Properties

Label 150.8.e.a.107.5
Level $150$
Weight $8$
Character 150.107
Analytic conductor $46.858$
Analytic rank $0$
Dimension $16$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [150,8,Mod(107,150)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(150, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 1]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("150.107");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 150 = 2 \cdot 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 150.e (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(46.8577538226\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 8 x^{15} + 64 x^{14} - 308 x^{13} + 1346 x^{12} - 4436 x^{11} + 12996 x^{10} - 30704 x^{9} + \cdots + 6793 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{52}\cdot 3^{16}\cdot 5^{8} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 107.5
Root \(0.500000 + 1.41585i\) of defining polynomial
Character \(\chi\) \(=\) 150.107
Dual form 150.8.e.a.143.5

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(5.65685 - 5.65685i) q^{2} +(-38.2263 + 26.9398i) q^{3} -64.0000i q^{4} +(-63.8461 + 368.635i) q^{6} +(-6.12631 - 6.12631i) q^{7} +(-362.039 - 362.039i) q^{8} +(735.497 - 2059.61i) q^{9} +2862.04i q^{11} +(1724.15 + 2446.48i) q^{12} +(-2016.24 + 2016.24i) q^{13} -69.3113 q^{14} -4096.00 q^{16} +(-8719.44 + 8719.44i) q^{17} +(-7490.34 - 15811.5i) q^{18} -1408.92i q^{19} +(399.228 + 69.1446i) q^{21} +(16190.1 + 16190.1i) q^{22} +(-52424.7 - 52424.7i) q^{23} +(23592.6 + 4086.15i) q^{24} +22811.2i q^{26} +(27370.3 + 98545.5i) q^{27} +(-392.084 + 392.084i) q^{28} +95838.3 q^{29} +125580. q^{31} +(-23170.5 + 23170.5i) q^{32} +(-77102.7 - 109405. i) q^{33} +98649.2i q^{34} +(-131815. - 47071.8i) q^{36} +(305427. + 305427. i) q^{37} +(-7970.05 - 7970.05i) q^{38} +(22756.4 - 131391. i) q^{39} -609628. i q^{41} +(2649.51 - 1867.23i) q^{42} +(317725. - 317725. i) q^{43} +183170. q^{44} -593118. q^{46} +(435458. - 435458. i) q^{47} +(156575. - 110345. i) q^{48} -823468. i q^{49} +(98412.0 - 568212. i) q^{51} +(129040. + 129040. i) q^{52} +(1.07335e6 + 1.07335e6i) q^{53} +(712287. + 402628. i) q^{54} +4435.92i q^{56} +(37956.0 + 53857.7i) q^{57} +(542143. - 542143. i) q^{58} +3.09673e6 q^{59} +1.62355e6 q^{61} +(710389. - 710389. i) q^{62} +(-17123.7 + 8111.96i) q^{63} +262144. i q^{64} +(-1.05505e6 - 182730. i) q^{66} +(-907865. - 907865. i) q^{67} +(558044. + 558044. i) q^{68} +(3.41631e6 + 591692. i) q^{69} -3.60524e6i q^{71} +(-1.01194e6 + 479382. i) q^{72} +(-2.84276e6 + 2.84276e6i) q^{73} +3.45551e6 q^{74} -90170.8 q^{76} +(17533.7 - 17533.7i) q^{77} +(-614529. - 871988. i) q^{78} -4.14998e6i q^{79} +(-3.70106e6 - 3.02968e6i) q^{81} +(-3.44858e6 - 3.44858e6i) q^{82} +(-2.77023e6 - 2.77023e6i) q^{83} +(4425.26 - 25550.6i) q^{84} -3.59464e6i q^{86} +(-3.66354e6 + 2.58186e6i) q^{87} +(1.03617e6 - 1.03617e6i) q^{88} +1.02628e7 q^{89} +24704.3 q^{91} +(-3.35518e6 + 3.35518e6i) q^{92} +(-4.80047e6 + 3.38311e6i) q^{93} -4.92664e6i q^{94} +(261514. - 1.50993e6i) q^{96} +(2.22241e6 + 2.22241e6i) q^{97} +(-4.65824e6 - 4.65824e6i) q^{98} +(5.89470e6 + 2.10502e6i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 2304 q^{6} - 65536 q^{16} - 183168 q^{21} + 1410688 q^{31} - 193536 q^{36} + 2302464 q^{46} + 1055808 q^{51} + 21247904 q^{61} - 4589568 q^{66} + 13881344 q^{76} - 36589968 q^{81} + 160819200 q^{91}+ \cdots - 9437184 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/150\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(127\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 5.65685 5.65685i 0.500000 0.500000i
\(3\) −38.2263 + 26.9398i −0.817406 + 0.576063i
\(4\) 64.0000i 0.500000i
\(5\) 0 0
\(6\) −63.8461 + 368.635i −0.120672 + 0.696734i
\(7\) −6.12631 6.12631i −0.00675081 0.00675081i 0.703723 0.710474i \(-0.251519\pi\)
−0.710474 + 0.703723i \(0.751519\pi\)
\(8\) −362.039 362.039i −0.250000 0.250000i
\(9\) 735.497 2059.61i 0.336304 0.941753i
\(10\) 0 0
\(11\) 2862.04i 0.648337i 0.945999 + 0.324169i \(0.105085\pi\)
−0.945999 + 0.324169i \(0.894915\pi\)
\(12\) 1724.15 + 2446.48i 0.288031 + 0.408703i
\(13\) −2016.24 + 2016.24i −0.254531 + 0.254531i −0.822826 0.568294i \(-0.807604\pi\)
0.568294 + 0.822826i \(0.307604\pi\)
\(14\) −69.3113 −0.00675081
\(15\) 0 0
\(16\) −4096.00 −0.250000
\(17\) −8719.44 + 8719.44i −0.430445 + 0.430445i −0.888780 0.458335i \(-0.848446\pi\)
0.458335 + 0.888780i \(0.348446\pi\)
\(18\) −7490.34 15811.5i −0.302725 0.639029i
\(19\) 1408.92i 0.0471247i −0.999722 0.0235623i \(-0.992499\pi\)
0.999722 0.0235623i \(-0.00750082\pi\)
\(20\) 0 0
\(21\) 399.228 + 69.1446i 0.00940704 + 0.00162926i
\(22\) 16190.1 + 16190.1i 0.324169 + 0.324169i
\(23\) −52424.7 52424.7i −0.898440 0.898440i 0.0968586 0.995298i \(-0.469121\pi\)
−0.995298 + 0.0968586i \(0.969121\pi\)
\(24\) 23592.6 + 4086.15i 0.348367 + 0.0603358i
\(25\) 0 0
\(26\) 22811.2i 0.254531i
\(27\) 27370.3 + 98545.5i 0.267612 + 0.963527i
\(28\) −392.084 + 392.084i −0.00337541 + 0.00337541i
\(29\) 95838.3 0.729703 0.364852 0.931066i \(-0.381120\pi\)
0.364852 + 0.931066i \(0.381120\pi\)
\(30\) 0 0
\(31\) 125580. 0.757104 0.378552 0.925580i \(-0.376422\pi\)
0.378552 + 0.925580i \(0.376422\pi\)
\(32\) −23170.5 + 23170.5i −0.125000 + 0.125000i
\(33\) −77102.7 109405.i −0.373483 0.529955i
\(34\) 98649.2i 0.430445i
\(35\) 0 0
\(36\) −131815. 47071.8i −0.470877 0.168152i
\(37\) 305427. + 305427.i 0.991292 + 0.991292i 0.999962 0.00867015i \(-0.00275983\pi\)
−0.00867015 + 0.999962i \(0.502760\pi\)
\(38\) −7970.05 7970.05i −0.0235623 0.0235623i
\(39\) 22756.4 131391.i 0.0614294 0.354682i
\(40\) 0 0
\(41\) 609628.i 1.38141i −0.723138 0.690703i \(-0.757301\pi\)
0.723138 0.690703i \(-0.242699\pi\)
\(42\) 2649.51 1867.23i 0.00551815 0.00388889i
\(43\) 317725. 317725.i 0.609412 0.609412i −0.333380 0.942792i \(-0.608189\pi\)
0.942792 + 0.333380i \(0.108189\pi\)
\(44\) 183170. 0.324169
\(45\) 0 0
\(46\) −593118. −0.898440
\(47\) 435458. 435458.i 0.611791 0.611791i −0.331621 0.943413i \(-0.607596\pi\)
0.943413 + 0.331621i \(0.107596\pi\)
\(48\) 156575. 110345.i 0.204351 0.144016i
\(49\) 823468.i 0.999909i
\(50\) 0 0
\(51\) 98412.0 568212.i 0.103885 0.599811i
\(52\) 129040. + 129040.i 0.127266 + 0.127266i
\(53\) 1.07335e6 + 1.07335e6i 0.990318 + 0.990318i 0.999954 0.00963560i \(-0.00306715\pi\)
−0.00963560 + 0.999954i \(0.503067\pi\)
\(54\) 712287. + 402628.i 0.615569 + 0.347957i
\(55\) 0 0
\(56\) 4435.92i 0.00337541i
\(57\) 37956.0 + 53857.7i 0.0271468 + 0.0385200i
\(58\) 542143. 542143.i 0.364852 0.364852i
\(59\) 3.09673e6 1.96300 0.981501 0.191455i \(-0.0613208\pi\)
0.981501 + 0.191455i \(0.0613208\pi\)
\(60\) 0 0
\(61\) 1.62355e6 0.915823 0.457912 0.888998i \(-0.348598\pi\)
0.457912 + 0.888998i \(0.348598\pi\)
\(62\) 710389. 710389.i 0.378552 0.378552i
\(63\) −17123.7 + 8111.96i −0.00862792 + 0.00408727i
\(64\) 262144.i 0.125000i
\(65\) 0 0
\(66\) −1.05505e6 182730.i −0.451719 0.0782359i
\(67\) −907865. 907865.i −0.368773 0.368773i 0.498256 0.867030i \(-0.333974\pi\)
−0.867030 + 0.498256i \(0.833974\pi\)
\(68\) 558044. + 558044.i 0.215222 + 0.215222i
\(69\) 3.41631e6 + 591692.i 1.25195 + 0.216832i
\(70\) 0 0
\(71\) 3.60524e6i 1.19545i −0.801703 0.597723i \(-0.796072\pi\)
0.801703 0.597723i \(-0.203928\pi\)
\(72\) −1.01194e6 + 479382.i −0.319514 + 0.151362i
\(73\) −2.84276e6 + 2.84276e6i −0.855284 + 0.855284i −0.990778 0.135494i \(-0.956738\pi\)
0.135494 + 0.990778i \(0.456738\pi\)
\(74\) 3.45551e6 0.991292
\(75\) 0 0
\(76\) −90170.8 −0.0235623
\(77\) 17533.7 17533.7i 0.00437680 0.00437680i
\(78\) −614529. 871988.i −0.146626 0.208055i
\(79\) 4.14998e6i 0.947002i −0.880793 0.473501i \(-0.842990\pi\)
0.880793 0.473501i \(-0.157010\pi\)
\(80\) 0 0
\(81\) −3.70106e6 3.02968e6i −0.773799 0.633431i
\(82\) −3.44858e6 3.44858e6i −0.690703 0.690703i
\(83\) −2.77023e6 2.77023e6i −0.531794 0.531794i 0.389312 0.921106i \(-0.372713\pi\)
−0.921106 + 0.389312i \(0.872713\pi\)
\(84\) 4425.26 25550.6i 0.000814631 0.00470352i
\(85\) 0 0
\(86\) 3.59464e6i 0.609412i
\(87\) −3.66354e6 + 2.58186e6i −0.596463 + 0.420355i
\(88\) 1.03617e6 1.03617e6i 0.162084 0.162084i
\(89\) 1.02628e7 1.54312 0.771559 0.636158i \(-0.219477\pi\)
0.771559 + 0.636158i \(0.219477\pi\)
\(90\) 0 0
\(91\) 24704.3 0.00343659
\(92\) −3.35518e6 + 3.35518e6i −0.449220 + 0.449220i
\(93\) −4.80047e6 + 3.38311e6i −0.618861 + 0.436139i
\(94\) 4.92664e6i 0.611791i
\(95\) 0 0
\(96\) 261514. 1.50993e6i 0.0301679 0.174184i
\(97\) 2.22241e6 + 2.22241e6i 0.247242 + 0.247242i 0.819838 0.572596i \(-0.194064\pi\)
−0.572596 + 0.819838i \(0.694064\pi\)
\(98\) −4.65824e6 4.65824e6i −0.499954 0.499954i
\(99\) 5.89470e6 + 2.10502e6i 0.610574 + 0.218038i
\(100\) 0 0
\(101\) 6.99729e6i 0.675780i −0.941186 0.337890i \(-0.890287\pi\)
0.941186 0.337890i \(-0.109713\pi\)
\(102\) −2.65759e6 3.77099e6i −0.247963 0.351848i
\(103\) −7.72957e6 + 7.72957e6i −0.696988 + 0.696988i −0.963760 0.266772i \(-0.914043\pi\)
0.266772 + 0.963760i \(0.414043\pi\)
\(104\) 1.45992e6 0.127266
\(105\) 0 0
\(106\) 1.21435e7 0.990318
\(107\) 3.51399e6 3.51399e6i 0.277304 0.277304i −0.554728 0.832032i \(-0.687178\pi\)
0.832032 + 0.554728i \(0.187178\pi\)
\(108\) 6.30691e6 1.75170e6i 0.481763 0.133806i
\(109\) 5.96074e6i 0.440867i 0.975402 + 0.220434i \(0.0707472\pi\)
−0.975402 + 0.220434i \(0.929253\pi\)
\(110\) 0 0
\(111\) −1.99035e7 3.44721e6i −1.38133 0.239242i
\(112\) 25093.4 + 25093.4i 0.00168770 + 0.00168770i
\(113\) −936497. 936497.i −0.0610565 0.0610565i 0.675919 0.736976i \(-0.263747\pi\)
−0.736976 + 0.675919i \(0.763747\pi\)
\(114\) 519377. + 89954.0i 0.0328334 + 0.00568661i
\(115\) 0 0
\(116\) 6.13365e6i 0.364852i
\(117\) 2.66975e6 + 5.63563e6i 0.154106 + 0.325306i
\(118\) 1.75177e7 1.75177e7i 0.981501 0.981501i
\(119\) 106836. 0.00581170
\(120\) 0 0
\(121\) 1.12959e7 0.579659
\(122\) 9.18419e6 9.18419e6i 0.457912 0.457912i
\(123\) 1.64232e7 + 2.33038e7i 0.795776 + 1.12917i
\(124\) 8.03714e6i 0.378552i
\(125\) 0 0
\(126\) −50978.2 + 142755.i −0.00227032 + 0.00635760i
\(127\) 1.66782e7 + 1.66782e7i 0.722497 + 0.722497i 0.969113 0.246616i \(-0.0793187\pi\)
−0.246616 + 0.969113i \(0.579319\pi\)
\(128\) 1.48291e6 + 1.48291e6i 0.0625000 + 0.0625000i
\(129\) −3.58600e6 + 2.07049e7i −0.147077 + 0.849197i
\(130\) 0 0
\(131\) 2.82268e7i 1.09701i 0.836146 + 0.548506i \(0.184803\pi\)
−0.836146 + 0.548506i \(0.815197\pi\)
\(132\) −7.00192e6 + 4.93457e6i −0.264977 + 0.186741i
\(133\) −8631.48 + 8631.48i −0.000318130 + 0.000318130i
\(134\) −1.02713e7 −0.368773
\(135\) 0 0
\(136\) 6.31355e6 0.215222
\(137\) 2.43514e7 2.43514e7i 0.809098 0.809098i −0.175399 0.984497i \(-0.556122\pi\)
0.984497 + 0.175399i \(0.0561216\pi\)
\(138\) 2.26727e7 1.59785e7i 0.734390 0.517557i
\(139\) 2.79446e7i 0.882563i −0.897369 0.441281i \(-0.854524\pi\)
0.897369 0.441281i \(-0.145476\pi\)
\(140\) 0 0
\(141\) −4.91479e6 + 2.83771e7i −0.147652 + 0.852512i
\(142\) −2.03943e7 2.03943e7i −0.597723 0.597723i
\(143\) −5.77057e6 5.77057e6i −0.165022 0.165022i
\(144\) −3.01259e6 + 8.43618e6i −0.0840760 + 0.235438i
\(145\) 0 0
\(146\) 3.21622e7i 0.855284i
\(147\) 2.21840e7 + 3.14781e7i 0.576010 + 0.817331i
\(148\) 1.95473e7 1.95473e7i 0.495646 0.495646i
\(149\) −4.77169e7 −1.18174 −0.590868 0.806768i \(-0.701215\pi\)
−0.590868 + 0.806768i \(0.701215\pi\)
\(150\) 0 0
\(151\) 1.50380e7 0.355443 0.177722 0.984081i \(-0.443127\pi\)
0.177722 + 0.984081i \(0.443127\pi\)
\(152\) −510083. + 510083.i −0.0117812 + 0.0117812i
\(153\) 1.15456e7 + 2.43718e7i 0.260613 + 0.550133i
\(154\) 198372.i 0.00437680i
\(155\) 0 0
\(156\) −8.40901e6 1.45641e6i −0.177341 0.0307147i
\(157\) 3.59845e7 + 3.59845e7i 0.742107 + 0.742107i 0.972983 0.230876i \(-0.0741591\pi\)
−0.230876 + 0.972983i \(0.574159\pi\)
\(158\) −2.34758e7 2.34758e7i −0.473501 0.473501i
\(159\) −6.99458e7 1.21143e7i −1.37998 0.239006i
\(160\) 0 0
\(161\) 642341.i 0.0121304i
\(162\) −3.80748e7 + 3.79788e6i −0.703615 + 0.0701842i
\(163\) −5.78634e7 + 5.78634e7i −1.04652 + 1.04652i −0.0476564 + 0.998864i \(0.515175\pi\)
−0.998864 + 0.0476564i \(0.984825\pi\)
\(164\) −3.90162e7 −0.690703
\(165\) 0 0
\(166\) −3.13416e7 −0.531794
\(167\) 2.91589e7 2.91589e7i 0.484465 0.484465i −0.422089 0.906554i \(-0.638703\pi\)
0.906554 + 0.422089i \(0.138703\pi\)
\(168\) −119503. 169569.i −0.00194444 0.00275908i
\(169\) 5.46180e7i 0.870427i
\(170\) 0 0
\(171\) −2.90183e6 1.03626e6i −0.0443798 0.0158482i
\(172\) −2.03344e7 2.03344e7i −0.304706 0.304706i
\(173\) −5.12770e7 5.12770e7i −0.752941 0.752941i 0.222086 0.975027i \(-0.428714\pi\)
−0.975027 + 0.222086i \(0.928714\pi\)
\(174\) −6.11890e6 + 3.53293e7i −0.0880544 + 0.508409i
\(175\) 0 0
\(176\) 1.17229e7i 0.162084i
\(177\) −1.18376e8 + 8.34251e7i −1.60457 + 1.13081i
\(178\) 5.80549e7 5.80549e7i 0.771559 0.771559i
\(179\) −1.27198e8 −1.65766 −0.828828 0.559503i \(-0.810992\pi\)
−0.828828 + 0.559503i \(0.810992\pi\)
\(180\) 0 0
\(181\) 1.10662e8 1.38715 0.693576 0.720383i \(-0.256034\pi\)
0.693576 + 0.720383i \(0.256034\pi\)
\(182\) 139749. 139749.i 0.00171829 0.00171829i
\(183\) −6.20623e7 + 4.37381e7i −0.748599 + 0.527571i
\(184\) 3.79596e7i 0.449220i
\(185\) 0 0
\(186\) −8.01781e6 + 4.62933e7i −0.0913609 + 0.527500i
\(187\) −2.49554e7 2.49554e7i −0.279073 0.279073i
\(188\) −2.78693e7 2.78693e7i −0.305896 0.305896i
\(189\) 436042. 771399.i 0.00469799 0.00831118i
\(190\) 0 0
\(191\) 8.53658e7i 0.886477i 0.896404 + 0.443238i \(0.146170\pi\)
−0.896404 + 0.443238i \(0.853830\pi\)
\(192\) −7.06210e6 1.00208e7i −0.0720078 0.102176i
\(193\) −8.56363e7 + 8.56363e7i −0.857447 + 0.857447i −0.991037 0.133590i \(-0.957349\pi\)
0.133590 + 0.991037i \(0.457349\pi\)
\(194\) 2.51436e7 0.247242
\(195\) 0 0
\(196\) −5.27019e7 −0.499954
\(197\) 9.18117e7 9.18117e7i 0.855591 0.855591i −0.135224 0.990815i \(-0.543176\pi\)
0.990815 + 0.135224i \(0.0431755\pi\)
\(198\) 4.52532e7 2.14376e7i 0.414306 0.196268i
\(199\) 6.40625e7i 0.576259i −0.957591 0.288130i \(-0.906967\pi\)
0.957591 0.288130i \(-0.0930334\pi\)
\(200\) 0 0
\(201\) 5.91620e7 + 1.02466e7i 0.513874 + 0.0890009i
\(202\) −3.95827e7 3.95827e7i −0.337890 0.337890i
\(203\) −587135. 587135.i −0.00492609 0.00492609i
\(204\) −3.63655e7 6.29837e6i −0.299906 0.0519424i
\(205\) 0 0
\(206\) 8.74501e7i 0.696988i
\(207\) −1.46533e8 + 6.94165e7i −1.14826 + 0.543960i
\(208\) 8.25854e6 8.25854e6i 0.0636329 0.0636329i
\(209\) 4.03238e6 0.0305527
\(210\) 0 0
\(211\) −1.27578e8 −0.934949 −0.467475 0.884007i \(-0.654836\pi\)
−0.467475 + 0.884007i \(0.654836\pi\)
\(212\) 6.86942e7 6.86942e7i 0.495159 0.495159i
\(213\) 9.71243e7 + 1.37815e8i 0.688651 + 0.977164i
\(214\) 3.97562e7i 0.277304i
\(215\) 0 0
\(216\) 2.57682e7 4.55864e7i 0.173979 0.307785i
\(217\) −769344. 769344.i −0.00511107 0.00511107i
\(218\) 3.37191e7 + 3.37191e7i 0.220434 + 0.220434i
\(219\) 3.20848e7 1.85251e8i 0.206417 1.19181i
\(220\) 0 0
\(221\) 3.51611e7i 0.219123i
\(222\) −1.32091e8 + 9.30908e7i −0.810288 + 0.571046i
\(223\) 2.45541e7 2.45541e7i 0.148271 0.148271i −0.629074 0.777345i \(-0.716566\pi\)
0.777345 + 0.629074i \(0.216566\pi\)
\(224\) 283899. 0.00168770
\(225\) 0 0
\(226\) −1.05953e7 −0.0610565
\(227\) 2.09701e8 2.09701e8i 1.18990 1.18990i 0.212805 0.977095i \(-0.431740\pi\)
0.977095 0.212805i \(-0.0682598\pi\)
\(228\) 3.44689e6 2.42918e6i 0.0192600 0.0135734i
\(229\) 2.78948e8i 1.53497i 0.641070 + 0.767483i \(0.278491\pi\)
−0.641070 + 0.767483i \(0.721509\pi\)
\(230\) 0 0
\(231\) −197895. + 1.14260e6i −0.00105631 + 0.00609893i
\(232\) −3.46972e7 3.46972e7i −0.182426 0.182426i
\(233\) 2.11914e7 + 2.11914e7i 0.109752 + 0.109752i 0.759850 0.650098i \(-0.225272\pi\)
−0.650098 + 0.759850i \(0.725272\pi\)
\(234\) 4.69823e7 + 1.67776e7i 0.239706 + 0.0856000i
\(235\) 0 0
\(236\) 1.98191e8i 0.981501i
\(237\) 1.11799e8 + 1.58638e8i 0.545532 + 0.774084i
\(238\) 604356. 604356.i 0.00290585 0.00290585i
\(239\) 2.40754e8 1.14073 0.570363 0.821393i \(-0.306803\pi\)
0.570363 + 0.821393i \(0.306803\pi\)
\(240\) 0 0
\(241\) −1.04259e8 −0.479792 −0.239896 0.970799i \(-0.577113\pi\)
−0.239896 + 0.970799i \(0.577113\pi\)
\(242\) 6.38993e7 6.38993e7i 0.289829 0.289829i
\(243\) 2.23097e8 + 1.61077e7i 0.997404 + 0.0720133i
\(244\) 1.03907e8i 0.457912i
\(245\) 0 0
\(246\) 2.24730e8 + 3.89224e7i 0.962473 + 0.166696i
\(247\) 2.84073e6 + 2.84073e6i 0.0119947 + 0.0119947i
\(248\) −4.54649e7 4.54649e7i −0.189276 0.189276i
\(249\) 1.80525e8 + 3.12663e7i 0.741038 + 0.128345i
\(250\) 0 0
\(251\) 1.88430e8i 0.752130i −0.926593 0.376065i \(-0.877277\pi\)
0.926593 0.376065i \(-0.122723\pi\)
\(252\) 519165. + 1.09592e6i 0.00204364 + 0.00431396i
\(253\) 1.50042e8 1.50042e8i 0.582492 0.582492i
\(254\) 1.88692e8 0.722497
\(255\) 0 0
\(256\) 1.67772e7 0.0625000
\(257\) 1.45638e8 1.45638e8i 0.535189 0.535189i −0.386923 0.922112i \(-0.626462\pi\)
0.922112 + 0.386923i \(0.126462\pi\)
\(258\) 9.68389e7 + 1.37410e8i 0.351060 + 0.498137i
\(259\) 3.74228e6i 0.0133841i
\(260\) 0 0
\(261\) 7.04888e7 1.97390e8i 0.245402 0.687200i
\(262\) 1.59675e8 + 1.59675e8i 0.548506 + 0.548506i
\(263\) −2.68726e8 2.68726e8i −0.910886 0.910886i 0.0854562 0.996342i \(-0.472765\pi\)
−0.996342 + 0.0854562i \(0.972765\pi\)
\(264\) −1.16947e7 + 6.75230e7i −0.0391179 + 0.225859i
\(265\) 0 0
\(266\) 97654.0i 0.000318130i
\(267\) −3.92307e8 + 2.76476e8i −1.26135 + 0.888932i
\(268\) −5.81034e7 + 5.81034e7i −0.184387 + 0.184387i
\(269\) 4.82898e8 1.51259 0.756297 0.654228i \(-0.227006\pi\)
0.756297 + 0.654228i \(0.227006\pi\)
\(270\) 0 0
\(271\) −3.56999e8 −1.08962 −0.544810 0.838560i \(-0.683398\pi\)
−0.544810 + 0.838560i \(0.683398\pi\)
\(272\) 3.57148e7 3.57148e7i 0.107611 0.107611i
\(273\) −944353. + 665528.i −0.00280909 + 0.00197969i
\(274\) 2.75504e8i 0.809098i
\(275\) 0 0
\(276\) 3.78683e7 2.18644e8i 0.108416 0.625973i
\(277\) 2.10083e8 + 2.10083e8i 0.593897 + 0.593897i 0.938682 0.344785i \(-0.112048\pi\)
−0.344785 + 0.938682i \(0.612048\pi\)
\(278\) −1.58078e8 1.58078e8i −0.441281 0.441281i
\(279\) 9.23639e7 2.58647e8i 0.254617 0.713005i
\(280\) 0 0
\(281\) 3.10671e8i 0.835272i −0.908614 0.417636i \(-0.862859\pi\)
0.908614 0.417636i \(-0.137141\pi\)
\(282\) 1.32723e8 + 1.88327e8i 0.352430 + 0.500082i
\(283\) 9.09536e7 9.09536e7i 0.238543 0.238543i −0.577703 0.816247i \(-0.696051\pi\)
0.816247 + 0.577703i \(0.196051\pi\)
\(284\) −2.30735e8 −0.597723
\(285\) 0 0
\(286\) −6.52865e7 −0.165022
\(287\) −3.73477e6 + 3.73477e6i −0.00932561 + 0.00932561i
\(288\) 3.06804e7 + 6.47641e7i 0.0756812 + 0.159757i
\(289\) 2.58281e8i 0.629435i
\(290\) 0 0
\(291\) −1.44825e8 2.50832e7i −0.344524 0.0596701i
\(292\) 1.81937e8 + 1.81937e8i 0.427642 + 0.427642i
\(293\) −4.86060e8 4.86060e8i −1.12889 1.12889i −0.990357 0.138536i \(-0.955760\pi\)
−0.138536 0.990357i \(-0.544240\pi\)
\(294\) 3.03559e8 + 5.25752e7i 0.696671 + 0.120661i
\(295\) 0 0
\(296\) 2.21153e8i 0.495646i
\(297\) −2.82041e8 + 7.83347e7i −0.624690 + 0.173503i
\(298\) −2.69928e8 + 2.69928e8i −0.590868 + 0.590868i
\(299\) 2.11402e8 0.457362
\(300\) 0 0
\(301\) −3.89296e6 −0.00822805
\(302\) 8.50677e7 8.50677e7i 0.177722 0.177722i
\(303\) 1.88505e8 + 2.67480e8i 0.389291 + 0.552386i
\(304\) 5.77093e6i 0.0117812i
\(305\) 0 0
\(306\) 2.03179e8 + 7.25562e7i 0.405373 + 0.144760i
\(307\) −3.34862e8 3.34862e8i −0.660514 0.660514i 0.294987 0.955501i \(-0.404685\pi\)
−0.955501 + 0.294987i \(0.904685\pi\)
\(308\) −1.12216e6 1.12216e6i −0.00218840 0.00218840i
\(309\) 8.72398e7 5.03706e8i 0.168213 0.971230i
\(310\) 0 0
\(311\) 2.15028e7i 0.0405353i 0.999795 + 0.0202676i \(0.00645183\pi\)
−0.999795 + 0.0202676i \(0.993548\pi\)
\(312\) −5.58072e7 + 3.93298e7i −0.104028 + 0.0733130i
\(313\) 2.82789e8 2.82789e8i 0.521263 0.521263i −0.396690 0.917953i \(-0.629841\pi\)
0.917953 + 0.396690i \(0.129841\pi\)
\(314\) 4.07118e8 0.742107
\(315\) 0 0
\(316\) −2.65598e8 −0.473501
\(317\) 1.32636e8 1.32636e8i 0.233860 0.233860i −0.580442 0.814302i \(-0.697120\pi\)
0.814302 + 0.580442i \(0.197120\pi\)
\(318\) −4.64202e8 + 3.27144e8i −0.809492 + 0.570485i
\(319\) 2.74293e8i 0.473094i
\(320\) 0 0
\(321\) −3.96606e7 + 2.28993e8i −0.0669255 + 0.386415i
\(322\) 3.63363e6 + 3.63363e6i 0.00606520 + 0.00606520i
\(323\) 1.22850e7 + 1.22850e7i 0.0202846 + 0.0202846i
\(324\) −1.93900e8 + 2.36868e8i −0.316715 + 0.386900i
\(325\) 0 0
\(326\) 6.54650e8i 1.04652i
\(327\) −1.60581e8 2.27857e8i −0.253967 0.360367i
\(328\) −2.20709e8 + 2.20709e8i −0.345352 + 0.345352i
\(329\) −5.33550e6 −0.00826017
\(330\) 0 0
\(331\) 9.99204e8 1.51445 0.757227 0.653152i \(-0.226554\pi\)
0.757227 + 0.653152i \(0.226554\pi\)
\(332\) −1.77295e8 + 1.77295e8i −0.265897 + 0.265897i
\(333\) 8.53703e8 4.04422e8i 1.26693 0.600177i
\(334\) 3.29895e8i 0.484465i
\(335\) 0 0
\(336\) −1.63524e6 283216.i −0.00235176 0.000407315i
\(337\) −5.14283e8 5.14283e8i −0.731977 0.731977i 0.239034 0.971011i \(-0.423169\pi\)
−0.971011 + 0.239034i \(0.923169\pi\)
\(338\) 3.08966e8 + 3.08966e8i 0.435214 + 0.435214i
\(339\) 6.10278e7 + 1.05698e7i 0.0850803 + 0.0147356i
\(340\) 0 0
\(341\) 3.59416e8i 0.490859i
\(342\) −2.22772e7 + 1.05533e7i −0.0301140 + 0.0142658i
\(343\) −1.00901e7 + 1.00901e7i −0.0135010 + 0.0135010i
\(344\) −2.30057e8 −0.304706
\(345\) 0 0
\(346\) −5.80133e8 −0.752941
\(347\) 2.23304e8 2.23304e8i 0.286908 0.286908i −0.548948 0.835856i \(-0.684972\pi\)
0.835856 + 0.548948i \(0.184972\pi\)
\(348\) 1.65239e8 + 2.34467e8i 0.210177 + 0.298232i
\(349\) 6.32133e6i 0.00796012i 0.999992 + 0.00398006i \(0.00126690\pi\)
−0.999992 + 0.00398006i \(0.998733\pi\)
\(350\) 0 0
\(351\) −2.53877e8 1.43507e8i −0.313364 0.177132i
\(352\) −6.63148e7 6.63148e7i −0.0810422 0.0810422i
\(353\) 4.03328e8 + 4.03328e8i 0.488030 + 0.488030i 0.907684 0.419654i \(-0.137849\pi\)
−0.419654 + 0.907684i \(0.637849\pi\)
\(354\) −1.97714e8 + 1.14156e9i −0.236879 + 1.36769i
\(355\) 0 0
\(356\) 6.56816e8i 0.771559i
\(357\) −4.08394e6 + 2.87814e6i −0.00475052 + 0.00334790i
\(358\) −7.19540e8 + 7.19540e8i −0.828828 + 0.828828i
\(359\) −1.25329e9 −1.42962 −0.714810 0.699319i \(-0.753487\pi\)
−0.714810 + 0.699319i \(0.753487\pi\)
\(360\) 0 0
\(361\) 8.91887e8 0.997779
\(362\) 6.26000e8 6.26000e8i 0.693576 0.693576i
\(363\) −4.31801e8 + 3.04309e8i −0.473816 + 0.333920i
\(364\) 1.58107e6i 0.00171829i
\(365\) 0 0
\(366\) −1.03657e8 + 5.98498e8i −0.110514 + 0.638085i
\(367\) −8.33720e8 8.33720e8i −0.880419 0.880419i 0.113158 0.993577i \(-0.463903\pi\)
−0.993577 + 0.113158i \(0.963903\pi\)
\(368\) 2.14732e8 + 2.14732e8i 0.224610 + 0.224610i
\(369\) −1.25560e9 4.48379e8i −1.30094 0.464572i
\(370\) 0 0
\(371\) 1.31513e7i 0.0133709i
\(372\) 2.16519e8 + 3.07230e8i 0.218070 + 0.309431i
\(373\) 7.65695e8 7.65695e8i 0.763968 0.763968i −0.213069 0.977037i \(-0.568346\pi\)
0.977037 + 0.213069i \(0.0683460\pi\)
\(374\) −2.82338e8 −0.279073
\(375\) 0 0
\(376\) −3.15305e8 −0.305896
\(377\) −1.93233e8 + 1.93233e8i −0.185732 + 0.185732i
\(378\) −1.89707e6 6.83032e6i −0.00180660 0.00650459i
\(379\) 4.88370e8i 0.460799i 0.973096 + 0.230400i \(0.0740033\pi\)
−0.973096 + 0.230400i \(0.925997\pi\)
\(380\) 0 0
\(381\) −1.08685e9 1.88238e8i −1.00678 0.174370i
\(382\) 4.82902e8 + 4.82902e8i 0.443238 + 0.443238i
\(383\) 4.76741e8 + 4.76741e8i 0.433597 + 0.433597i 0.889850 0.456253i \(-0.150809\pi\)
−0.456253 + 0.889850i \(0.650809\pi\)
\(384\) −9.66354e7 1.67369e7i −0.0870918 0.0150839i
\(385\) 0 0
\(386\) 9.68864e8i 0.857447i
\(387\) −4.20705e8 8.88076e8i −0.368968 0.778864i
\(388\) 1.42234e8 1.42234e8i 0.123621 0.123621i
\(389\) −1.98819e9 −1.71251 −0.856257 0.516550i \(-0.827216\pi\)
−0.856257 + 0.516550i \(0.827216\pi\)
\(390\) 0 0
\(391\) 9.14229e8 0.773457
\(392\) −2.98127e8 + 2.98127e8i −0.249977 + 0.249977i
\(393\) −7.60423e8 1.07900e9i −0.631948 0.896704i
\(394\) 1.03873e9i 0.855591i
\(395\) 0 0
\(396\) 1.34721e8 3.77261e8i 0.109019 0.305287i
\(397\) 9.69093e8 + 9.69093e8i 0.777318 + 0.777318i 0.979374 0.202056i \(-0.0647623\pi\)
−0.202056 + 0.979374i \(0.564762\pi\)
\(398\) −3.62392e8 3.62392e8i −0.288130 0.288130i
\(399\) 97419.2 562479.i 7.67784e−5 0.000443304i
\(400\) 0 0
\(401\) 1.62528e9i 1.25871i 0.777120 + 0.629353i \(0.216680\pi\)
−0.777120 + 0.629353i \(0.783320\pi\)
\(402\) 3.92635e8 2.76707e8i 0.301438 0.212437i
\(403\) −2.53201e8 + 2.53201e8i −0.192707 + 0.192707i
\(404\) −4.47827e8 −0.337890
\(405\) 0 0
\(406\) −6.64268e6 −0.00492609
\(407\) −8.74144e8 + 8.74144e8i −0.642692 + 0.642692i
\(408\) −2.41344e8 + 1.70086e8i −0.175924 + 0.123982i
\(409\) 5.83288e8i 0.421553i −0.977534 0.210776i \(-0.932401\pi\)
0.977534 0.210776i \(-0.0675992\pi\)
\(410\) 0 0
\(411\) −2.74842e8 + 1.58688e9i −0.195270 + 1.12745i
\(412\) 4.94692e8 + 4.94692e8i 0.348494 + 0.348494i
\(413\) −1.89715e7 1.89715e7i −0.0132519 0.0132519i
\(414\) −4.36237e8 + 1.22160e9i −0.302149 + 0.846109i
\(415\) 0 0
\(416\) 9.34347e7i 0.0636329i
\(417\) 7.52821e8 + 1.06822e9i 0.508411 + 0.721412i
\(418\) 2.28106e7 2.28106e7i 0.0152763 0.0152763i
\(419\) −2.63830e8 −0.175217 −0.0876083 0.996155i \(-0.527922\pi\)
−0.0876083 + 0.996155i \(0.527922\pi\)
\(420\) 0 0
\(421\) 2.33804e8 0.152709 0.0763545 0.997081i \(-0.475672\pi\)
0.0763545 + 0.997081i \(0.475672\pi\)
\(422\) −7.21691e8 + 7.21691e8i −0.467475 + 0.467475i
\(423\) −5.76597e8 1.21715e9i −0.370409 0.781905i
\(424\) 7.77186e8i 0.495159i
\(425\) 0 0
\(426\) 1.32902e9 + 2.30180e8i 0.832907 + 0.144256i
\(427\) −9.94638e6 9.94638e6i −0.00618255 0.00618255i
\(428\) −2.24895e8 2.24895e8i −0.138652 0.138652i
\(429\) 3.76045e8 + 6.51295e7i 0.229953 + 0.0398270i
\(430\) 0 0
\(431\) 2.44883e8i 0.147329i 0.997283 + 0.0736645i \(0.0234694\pi\)
−0.997283 + 0.0736645i \(0.976531\pi\)
\(432\) −1.12109e8 4.03643e8i −0.0669030 0.240882i
\(433\) 7.71156e8 7.71156e8i 0.456493 0.456493i −0.441009 0.897503i \(-0.645379\pi\)
0.897503 + 0.441009i \(0.145379\pi\)
\(434\) −8.70413e6 −0.00511107
\(435\) 0 0
\(436\) 3.81488e8 0.220434
\(437\) −7.38622e7 + 7.38622e7i −0.0423387 + 0.0423387i
\(438\) −8.66442e8 1.22944e9i −0.492697 0.699114i
\(439\) 3.41238e9i 1.92501i 0.271272 + 0.962503i \(0.412556\pi\)
−0.271272 + 0.962503i \(0.587444\pi\)
\(440\) 0 0
\(441\) −1.69603e9 6.05658e8i −0.941668 0.336273i
\(442\) −1.98901e8 1.98901e8i −0.109562 0.109562i
\(443\) −4.85626e8 4.85626e8i −0.265393 0.265393i 0.561848 0.827241i \(-0.310091\pi\)
−0.827241 + 0.561848i \(0.810091\pi\)
\(444\) −2.20621e8 + 1.27382e9i −0.119621 + 0.690667i
\(445\) 0 0
\(446\) 2.77798e8i 0.148271i
\(447\) 1.82404e9 1.28548e9i 0.965958 0.680754i
\(448\) 1.60598e6 1.60598e6i 0.000843851 0.000843851i
\(449\) 5.78436e8 0.301573 0.150787 0.988566i \(-0.451819\pi\)
0.150787 + 0.988566i \(0.451819\pi\)
\(450\) 0 0
\(451\) 1.74478e9 0.895617
\(452\) −5.99358e7 + 5.99358e7i −0.0305282 + 0.0305282i
\(453\) −5.74846e8 + 4.05120e8i −0.290541 + 0.204757i
\(454\) 2.37250e9i 1.18990i
\(455\) 0 0
\(456\) 5.75705e6 3.32401e7i 0.00284330 0.0164167i
\(457\) 2.70022e9 + 2.70022e9i 1.32340 + 1.32340i 0.911002 + 0.412402i \(0.135310\pi\)
0.412402 + 0.911002i \(0.364690\pi\)
\(458\) 1.57797e9 + 1.57797e9i 0.767483 + 0.767483i
\(459\) −1.09792e9 6.20609e8i −0.529937 0.299553i
\(460\) 0 0
\(461\) 8.51165e7i 0.0404632i 0.999795 + 0.0202316i \(0.00644036\pi\)
−0.999795 + 0.0202316i \(0.993560\pi\)
\(462\) 5.34409e6 + 7.58301e6i 0.00252131 + 0.00357762i
\(463\) −1.02911e9 + 1.02911e9i −0.481868 + 0.481868i −0.905728 0.423860i \(-0.860675\pi\)
0.423860 + 0.905728i \(0.360675\pi\)
\(464\) −3.92554e8 −0.182426
\(465\) 0 0
\(466\) 2.39753e8 0.109752
\(467\) −2.36415e9 + 2.36415e9i −1.07415 + 1.07415i −0.0771326 + 0.997021i \(0.524576\pi\)
−0.997021 + 0.0771326i \(0.975424\pi\)
\(468\) 3.60680e8 1.70864e8i 0.162653 0.0770530i
\(469\) 1.11237e7i 0.00497904i
\(470\) 0 0
\(471\) −2.34497e9 4.06139e8i −1.03410 0.179103i
\(472\) −1.12113e9 1.12113e9i −0.490751 0.490751i
\(473\) 9.09340e8 + 9.09340e8i 0.395105 + 0.395105i
\(474\) 1.52983e9 + 2.64960e8i 0.659808 + 0.114276i
\(475\) 0 0
\(476\) 6.83751e6i 0.00290585i
\(477\) 3.00013e9 1.42124e9i 1.26568 0.599588i
\(478\) 1.36191e9 1.36191e9i 0.570363 0.570363i
\(479\) 3.12651e9 1.29983 0.649914 0.760008i \(-0.274805\pi\)
0.649914 + 0.760008i \(0.274805\pi\)
\(480\) 0 0
\(481\) −1.23163e9 −0.504630
\(482\) −5.89776e8 + 5.89776e8i −0.239896 + 0.239896i
\(483\) −1.73045e7 2.45543e7i −0.00698786 0.00991545i
\(484\) 7.22938e8i 0.289829i
\(485\) 0 0
\(486\) 1.35314e9 1.17091e9i 0.534708 0.462695i
\(487\) −2.97686e9 2.97686e9i −1.16790 1.16790i −0.982700 0.185204i \(-0.940706\pi\)
−0.185204 0.982700i \(-0.559294\pi\)
\(488\) −5.87788e8 5.87788e8i −0.228956 0.228956i
\(489\) 6.53076e8 3.77073e9i 0.252570 1.45829i
\(490\) 0 0
\(491\) 1.72819e9i 0.658880i −0.944177 0.329440i \(-0.893140\pi\)
0.944177 0.329440i \(-0.106860\pi\)
\(492\) 1.49144e9 1.05109e9i 0.564585 0.397888i
\(493\) −8.35657e8 + 8.35657e8i −0.314097 + 0.314097i
\(494\) 3.21391e7 0.0119947
\(495\) 0 0
\(496\) −5.14377e8 −0.189276
\(497\) −2.20868e7 + 2.20868e7i −0.00807022 + 0.00807022i
\(498\) 1.19807e9 8.44336e8i 0.434691 0.306346i
\(499\) 7.15257e8i 0.257698i 0.991664 + 0.128849i \(0.0411282\pi\)
−0.991664 + 0.128849i \(0.958872\pi\)
\(500\) 0 0
\(501\) −3.29101e8 + 1.90017e9i −0.116922 + 0.675087i
\(502\) −1.06592e9 1.06592e9i −0.376065 0.376065i
\(503\) 3.37593e9 + 3.37593e9i 1.18279 + 1.18279i 0.979020 + 0.203765i \(0.0653180\pi\)
0.203765 + 0.979020i \(0.434682\pi\)
\(504\) 9.13629e6 + 3.26261e6i 0.00317880 + 0.00113516i
\(505\) 0 0
\(506\) 1.69753e9i 0.582492i
\(507\) −1.47140e9 2.08784e9i −0.501421 0.711492i
\(508\) 1.06740e9 1.06740e9i 0.361248 0.361248i
\(509\) 1.54439e9 0.519094 0.259547 0.965730i \(-0.416427\pi\)
0.259547 + 0.965730i \(0.416427\pi\)
\(510\) 0 0
\(511\) 3.48313e7 0.0115477
\(512\) 9.49063e7 9.49063e7i 0.0312500 0.0312500i
\(513\) 1.38843e8 3.85625e7i 0.0454059 0.0126111i
\(514\) 1.64770e9i 0.535189i
\(515\) 0 0
\(516\) 1.32511e9 + 2.29504e8i 0.424598 + 0.0735387i
\(517\) 1.24630e9 + 1.24630e9i 0.396647 + 0.396647i
\(518\) −2.11696e7 2.11696e7i −0.00669203 0.00669203i
\(519\) 3.34152e9 + 5.78738e8i 1.04920 + 0.181717i
\(520\) 0 0
\(521\) 4.27492e9i 1.32433i −0.749358 0.662165i \(-0.769638\pi\)
0.749358 0.662165i \(-0.230362\pi\)
\(522\) −7.17862e8 1.51535e9i −0.220899 0.466301i
\(523\) −3.59310e9 + 3.59310e9i −1.09828 + 1.09828i −0.103670 + 0.994612i \(0.533059\pi\)
−0.994612 + 0.103670i \(0.966941\pi\)
\(524\) 1.80651e9 0.548506
\(525\) 0 0
\(526\) −3.04028e9 −0.910886
\(527\) −1.09499e9 + 1.09499e9i −0.325891 + 0.325891i
\(528\) 3.15813e8 + 4.48123e8i 0.0933707 + 0.132489i
\(529\) 2.09188e9i 0.614387i
\(530\) 0 0
\(531\) 2.27763e9 6.37806e9i 0.660166 1.84866i
\(532\) 552414. + 552414.i 0.000159065 + 0.000159065i
\(533\) 1.22916e9 + 1.22916e9i 0.351611 + 0.351611i
\(534\) −6.55237e8 + 3.78321e9i −0.186210 + 1.07514i
\(535\) 0 0
\(536\) 6.57365e8i 0.184387i
\(537\) 4.86230e9 3.42668e9i 1.35498 0.954914i
\(538\) 2.73168e9 2.73168e9i 0.756297 0.756297i
\(539\) 2.35680e9 0.648278
\(540\) 0 0
\(541\) −1.34240e9 −0.364495 −0.182247 0.983253i \(-0.558337\pi\)
−0.182247 + 0.983253i \(0.558337\pi\)
\(542\) −2.01949e9 + 2.01949e9i −0.544810 + 0.544810i
\(543\) −4.23020e9 + 2.98122e9i −1.13387 + 0.799087i
\(544\) 4.04067e8i 0.107611i
\(545\) 0 0
\(546\) −1.57727e6 + 9.10686e6i −0.000414698 + 0.00239439i
\(547\) −2.35698e9 2.35698e9i −0.615745 0.615745i 0.328692 0.944437i \(-0.393392\pi\)
−0.944437 + 0.328692i \(0.893392\pi\)
\(548\) −1.55849e9 1.55849e9i −0.404549 0.404549i
\(549\) 1.19412e9 3.34389e9i 0.307995 0.862480i
\(550\) 0 0
\(551\) 1.35028e8i 0.0343870i
\(552\) −1.02262e9 1.45105e9i −0.258779 0.367195i
\(553\) −2.54240e7 + 2.54240e7i −0.00639303 + 0.00639303i
\(554\) 2.37681e9 0.593897
\(555\) 0 0
\(556\) −1.78845e9 −0.441281
\(557\) −5.24979e9 + 5.24979e9i −1.28721 + 1.28721i −0.350732 + 0.936476i \(0.614067\pi\)
−0.936476 + 0.350732i \(0.885933\pi\)
\(558\) −9.40639e8 1.98562e9i −0.229194 0.483811i
\(559\) 1.28122e9i 0.310229i
\(560\) 0 0
\(561\) 1.62624e9 + 2.81659e8i 0.388880 + 0.0673525i
\(562\) −1.75742e9 1.75742e9i −0.417636 0.417636i
\(563\) −3.18694e8 3.18694e8i −0.0752654 0.0752654i 0.668472 0.743737i \(-0.266949\pi\)
−0.743737 + 0.668472i \(0.766949\pi\)
\(564\) 1.81613e9 + 3.14547e8i 0.426256 + 0.0738258i
\(565\) 0 0
\(566\) 1.02902e9i 0.238543i
\(567\) 4.11307e6 + 4.12346e7i 0.000947600 + 0.00949994i
\(568\) −1.30524e9 + 1.30524e9i −0.298861 + 0.298861i
\(569\) 2.87684e9 0.654671 0.327336 0.944908i \(-0.393849\pi\)
0.327336 + 0.944908i \(0.393849\pi\)
\(570\) 0 0
\(571\) 3.80780e9 0.855948 0.427974 0.903791i \(-0.359227\pi\)
0.427974 + 0.903791i \(0.359227\pi\)
\(572\) −3.69316e8 + 3.69316e8i −0.0825111 + 0.0825111i
\(573\) −2.29974e9 3.26322e9i −0.510666 0.724611i
\(574\) 4.22541e7i 0.00932561i
\(575\) 0 0
\(576\) 5.39916e8 + 1.92806e8i 0.117719 + 0.0420380i
\(577\) 6.47107e9 + 6.47107e9i 1.40236 + 1.40236i 0.792525 + 0.609839i \(0.208766\pi\)
0.609839 + 0.792525i \(0.291234\pi\)
\(578\) 1.46106e9 + 1.46106e9i 0.314717 + 0.314717i
\(579\) 9.66534e8 5.58058e9i 0.206939 1.19482i
\(580\) 0 0
\(581\) 3.39426e7i 0.00718008i
\(582\) −9.61148e8 + 6.77364e8i −0.202097 + 0.142427i
\(583\) −3.07196e9 + 3.07196e9i −0.642060 + 0.642060i
\(584\) 2.05838e9 0.427642
\(585\) 0 0
\(586\) −5.49914e9 −1.12889
\(587\) 1.02779e9 1.02779e9i 0.209734 0.209734i −0.594420 0.804155i \(-0.702618\pi\)
0.804155 + 0.594420i \(0.202618\pi\)
\(588\) 2.01460e9 1.41978e9i 0.408666 0.288005i
\(589\) 1.76932e8i 0.0356783i
\(590\) 0 0
\(591\) −1.03623e9 + 5.98300e9i −0.206491 + 1.19224i
\(592\) −1.25103e9 1.25103e9i −0.247823 0.247823i
\(593\) −3.31531e9 3.31531e9i −0.652880 0.652880i 0.300806 0.953685i \(-0.402744\pi\)
−0.953685 + 0.300806i \(0.902744\pi\)
\(594\) −1.15234e9 + 2.03859e9i −0.225594 + 0.399097i
\(595\) 0 0
\(596\) 3.05388e9i 0.590868i
\(597\) 1.72583e9 + 2.44887e9i 0.331961 + 0.471038i
\(598\) 1.19587e9 1.19587e9i 0.228681 0.228681i
\(599\) −4.59959e8 −0.0874430 −0.0437215 0.999044i \(-0.513921\pi\)
−0.0437215 + 0.999044i \(0.513921\pi\)
\(600\) 0 0
\(601\) 2.14425e9 0.402917 0.201458 0.979497i \(-0.435432\pi\)
0.201458 + 0.979497i \(0.435432\pi\)
\(602\) −2.20219e7 + 2.20219e7i −0.00411403 + 0.00411403i
\(603\) −2.53759e9 + 1.20212e9i −0.471314 + 0.223274i
\(604\) 9.62431e8i 0.177722i
\(605\) 0 0
\(606\) 2.57945e9 + 4.46750e8i 0.470839 + 0.0815474i
\(607\) −1.08733e8 1.08733e8i −0.0197333 0.0197333i 0.697171 0.716905i \(-0.254442\pi\)
−0.716905 + 0.697171i \(0.754442\pi\)
\(608\) 3.26453e7 + 3.26453e7i 0.00589059 + 0.00589059i
\(609\) 3.82613e7 + 6.62670e6i 0.00686434 + 0.00118888i
\(610\) 0 0
\(611\) 1.75598e9i 0.311440i
\(612\) 1.55980e9 7.38916e8i 0.275067 0.130306i
\(613\) 3.55732e9 3.55732e9i 0.623751 0.623751i −0.322738 0.946488i \(-0.604603\pi\)
0.946488 + 0.322738i \(0.104603\pi\)
\(614\) −3.78853e9 −0.660514
\(615\) 0 0
\(616\) −1.26958e7 −0.00218840
\(617\) 8.21616e8 8.21616e8i 0.140822 0.140822i −0.633181 0.774003i \(-0.718251\pi\)
0.774003 + 0.633181i \(0.218251\pi\)
\(618\) −2.35589e9 3.34289e9i −0.401508 0.569722i
\(619\) 7.57610e8i 0.128389i 0.997937 + 0.0641946i \(0.0204478\pi\)
−0.997937 + 0.0641946i \(0.979552\pi\)
\(620\) 0 0
\(621\) 3.73135e9 6.60110e9i 0.625237 1.10610i
\(622\) 1.21638e8 + 1.21638e8i 0.0202676 + 0.0202676i
\(623\) −6.28728e7 6.28728e7i −0.0104173 0.0104173i
\(624\) −9.32100e7 + 5.38176e8i −0.0153574 + 0.0886704i
\(625\) 0 0
\(626\) 3.19939e9i 0.521263i
\(627\) −1.54143e8 + 1.08631e8i −0.0249739 + 0.0176003i
\(628\) 2.30301e9 2.30301e9i 0.371054 0.371054i
\(629\) −5.32631e9 −0.853393
\(630\) 0 0
\(631\) −8.92366e9 −1.41397 −0.706985 0.707228i \(-0.749945\pi\)
−0.706985 + 0.707228i \(0.749945\pi\)
\(632\) −1.50245e9 + 1.50245e9i −0.236750 + 0.236750i
\(633\) 4.87684e9 3.43693e9i 0.764233 0.538589i
\(634\) 1.50061e9i 0.233860i
\(635\) 0 0
\(636\) −7.75317e8 + 4.47653e9i −0.119503 + 0.689988i
\(637\) 1.66031e9 + 1.66031e9i 0.254508 + 0.254508i
\(638\) 1.55164e9 + 1.55164e9i 0.236547 + 0.236547i
\(639\) −7.42540e9 2.65164e9i −1.12581 0.402033i
\(640\) 0 0
\(641\) 2.03499e8i 0.0305182i 0.999884 + 0.0152591i \(0.00485731\pi\)
−0.999884 + 0.0152591i \(0.995143\pi\)
\(642\) 1.07102e9 + 1.51973e9i 0.159745 + 0.226670i
\(643\) −3.94941e9 + 3.94941e9i −0.585859 + 0.585859i −0.936507 0.350648i \(-0.885961\pi\)
0.350648 + 0.936507i \(0.385961\pi\)
\(644\) 4.11098e7 0.00606520
\(645\) 0 0
\(646\) 1.38989e8 0.0202846
\(647\) −7.82378e7 + 7.82378e7i −0.0113567 + 0.0113567i −0.712762 0.701406i \(-0.752556\pi\)
0.701406 + 0.712762i \(0.252556\pi\)
\(648\) 2.43065e8 + 2.43679e9i 0.0350921 + 0.351808i
\(649\) 8.86295e9i 1.27269i
\(650\) 0 0
\(651\) 5.01351e7 + 8.68320e6i 0.00712211 + 0.00123352i
\(652\) 3.70326e9 + 3.70326e9i 0.523260 + 0.523260i
\(653\) 6.05012e9 + 6.05012e9i 0.850292 + 0.850292i 0.990169 0.139877i \(-0.0446707\pi\)
−0.139877 + 0.990169i \(0.544671\pi\)
\(654\) −2.19734e9 3.80570e8i −0.307167 0.0532001i
\(655\) 0 0
\(656\) 2.49704e9i 0.345352i
\(657\) 3.76415e9 + 7.94583e9i 0.517831 + 1.09310i
\(658\) −3.01821e7 + 3.01821e7i −0.00413009 + 0.00413009i
\(659\) −1.01449e10 −1.38085 −0.690427 0.723402i \(-0.742577\pi\)
−0.690427 + 0.723402i \(0.742577\pi\)
\(660\) 0 0
\(661\) 1.59862e9 0.215298 0.107649 0.994189i \(-0.465668\pi\)
0.107649 + 0.994189i \(0.465668\pi\)
\(662\) 5.65235e9 5.65235e9i 0.757227 0.757227i
\(663\) 9.47231e8 + 1.34408e9i 0.126229 + 0.179113i
\(664\) 2.00586e9i 0.265897i
\(665\) 0 0
\(666\) 2.54152e9 7.11703e9i 0.333376 0.933553i
\(667\) −5.02430e9 5.02430e9i −0.655594 0.655594i
\(668\) −1.86617e9 1.86617e9i −0.242233 0.242233i
\(669\) −2.77130e8 + 1.60010e9i −0.0357843 + 0.206612i
\(670\) 0 0
\(671\) 4.64667e9i 0.593762i
\(672\) −1.08524e7 + 7.64818e6i −0.00137954 + 0.000972222i
\(673\) 7.66102e9 7.66102e9i 0.968799 0.968799i −0.0307286 0.999528i \(-0.509783\pi\)
0.999528 + 0.0307286i \(0.00978276\pi\)
\(674\) −5.81845e9 −0.731977
\(675\) 0 0
\(676\) 3.49555e9 0.435214
\(677\) 9.34134e9 9.34134e9i 1.15704 1.15704i 0.171932 0.985109i \(-0.444999\pi\)
0.985109 0.171932i \(-0.0550009\pi\)
\(678\) 4.05017e8 2.85434e8i 0.0499079 0.0351724i
\(679\) 2.72303e7i 0.00333817i
\(680\) 0 0
\(681\) −2.36679e9 + 1.36654e10i −0.287174 + 1.65809i
\(682\) 2.03316e9 + 2.03316e9i 0.245429 + 0.245429i
\(683\) 6.10846e9 + 6.10846e9i 0.733600 + 0.733600i 0.971331 0.237731i \(-0.0764038\pi\)
−0.237731 + 0.971331i \(0.576404\pi\)
\(684\) −6.63203e7 + 1.85717e8i −0.00792411 + 0.0221899i
\(685\) 0 0
\(686\) 1.14156e8i 0.0135010i
\(687\) −7.51479e9 1.06631e10i −0.884236 1.25469i
\(688\) −1.30140e9 + 1.30140e9i −0.152353 + 0.152353i
\(689\) −4.32826e9 −0.504134
\(690\) 0 0
\(691\) 7.53547e9 0.868835 0.434417 0.900712i \(-0.356954\pi\)
0.434417 + 0.900712i \(0.356954\pi\)
\(692\) −3.28173e9 + 3.28173e9i −0.376471 + 0.376471i
\(693\) −2.32167e7 4.90088e7i −0.00264993 0.00559381i
\(694\) 2.52639e9i 0.286908i
\(695\) 0 0
\(696\) 2.26108e9 + 3.91610e8i 0.254204 + 0.0440272i
\(697\) 5.31562e9 + 5.31562e9i 0.594619 + 0.594619i
\(698\) 3.57588e7 + 3.57588e7i 0.00398006 + 0.00398006i
\(699\) −1.38096e9 2.39176e8i −0.152936 0.0264879i
\(700\) 0 0
\(701\) 7.80912e9i 0.856228i 0.903725 + 0.428114i \(0.140822\pi\)
−0.903725 + 0.428114i \(0.859178\pi\)
\(702\) −2.24794e9 + 6.24349e8i −0.245248 + 0.0681157i
\(703\) 4.30322e8 4.30322e8i 0.0467143 0.0467143i
\(704\) −7.50266e8 −0.0810422
\(705\) 0 0
\(706\) 4.56314e9 0.488030
\(707\) −4.28676e7 + 4.28676e7i −0.00456206 + 0.00456206i
\(708\) 5.33921e9 + 7.57609e9i 0.565406 + 0.802285i
\(709\) 1.35196e10i 1.42463i 0.701859 + 0.712316i \(0.252353\pi\)
−0.701859 + 0.712316i \(0.747647\pi\)
\(710\) 0 0
\(711\) −8.54735e9 3.05229e9i −0.891842 0.318480i
\(712\) −3.71551e9 3.71551e9i −0.385779 0.385779i
\(713\) −6.58351e9 6.58351e9i −0.680212 0.680212i
\(714\) −6.82106e6 + 3.93835e7i −0.000701307 + 0.00404921i
\(715\) 0 0
\(716\) 8.14067e9i 0.828828i
\(717\) −9.20314e9 + 6.48586e9i −0.932435 + 0.657129i
\(718\) −7.08967e9 + 7.08967e9i −0.714810 + 0.714810i
\(719\) −1.42659e9 −0.143136 −0.0715679 0.997436i \(-0.522800\pi\)
−0.0715679 + 0.997436i \(0.522800\pi\)
\(720\) 0 0
\(721\) 9.47075e7 0.00941046
\(722\) 5.04527e9 5.04527e9i 0.498890 0.498890i
\(723\) 3.98542e9 2.80871e9i 0.392184 0.276390i
\(724\) 7.08238e9i 0.693576i
\(725\) 0 0
\(726\) −7.21200e8 + 4.16407e9i −0.0699483 + 0.403868i
\(727\) −9.45672e9 9.45672e9i −0.912789 0.912789i 0.0837022 0.996491i \(-0.473326\pi\)
−0.996491 + 0.0837022i \(0.973326\pi\)
\(728\) −8.94391e6 8.94391e6i −0.000859147 0.000859147i
\(729\) −8.96209e9 + 5.39443e9i −0.856768 + 0.515703i
\(730\) 0 0
\(731\) 5.54076e9i 0.524637i
\(732\) 2.79924e9 + 3.97199e9i 0.263786 + 0.374299i
\(733\) 3.48961e9 3.48961e9i 0.327275 0.327275i −0.524274 0.851549i \(-0.675663\pi\)
0.851549 + 0.524274i \(0.175663\pi\)
\(734\) −9.43247e9 −0.880419
\(735\) 0 0
\(736\) 2.42941e9 0.224610
\(737\) 2.59835e9 2.59835e9i 0.239090 0.239090i
\(738\) −9.63916e9 + 4.56632e9i −0.882758 + 0.418186i
\(739\) 2.10615e10i 1.91970i −0.280512 0.959850i \(-0.590504\pi\)
0.280512 0.959850i \(-0.409496\pi\)
\(740\) 0 0
\(741\) −1.85119e8 3.20619e7i −0.0167143 0.00289484i
\(742\) −7.43951e7 7.43951e7i −0.00668545 0.00668545i
\(743\) −1.14614e10 1.14614e10i −1.02512 1.02512i −0.999676 0.0254470i \(-0.991899\pi\)
−0.0254470 0.999676i \(-0.508101\pi\)
\(744\) 2.96277e9 + 5.13140e8i 0.263750 + 0.0456805i
\(745\) 0 0
\(746\) 8.66285e9i 0.763968i
\(747\) −7.74311e9 + 3.66812e9i −0.679663 + 0.321974i
\(748\) −1.59714e9 + 1.59714e9i −0.139537 + 0.139537i
\(749\) −4.30555e7 −0.00374406
\(750\) 0 0
\(751\) −1.54716e10 −1.33289 −0.666447 0.745553i \(-0.732186\pi\)
−0.666447 + 0.745553i \(0.732186\pi\)
\(752\) −1.78363e9 + 1.78363e9i −0.152948 + 0.152948i
\(753\) 5.07627e9 + 7.20299e9i 0.433274 + 0.614795i
\(754\) 2.18619e9i 0.185732i
\(755\) 0 0
\(756\) −4.93696e7 2.79067e7i −0.00415559 0.00234899i
\(757\) 1.08146e9 + 1.08146e9i 0.0906096 + 0.0906096i 0.750959 0.660349i \(-0.229592\pi\)
−0.660349 + 0.750959i \(0.729592\pi\)
\(758\) 2.76264e9 + 2.76264e9i 0.230400 + 0.230400i
\(759\) −1.69345e9 + 9.77762e9i −0.140580 + 0.811684i
\(760\) 0 0
\(761\) 2.19606e9i 0.180633i −0.995913 0.0903166i \(-0.971212\pi\)
0.995913 0.0903166i \(-0.0287879\pi\)
\(762\) −7.21300e9 + 5.08333e9i −0.590573 + 0.416203i
\(763\) 3.65174e7 3.65174e7i 0.00297621 0.00297621i
\(764\) 5.46341e9 0.443238
\(765\) 0 0
\(766\) 5.39370e9 0.433597
\(767\) −6.24376e9 + 6.24376e9i −0.499646 + 0.499646i
\(768\) −6.41331e8 + 4.51974e8i −0.0510879 + 0.0360039i
\(769\) 8.38646e9i 0.665023i −0.943099 0.332511i \(-0.892104\pi\)
0.943099 0.332511i \(-0.107896\pi\)
\(770\) 0 0
\(771\) −1.64374e9 + 9.49062e9i −0.129164 + 0.745769i
\(772\) 5.48072e9 + 5.48072e9i 0.428723 + 0.428723i
\(773\) −1.32895e10 1.32895e10i −1.03486 1.03486i −0.999370 0.0354850i \(-0.988702\pi\)
−0.0354850 0.999370i \(-0.511298\pi\)
\(774\) −7.40358e9 2.64385e9i −0.573916 0.204948i
\(775\) 0 0
\(776\) 1.60919e9i 0.123621i
\(777\) 1.00816e8 + 1.43054e8i 0.00771005 + 0.0109402i
\(778\) −1.12469e10 + 1.12469e10i −0.856257 + 0.856257i
\(779\) −8.58916e8 −0.0650983
\(780\) 0 0
\(781\) 1.03183e10 0.775052
\(782\) 5.17166e9 5.17166e9i 0.386729 0.386729i
\(783\) 2.62312e9 + 9.44444e9i 0.195277 + 0.703088i
\(784\) 3.37292e9i 0.249977i
\(785\) 0 0
\(786\) −1.04054e10 1.80217e9i −0.764326 0.132378i
\(787\) −1.62056e10 1.62056e10i −1.18510 1.18510i −0.978406 0.206691i \(-0.933731\pi\)
−0.206691 0.978406i \(-0.566269\pi\)
\(788\) −5.87595e9 5.87595e9i −0.427795 0.427795i
\(789\) 1.75118e10 + 3.03297e9i 1.26929 + 0.219836i
\(790\) 0 0
\(791\) 1.14745e7i 0.000824361i
\(792\) −1.37201e9 2.89621e9i −0.0981339 0.207153i
\(793\) −3.27348e9 + 3.27348e9i −0.233106 + 0.233106i
\(794\) 1.09640e10 0.777318
\(795\) 0 0
\(796\) −4.10000e9 −0.288130
\(797\) 9.60911e9 9.60911e9i 0.672325 0.672325i −0.285927 0.958251i \(-0.592301\pi\)
0.958251 + 0.285927i \(0.0923014\pi\)
\(798\) −2.63078e6 3.73295e6i −0.000183263 0.000260041i
\(799\) 7.59389e9i 0.526685i
\(800\) 0 0
\(801\) 7.54823e9 2.11373e10i 0.518957 1.45324i
\(802\) 9.19400e9 + 9.19400e9i 0.629353 + 0.629353i
\(803\) −8.13609e9 8.13609e9i −0.554512 0.554512i
\(804\) 6.55784e8 3.78637e9i 0.0445005 0.256937i
\(805\) 0 0
\(806\) 2.86464e9i 0.192707i
\(807\) −1.84594e10 + 1.30092e10i −1.23640 + 0.871349i
\(808\) −2.53329e9 + 2.53329e9i −0.168945 + 0.168945i
\(809\) 1.28712e10 0.854670 0.427335 0.904093i \(-0.359453\pi\)
0.427335 + 0.904093i \(0.359453\pi\)
\(810\) 0 0
\(811\) 2.57707e10 1.69650 0.848250 0.529597i \(-0.177657\pi\)
0.848250 + 0.529597i \(0.177657\pi\)
\(812\) −3.75767e7 + 3.75767e7i −0.00246304 + 0.00246304i
\(813\) 1.36468e10 9.61749e9i 0.890662 0.627689i
\(814\) 9.88982e9i 0.642692i
\(815\) 0 0
\(816\) −4.03096e8 + 2.32739e9i −0.0259712 + 0.149953i
\(817\) −4.47648e8 4.47648e8i −0.0287184 0.0287184i
\(818\) −3.29958e9 3.29958e9i −0.210776 0.210776i
\(819\) 1.81699e7 5.08813e7i 0.00115574 0.00323642i
\(820\) 0 0
\(821\) 1.40840e10i 0.888231i −0.895970 0.444115i \(-0.853518\pi\)
0.895970 0.444115i \(-0.146482\pi\)
\(822\) 7.42202e9 + 1.05315e10i 0.466091 + 0.661362i
\(823\) 1.00043e10 1.00043e10i 0.625585 0.625585i −0.321369 0.946954i \(-0.604143\pi\)
0.946954 + 0.321369i \(0.104143\pi\)
\(824\) 5.59681e9 0.348494
\(825\) 0 0
\(826\) −2.14638e8 −0.0132519
\(827\) 9.81003e9 9.81003e9i 0.603116 0.603116i −0.338022 0.941138i \(-0.609758\pi\)
0.941138 + 0.338022i \(0.109758\pi\)
\(828\) 4.44266e9 + 9.37811e9i 0.271980 + 0.574129i
\(829\) 1.01779e10i 0.620465i −0.950661 0.310232i \(-0.899593\pi\)
0.950661 0.310232i \(-0.100407\pi\)
\(830\) 0 0
\(831\) −1.36903e10 2.37110e9i −0.827577 0.143333i
\(832\) −5.28546e8 5.28546e8i −0.0318164 0.0318164i
\(833\) 7.18018e9 + 7.18018e9i 0.430406 + 0.430406i
\(834\) 1.03013e10 + 1.78415e9i 0.614912 + 0.106500i
\(835\) 0 0
\(836\) 2.58072e8i 0.0152763i
\(837\) 3.43717e9 + 1.23754e10i 0.202610 + 0.729490i
\(838\) −1.49245e9 + 1.49245e9i −0.0876083 + 0.0876083i
\(839\) 8.79408e9 0.514071 0.257036 0.966402i \(-0.417254\pi\)
0.257036 + 0.966402i \(0.417254\pi\)
\(840\) 0 0
\(841\) −8.06489e9 −0.467533
\(842\) 1.32259e9 1.32259e9i 0.0763545 0.0763545i
\(843\) 8.36940e9 + 1.18758e10i 0.481169 + 0.682756i
\(844\) 8.16501e9i 0.467475i
\(845\) 0 0
\(846\) −1.01470e10 3.62353e9i −0.576157 0.205748i
\(847\) −6.92022e7 6.92022e7i −0.00391317 0.00391317i
\(848\) −4.39643e9 4.39643e9i −0.247579 0.247579i
\(849\) −1.02655e9 + 5.92709e9i −0.0575708 + 0.332403i
\(850\) 0 0
\(851\) 3.20239e10i 1.78123i
\(852\) 8.82015e9 6.21595e9i 0.488582 0.344326i
\(853\) 1.44455e10 1.44455e10i 0.796914 0.796914i −0.185694 0.982608i \(-0.559453\pi\)
0.982608 + 0.185694i \(0.0594533\pi\)
\(854\) −1.12530e8 −0.00618255
\(855\) 0 0
\(856\) −2.54440e9 −0.138652
\(857\) 3.96978e9 3.96978e9i 0.215443 0.215443i −0.591132 0.806575i \(-0.701319\pi\)
0.806575 + 0.591132i \(0.201319\pi\)
\(858\) 2.49566e9 1.75881e9i 0.134890 0.0950631i
\(859\) 3.68048e10i 1.98120i −0.136791 0.990600i \(-0.543679\pi\)
0.136791 0.990600i \(-0.456321\pi\)
\(860\) 0 0
\(861\) 4.21525e7 2.43380e8i 0.00225067 0.0129949i
\(862\) 1.38527e9 + 1.38527e9i 0.0736645 + 0.0736645i
\(863\) −1.52667e9 1.52667e9i −0.0808550 0.0808550i 0.665523 0.746378i \(-0.268209\pi\)
−0.746378 + 0.665523i \(0.768209\pi\)
\(864\) −2.91753e9 1.64916e9i −0.153892 0.0869893i
\(865\) 0 0
\(866\) 8.72463e9i 0.456493i
\(867\) −6.95804e9 9.87314e9i −0.362594 0.514503i
\(868\) −4.92380e7 + 4.92380e7i −0.00255553 + 0.00255553i
\(869\) 1.18774e10 0.613977
\(870\) 0 0
\(871\) 3.66096e9 0.187729
\(872\) 2.15802e9 2.15802e9i 0.110217 0.110217i
\(873\) 6.21187e9 2.94273e9i 0.315989 0.149693i
\(874\) 8.35656e8i 0.0423387i
\(875\) 0 0
\(876\) −1.18561e10 2.05343e9i −0.595905 0.103208i
\(877\) 1.62907e10 + 1.62907e10i 0.815535 + 0.815535i 0.985457 0.169923i \(-0.0543519\pi\)
−0.169923 + 0.985457i \(0.554352\pi\)
\(878\) 1.93034e10 + 1.93034e10i 0.962503 + 0.962503i
\(879\) 3.16746e10 + 5.48591e9i 1.57308 + 0.272451i
\(880\) 0 0
\(881\) 4.54066e9i 0.223719i 0.993724 + 0.111860i \(0.0356807\pi\)
−0.993724 + 0.111860i \(0.964319\pi\)
\(882\) −1.30203e10 + 6.16806e9i −0.638970 + 0.302697i
\(883\) 6.30625e9 6.30625e9i 0.308254 0.308254i −0.535978 0.844232i \(-0.680057\pi\)
0.844232 + 0.535978i \(0.180057\pi\)
\(884\) −2.25031e9 −0.109562
\(885\) 0 0
\(886\) −5.49423e9 −0.265393
\(887\) 2.62069e10 2.62069e10i 1.26091 1.26091i 0.310253 0.950654i \(-0.399586\pi\)
0.950654 0.310253i \(-0.100414\pi\)
\(888\) 5.95781e9 + 8.45385e9i 0.285523 + 0.405144i
\(889\) 2.04352e8i 0.00975488i
\(890\) 0 0
\(891\) 8.67106e9 1.05926e10i 0.410677 0.501683i
\(892\) −1.57146e9 1.57146e9i −0.0741357 0.0741357i
\(893\) −6.13524e8 6.13524e8i −0.0288305 0.0288305i
\(894\) 3.04654e9 1.75901e10i 0.142602 0.823356i
\(895\) 0 0
\(896\) 1.81695e7i 0.000843851i
\(897\) −8.08112e9 + 5.69513e9i −0.373851 + 0.263469i
\(898\) 3.27213e9 3.27213e9i 0.150787 0.150787i
\(899\) 1.20354e10 0.552461
\(900\) 0 0
\(901\) −1.87180e10 −0.852554
\(902\) 9.86996e9 9.86996e9i 0.447809 0.447809i
\(903\) 1.48813e8 1.04875e8i 0.00672566 0.00473987i
\(904\) 6.78096e8i 0.0305282i
\(905\) 0 0
\(906\) −9.60116e8 + 5.54352e9i −0.0428919 + 0.247649i
\(907\) 1.46368e10 + 1.46368e10i 0.651359 + 0.651359i 0.953320 0.301962i \(-0.0976414\pi\)
−0.301962 + 0.953320i \(0.597641\pi\)
\(908\) −1.34209e10 1.34209e10i −0.594950 0.594950i
\(909\) −1.44117e10 5.14649e9i −0.636418 0.227267i
\(910\) 0 0
\(911\) 1.17472e10i 0.514779i 0.966308 + 0.257389i \(0.0828623\pi\)
−0.966308 + 0.257389i \(0.917138\pi\)
\(912\) −1.55468e8 2.20601e8i −0.00678669 0.00962999i
\(913\) 7.92852e9 7.92852e9i 0.344782 0.344782i
\(914\) 3.05495e10 1.32340
\(915\) 0 0
\(916\) 1.78527e10 0.767483
\(917\) 1.72926e8 1.72926e8i 0.00740572 0.00740572i
\(918\) −9.72144e9 + 2.70005e9i −0.414745 + 0.115192i
\(919\) 6.14798e8i 0.0261293i 0.999915 + 0.0130647i \(0.00415873\pi\)
−0.999915 + 0.0130647i \(0.995841\pi\)
\(920\) 0 0
\(921\) 2.18217e10 + 3.77942e9i 0.920405 + 0.159410i
\(922\) 4.81491e8 + 4.81491e8i 0.0202316 + 0.0202316i
\(923\) 7.26904e9 + 7.26904e9i 0.304278 + 0.304278i
\(924\) 7.31267e7 + 1.26653e7i 0.00304947 + 0.000528156i
\(925\) 0 0
\(926\) 1.16430e10i 0.481868i
\(927\) 1.02349e10 + 2.16050e10i 0.421991 + 0.890790i
\(928\) −2.22062e9 + 2.22062e9i −0.0912129 + 0.0912129i
\(929\) 2.52842e10 1.03465 0.517325 0.855789i \(-0.326928\pi\)
0.517325 + 0.855789i \(0.326928\pi\)
\(930\) 0 0
\(931\) −1.16020e9 −0.0471204
\(932\) 1.35625e9 1.35625e9i 0.0548761 0.0548761i
\(933\) −5.79280e8 8.21971e8i −0.0233509 0.0331338i
\(934\) 2.67473e10i 1.07415i
\(935\) 0 0
\(936\) 1.07376e9 3.00687e9i 0.0428000 0.119853i
\(937\) −7.18729e9 7.18729e9i −0.285415 0.285415i 0.549849 0.835264i \(-0.314685\pi\)
−0.835264 + 0.549849i \(0.814685\pi\)
\(938\) 6.29253e7 + 6.29253e7i 0.00248952 + 0.00248952i
\(939\) −3.19170e9 + 1.84282e10i −0.125803 + 0.726364i
\(940\) 0 0
\(941\) 6.79467e9i 0.265830i 0.991127 + 0.132915i \(0.0424338\pi\)
−0.991127 + 0.132915i \(0.957566\pi\)
\(942\) −1.55626e10 + 1.09677e10i −0.606603 + 0.427500i
\(943\) −3.19596e10 + 3.19596e10i −1.24111 + 1.24111i
\(944\) −1.26842e10 −0.490751
\(945\) 0 0
\(946\) 1.02880e10 0.395105
\(947\) −1.06210e10 + 1.06210e10i −0.406387 + 0.406387i −0.880476 0.474090i \(-0.842777\pi\)
0.474090 + 0.880476i \(0.342777\pi\)
\(948\) 1.01528e10 7.15516e9i 0.387042 0.272766i
\(949\) 1.14634e10i 0.435393i
\(950\) 0 0
\(951\) −1.49700e9 + 8.64339e9i −0.0564404 + 0.325876i
\(952\) −3.86788e7 3.86788e7i −0.00145293 0.00145293i
\(953\) −1.21090e10 1.21090e10i −0.453195 0.453195i 0.443219 0.896413i \(-0.353836\pi\)
−0.896413 + 0.443219i \(0.853836\pi\)
\(954\) 8.93153e9 2.50110e10i 0.333048 0.932635i
\(955\) 0 0
\(956\) 1.54083e10i 0.570363i
\(957\) −7.38939e9 1.04852e10i −0.272532 0.386710i
\(958\) 1.76862e10 1.76862e10i 0.649914 0.649914i
\(959\) −2.98368e8 −0.0109241
\(960\) 0 0
\(961\) −1.17422e10 −0.426793
\(962\) −6.96716e9 + 6.96716e9i −0.252315 + 0.252315i
\(963\) −4.65293e9 9.82198e9i −0.167894 0.354411i
\(964\) 6.67256e9i 0.239896i
\(965\) 0 0
\(966\) −2.36789e8 4.10109e7i −0.00845166 0.00146379i
\(967\) −1.11474e10 1.11474e10i −0.396443 0.396443i 0.480533 0.876977i \(-0.340443\pi\)
−0.876977 + 0.480533i \(0.840443\pi\)
\(968\) −4.08956e9 4.08956e9i −0.144915 0.144915i
\(969\) −8.00564e8 1.38655e8i −0.0282659 0.00489554i
\(970\) 0 0
\(971\) 2.00122e10i 0.701501i −0.936469 0.350750i \(-0.885927\pi\)
0.936469 0.350750i \(-0.114073\pi\)
\(972\) 1.03090e9 1.42782e10i 0.0360066 0.498702i
\(973\) −1.71197e8 + 1.71197e8i −0.00595801 + 0.00595801i
\(974\) −3.36793e10 −1.16790
\(975\) 0 0
\(976\) −6.65007e9 −0.228956
\(977\) −1.36208e10 + 1.36208e10i −0.467273 + 0.467273i −0.901030 0.433757i \(-0.857188\pi\)
0.433757 + 0.901030i \(0.357188\pi\)
\(978\) −1.76361e10 2.50248e10i −0.602861 0.855431i
\(979\) 2.93724e10i 1.00046i
\(980\) 0 0
\(981\) 1.22768e10 + 4.38411e9i 0.415188 + 0.148265i
\(982\) −9.77612e9 9.77612e9i −0.329440 0.329440i
\(983\) 1.66058e9 + 1.66058e9i 0.0557598 + 0.0557598i 0.734437 0.678677i \(-0.237446\pi\)
−0.678677 + 0.734437i \(0.737446\pi\)
\(984\) 2.49103e9 1.43827e10i 0.0833482 0.481236i
\(985\) 0 0
\(986\) 9.45437e9i 0.314097i
\(987\) 2.03956e8 1.43737e8i 0.00675191 0.00475838i
\(988\) 1.81806e8 1.81806e8i 0.00599736 0.00599736i
\(989\) −3.33133e10 −1.09504
\(990\) 0 0
\(991\) −4.37565e10 −1.42819 −0.714093 0.700050i \(-0.753161\pi\)
−0.714093 + 0.700050i \(0.753161\pi\)
\(992\) −2.90976e9 + 2.90976e9i −0.0946380 + 0.0946380i
\(993\) −3.81958e10 + 2.69183e10i −1.23792 + 0.872420i
\(994\) 2.49884e8i 0.00807022i
\(995\) 0 0
\(996\) 2.00104e9 1.15536e10i 0.0641724 0.370519i
\(997\) −6.81579e9 6.81579e9i −0.217813 0.217813i 0.589763 0.807576i \(-0.299221\pi\)
−0.807576 + 0.589763i \(0.799221\pi\)
\(998\) 4.04611e9 + 4.04611e9i 0.128849 + 0.128849i
\(999\) −2.17389e10 + 3.84581e10i −0.689855 + 1.22042i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 150.8.e.a.107.5 yes 16
3.2 odd 2 inner 150.8.e.a.107.2 16
5.2 odd 4 inner 150.8.e.a.143.7 yes 16
5.3 odd 4 inner 150.8.e.a.143.2 yes 16
5.4 even 2 inner 150.8.e.a.107.4 yes 16
15.2 even 4 inner 150.8.e.a.143.4 yes 16
15.8 even 4 inner 150.8.e.a.143.5 yes 16
15.14 odd 2 inner 150.8.e.a.107.7 yes 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
150.8.e.a.107.2 16 3.2 odd 2 inner
150.8.e.a.107.4 yes 16 5.4 even 2 inner
150.8.e.a.107.5 yes 16 1.1 even 1 trivial
150.8.e.a.107.7 yes 16 15.14 odd 2 inner
150.8.e.a.143.2 yes 16 5.3 odd 4 inner
150.8.e.a.143.4 yes 16 15.2 even 4 inner
150.8.e.a.143.5 yes 16 15.8 even 4 inner
150.8.e.a.143.7 yes 16 5.2 odd 4 inner