L(s) = 1 | − 2·3-s + 2·7-s + 3·9-s + 2·11-s − 3·17-s + 5·19-s − 4·21-s − 3·23-s − 4·27-s + 8·29-s + 13·31-s − 4·33-s − 4·37-s + 2·43-s − 7·47-s − 6·49-s + 6·51-s − 53-s − 10·57-s + 18·59-s + 9·61-s + 6·63-s + 18·67-s + 6·69-s + 20·71-s + 16·73-s + 4·77-s + ⋯ |
L(s) = 1 | − 1.15·3-s + 0.755·7-s + 9-s + 0.603·11-s − 0.727·17-s + 1.14·19-s − 0.872·21-s − 0.625·23-s − 0.769·27-s + 1.48·29-s + 2.33·31-s − 0.696·33-s − 0.657·37-s + 0.304·43-s − 1.02·47-s − 6/7·49-s + 0.840·51-s − 0.137·53-s − 1.32·57-s + 2.34·59-s + 1.15·61-s + 0.755·63-s + 2.19·67-s + 0.722·69-s + 2.37·71-s + 1.87·73-s + 0.455·77-s + ⋯ |
Λ(s)=(=(2250000s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(2250000s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
2250000
= 24⋅32⋅56
|
Sign: |
1
|
Analytic conductor: |
143.461 |
Root analytic conductor: |
3.46086 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 2250000, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
2.117570029 |
L(21) |
≈ |
2.117570029 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 3 | C1 | (1+T)2 |
| 5 | | 1 |
good | 7 | D4 | 1−2T+10T2−2pT3+p2T4 |
| 11 | D4 | 1−2T+18T2−2pT3+p2T4 |
| 13 | C2 | (1+pT2)2 |
| 17 | D4 | 1+3T+35T2+3pT3+p2T4 |
| 19 | D4 | 1−5T+33T2−5pT3+p2T4 |
| 23 | D4 | 1+3T+37T2+3pT3+p2T4 |
| 29 | C4 | 1−8T+54T2−8pT3+p2T4 |
| 31 | D4 | 1−13T+103T2−13pT3+p2T4 |
| 37 | C2 | (1+2T+pT2)2 |
| 41 | C22 | 1+62T2+p2T4 |
| 43 | D4 | 1−2T+42T2−2pT3+p2T4 |
| 47 | D4 | 1+7T+75T2+7pT3+p2T4 |
| 53 | D4 | 1+T+75T2+pT3+p2T4 |
| 59 | D4 | 1−18T+194T2−18pT3+p2T4 |
| 61 | D4 | 1−9T+41T2−9pT3+p2T4 |
| 67 | D4 | 1−18T+170T2−18pT3+p2T4 |
| 71 | D4 | 1−20T+222T2−20pT3+p2T4 |
| 73 | D4 | 1−16T+190T2−16pT3+p2T4 |
| 79 | D4 | 1−21T+257T2−21pT3+p2T4 |
| 83 | D4 | 1+3T+107T2+3pT3+p2T4 |
| 89 | D4 | 1+10T+198T2+10pT3+p2T4 |
| 97 | C2 | (1−12T+pT2)2 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.726432859737664682156228231807, −9.497005641017377038809873092866, −8.824577996080134723067605253424, −8.358961407170585384569609393986, −8.075526437938737313471231979071, −7.83928116943265167313604277616, −7.03070183816715098003664818653, −6.75246493362657133273706625553, −6.42152103991828550703463970755, −6.20275403311905355189319897979, −5.38905574574784813019059822265, −5.10094224524493417130218281167, −4.79421320658196128892458039315, −4.42362928754013325407308539896, −3.59172372259001658629139689784, −3.51687206381026694744303989327, −2.28290295872167970424742662503, −2.18517134564642826062018053617, −0.978694031598392741177382144865, −0.849676501480681629201491159721,
0.849676501480681629201491159721, 0.978694031598392741177382144865, 2.18517134564642826062018053617, 2.28290295872167970424742662503, 3.51687206381026694744303989327, 3.59172372259001658629139689784, 4.42362928754013325407308539896, 4.79421320658196128892458039315, 5.10094224524493417130218281167, 5.38905574574784813019059822265, 6.20275403311905355189319897979, 6.42152103991828550703463970755, 6.75246493362657133273706625553, 7.03070183816715098003664818653, 7.83928116943265167313604277616, 8.075526437938737313471231979071, 8.358961407170585384569609393986, 8.824577996080134723067605253424, 9.497005641017377038809873092866, 9.726432859737664682156228231807