L(s) = 1 | − 8i·2-s + 27i·3-s − 64·4-s + 216·6-s + 391i·7-s + 512i·8-s − 729·9-s − 4.39e3·11-s − 1.72e3i·12-s − 1.34e4i·13-s + 3.12e3·14-s + 4.09e3·16-s + 7.68e3i·17-s + 5.83e3i·18-s + 1.37e4·19-s + ⋯ |
L(s) = 1 | − 0.707i·2-s + 0.577i·3-s − 0.5·4-s + 0.408·6-s + 0.430i·7-s + 0.353i·8-s − 0.333·9-s − 0.996·11-s − 0.288i·12-s − 1.69i·13-s + 0.304·14-s + 0.250·16-s + 0.379i·17-s + 0.235i·18-s + 0.458·19-s + ⋯ |
Λ(s)=(=(150s/2ΓC(s)L(s)(0.894+0.447i)Λ(8−s)
Λ(s)=(=(150s/2ΓC(s+7/2)L(s)(0.894+0.447i)Λ(1−s)
Degree: |
2 |
Conductor: |
150
= 2⋅3⋅52
|
Sign: |
0.894+0.447i
|
Analytic conductor: |
46.8577 |
Root analytic conductor: |
6.84527 |
Motivic weight: |
7 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ150(49,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 150, ( :7/2), 0.894+0.447i)
|
Particular Values
L(4) |
≈ |
1.618834736 |
L(21) |
≈ |
1.618834736 |
L(29) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+8iT |
| 3 | 1−27iT |
| 5 | 1 |
good | 7 | 1−391iT−8.23e5T2 |
| 11 | 1+4.39e3T+1.94e7T2 |
| 13 | 1+1.34e4iT−6.27e7T2 |
| 17 | 1−7.68e3iT−4.10e8T2 |
| 19 | 1−1.37e4T+8.93e8T2 |
| 23 | 1−3.54e4iT−3.40e9T2 |
| 29 | 1−1.57e5T+1.72e10T2 |
| 31 | 1+9.93e4T+2.75e10T2 |
| 37 | 1−1.61e5iT−9.49e10T2 |
| 41 | 1−5.21e5T+1.94e11T2 |
| 43 | 1−3.40e5iT−2.71e11T2 |
| 47 | 1−5.08e4iT−5.06e11T2 |
| 53 | 1+8.91e5iT−1.17e12T2 |
| 59 | 1−1.34e6T+2.48e12T2 |
| 61 | 1−3.39e6T+3.14e12T2 |
| 67 | 1−2.24e6iT−6.06e12T2 |
| 71 | 1−2.73e6T+9.09e12T2 |
| 73 | 1+5.02e6iT−1.10e13T2 |
| 79 | 1+1.57e6T+1.92e13T2 |
| 83 | 1+7.79e6iT−2.71e13T2 |
| 89 | 1−5.80e6T+4.42e13T2 |
| 97 | 1−2.49e6iT−8.07e13T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.48519671570809561493621341679, −10.49337007390083128974833537127, −9.896978957823366808642658464928, −8.624979881973633056590674474981, −7.73475764715182246712930746004, −5.77619748568146310290896091864, −4.97291923013368513672036060904, −3.45130182480188653390703064844, −2.50810715866138551598039632187, −0.69533343277918214669614747826,
0.73982100135571957176577749057, 2.37418218062608443963522803983, 4.12644510167032123690826295023, 5.34760769385700164135427999730, 6.65218933767494223036784120148, 7.36339014793102259309513929543, 8.453387167078567504802141829034, 9.504950163020247138574651077647, 10.75026838569408361694920302226, 11.90677760786218491724298961118