L(s) = 1 | + (5.65 − 5.65i)2-s + (−38.2 + 26.9i)3-s − 64.0i·4-s + (−63.8 + 368. i)6-s + (−6.12 − 6.12i)7-s + (−362. − 362. i)8-s + (735. − 2.05e3i)9-s + 2.86e3i·11-s + (1.72e3 + 2.44e3i)12-s + (−2.01e3 + 2.01e3i)13-s − 69.3·14-s − 4.09e3·16-s + (−8.71e3 + 8.71e3i)17-s + (−7.49e3 − 1.58e4i)18-s − 1.40e3i·19-s + ⋯ |
L(s) = 1 | + (0.499 − 0.499i)2-s + (−0.817 + 0.576i)3-s − 0.500i·4-s + (−0.120 + 0.696i)6-s + (−0.00675 − 0.00675i)7-s + (−0.250 − 0.250i)8-s + (0.336 − 0.941i)9-s + 0.648i·11-s + (0.288 + 0.408i)12-s + (−0.254 + 0.254i)13-s − 0.00675·14-s − 0.250·16-s + (−0.430 + 0.430i)17-s + (−0.302 − 0.639i)18-s − 0.0471i·19-s + ⋯ |
Λ(s)=(=(150s/2ΓC(s)L(s)(0.748+0.663i)Λ(8−s)
Λ(s)=(=(150s/2ΓC(s+7/2)L(s)(0.748+0.663i)Λ(1−s)
Degree: |
2 |
Conductor: |
150
= 2⋅3⋅52
|
Sign: |
0.748+0.663i
|
Analytic conductor: |
46.8577 |
Root analytic conductor: |
6.84527 |
Motivic weight: |
7 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ150(107,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 150, ( :7/2), 0.748+0.663i)
|
Particular Values
L(4) |
≈ |
1.734891955 |
L(21) |
≈ |
1.734891955 |
L(29) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−5.65+5.65i)T |
| 3 | 1+(38.2−26.9i)T |
| 5 | 1 |
good | 7 | 1+(6.12+6.12i)T+8.23e5iT2 |
| 11 | 1−2.86e3iT−1.94e7T2 |
| 13 | 1+(2.01e3−2.01e3i)T−6.27e7iT2 |
| 17 | 1+(8.71e3−8.71e3i)T−4.10e8iT2 |
| 19 | 1+1.40e3iT−8.93e8T2 |
| 23 | 1+(5.24e4+5.24e4i)T+3.40e9iT2 |
| 29 | 1−9.58e4T+1.72e10T2 |
| 31 | 1−1.25e5T+2.75e10T2 |
| 37 | 1+(−3.05e5−3.05e5i)T+9.49e10iT2 |
| 41 | 1+6.09e5iT−1.94e11T2 |
| 43 | 1+(−3.17e5+3.17e5i)T−2.71e11iT2 |
| 47 | 1+(−4.35e5+4.35e5i)T−5.06e11iT2 |
| 53 | 1+(−1.07e6−1.07e6i)T+1.17e12iT2 |
| 59 | 1−3.09e6T+2.48e12T2 |
| 61 | 1−1.62e6T+3.14e12T2 |
| 67 | 1+(9.07e5+9.07e5i)T+6.06e12iT2 |
| 71 | 1+3.60e6iT−9.09e12T2 |
| 73 | 1+(2.84e6−2.84e6i)T−1.10e13iT2 |
| 79 | 1+4.14e6iT−1.92e13T2 |
| 83 | 1+(2.77e6+2.77e6i)T+2.71e13iT2 |
| 89 | 1−1.02e7T+4.42e13T2 |
| 97 | 1+(−2.22e6−2.22e6i)T+8.07e13iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.75293645922753890698686786615, −10.51295925303438223309696427330, −9.994107175821207940169412941934, −8.721719466378078161458722557384, −6.96650396153958170518761776744, −5.95002876317506557430244380683, −4.74634901432683935268521569946, −3.94664815632819468127401970909, −2.27089685178641427114501421654, −0.62716331060160982821928321731,
0.829473304388402697881820578639, 2.57167691343378046309250916080, 4.26964439191734611822218463431, 5.48064755253146867873945573981, 6.29859875087767801105748409451, 7.39024921722491480047338229621, 8.320559992285198471004966510449, 9.852740644062403149430343305546, 11.15682463573785630025036262667, 11.85606223255835777977656076815