) Copy content Toggle raw display
$37$ \( T^{2} + 26220029476 \) Copy content Toggle raw display
$41$ \( (T - 521952)^{2} \) Copy content Toggle raw display
$43$ \( T^{2} + 116262586729 \) Copy content Toggle raw display
$47$ \( T^{2} + 2589384996 \) Copy content Toggle raw display
$53$ \( T^{2} + 794116241424 \) Copy content Toggle raw display
$59$ \( (T - 1344210)^{2} \) Copy content Toggle raw display
$61$ \( (T - 3394127)^{2} \) Copy content Toggle raw display
$67$ \( T^{2} + 5057780600401 \) Copy content Toggle raw display
$71$ \( (T - 2731872)^{2} \) Copy content Toggle raw display
$73$ \( T^{2} + 25287039218884 \) Copy content Toggle raw display
$79$ \( (T + 1571480)^{2} \) Copy content Toggle raw display
$83$ \( T^{2} + 60730256733444 \) Copy content Toggle raw display
$89$ \( (T - 5802240)^{2} \) Copy content Toggle raw display
$97$ \( T^{2} + 6241557852721 \) Copy content Toggle raw display
show more
show less