Properties

Label 150.8.c.f
Level 150150
Weight 88
Character orbit 150.c
Analytic conductor 46.85846.858
Analytic rank 00
Dimension 22
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [150,8,Mod(49,150)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(150, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("150.49");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: N N == 150=2352 150 = 2 \cdot 3 \cdot 5^{2}
Weight: k k == 8 8
Character orbit: [χ][\chi] == 150.c (of order 22, degree 11, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 46.857753822646.8577538226
Analytic rank: 00
Dimension: 22
Coefficient field: Q(1)\Q(\sqrt{-1})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x2+1 x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2,a3]\Z[a_1, a_2, a_3]
Coefficient ring index: 1 1
Twist minimal: yes
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of i=1i = \sqrt{-1}. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q8iq2+27iq364q4+216q6+391iq7+512iq8729q94398q111728iq1213447iq13+3128q14+4096q16+7686iq17+5832iq18+13705q19++3206142q99+O(q100) q - 8 i q^{2} + 27 i q^{3} - 64 q^{4} + 216 q^{6} + 391 i q^{7} + 512 i q^{8} - 729 q^{9} - 4398 q^{11} - 1728 i q^{12} - 13447 i q^{13} + 3128 q^{14} + 4096 q^{16} + 7686 i q^{17} + 5832 i q^{18} + 13705 q^{19} + \cdots + 3206142 q^{99} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q128q4+432q61458q98796q11+6256q14+8192q16+27410q1921114q2127648q24215152q26+314940q29198686q31+122976q34+93312q36++6412284q99+O(q100) 2 q - 128 q^{4} + 432 q^{6} - 1458 q^{9} - 8796 q^{11} + 6256 q^{14} + 8192 q^{16} + 27410 q^{19} - 21114 q^{21} - 27648 q^{24} - 215152 q^{26} + 314940 q^{29} - 198686 q^{31} + 122976 q^{34} + 93312 q^{36}+ \cdots + 6412284 q^{99}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/150Z)×\left(\mathbb{Z}/150\mathbb{Z}\right)^\times.

nn 101101 127127
χ(n)\chi(n) 11 1-1

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
49.1
1.00000i
1.00000i
8.00000i 27.0000i −64.0000 0 216.000 391.000i 512.000i −729.000 0
49.2 8.00000i 27.0000i −64.0000 0 216.000 391.000i 512.000i −729.000 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 150.8.c.f 2
3.b odd 2 1 450.8.c.o 2
5.b even 2 1 inner 150.8.c.f 2
5.c odd 4 1 150.8.a.c 1
5.c odd 4 1 150.8.a.o yes 1
15.d odd 2 1 450.8.c.o 2
15.e even 4 1 450.8.a.f 1
15.e even 4 1 450.8.a.v 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
150.8.a.c 1 5.c odd 4 1
150.8.a.o yes 1 5.c odd 4 1
150.8.c.f 2 1.a even 1 1 trivial
150.8.c.f 2 5.b even 2 1 inner
450.8.a.f 1 15.e even 4 1
450.8.a.v 1 15.e even 4 1
450.8.c.o 2 3.b odd 2 1
450.8.c.o 2 15.d odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T72+152881 T_{7}^{2} + 152881 acting on S8new(150,[χ])S_{8}^{\mathrm{new}}(150, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T2+64 T^{2} + 64 Copy content Toggle raw display
33 T2+729 T^{2} + 729 Copy content Toggle raw display
55 T2 T^{2} Copy content Toggle raw display
77 T2+152881 T^{2} + 152881 Copy content Toggle raw display
1111 (T+4398)2 (T + 4398)^{2} Copy content Toggle raw display
1313 T2+180821809 T^{2} + 180821809 Copy content Toggle raw display
1717 T2+59074596 T^{2} + 59074596 Copy content Toggle raw display
1919 (T13705)2 (T - 13705)^{2} Copy content Toggle raw display
2323 T2+1258688484 T^{2} + 1258688484 Copy content Toggle raw display
2929 (T157470)2 (T - 157470)^{2} Copy content Toggle raw display
3131 (T+99343)2 (T + 99343)^{2} Copy content Toggle raw display
3737 T2+26220029476 T^{2} + 26220029476 Copy content Toggle raw display
4141 (T521952)2 (T - 521952)^{2} Copy content Toggle raw display
4343 T2+116262586729 T^{2} + 116262586729 Copy content Toggle raw display
4747 T2+2589384996 T^{2} + 2589384996 Copy content Toggle raw display
5353 T2+794116241424 T^{2} + 794116241424 Copy content Toggle raw display
5959 (T1344210)2 (T - 1344210)^{2} Copy content Toggle raw display
6161 (T3394127)2 (T - 3394127)^{2} Copy content Toggle raw display
6767 T2+5057780600401 T^{2} + 5057780600401 Copy content Toggle raw display
7171 (T2731872)2 (T - 2731872)^{2} Copy content Toggle raw display
7373 T2+25287039218884 T^{2} + 25287039218884 Copy content Toggle raw display
7979 (T+1571480)2 (T + 1571480)^{2} Copy content Toggle raw display
8383 T2+60730256733444 T^{2} + 60730256733444 Copy content Toggle raw display
8989 (T5802240)2 (T - 5802240)^{2} Copy content Toggle raw display
9797 T2+6241557852721 T^{2} + 6241557852721 Copy content Toggle raw display
show more
show less