Properties

Label 1500.2.a.c.1.2
Level $1500$
Weight $2$
Character 1500.1
Self dual yes
Analytic conductor $11.978$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1500,2,Mod(1,1500)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1500, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1500.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1500 = 2^{2} \cdot 3 \cdot 5^{3} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1500.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(11.9775603032\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{10})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(1.61803\) of defining polynomial
Character \(\chi\) \(=\) 1500.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{3} +3.23607 q^{7} +1.00000 q^{9} +O(q^{10})\) \(q-1.00000 q^{3} +3.23607 q^{7} +1.00000 q^{9} -1.23607 q^{11} -0.381966 q^{17} +5.85410 q^{19} -3.23607 q^{21} -4.85410 q^{23} -1.00000 q^{27} +8.47214 q^{29} +7.61803 q^{31} +1.23607 q^{33} -2.00000 q^{37} -4.47214 q^{41} -5.70820 q^{43} -9.09017 q^{47} +3.47214 q^{49} +0.381966 q^{51} +5.09017 q^{53} -5.85410 q^{57} +11.2361 q^{59} -5.56231 q^{61} +3.23607 q^{63} +15.7082 q^{67} +4.85410 q^{69} +5.52786 q^{71} +3.52786 q^{73} -4.00000 q^{77} +13.8541 q^{79} +1.00000 q^{81} +6.32624 q^{83} -8.47214 q^{87} -2.76393 q^{89} -7.61803 q^{93} +12.0000 q^{97} -1.23607 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{3} + 2 q^{7} + 2 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 2 q^{3} + 2 q^{7} + 2 q^{9} + 2 q^{11} - 3 q^{17} + 5 q^{19} - 2 q^{21} - 3 q^{23} - 2 q^{27} + 8 q^{29} + 13 q^{31} - 2 q^{33} - 4 q^{37} + 2 q^{43} - 7 q^{47} - 2 q^{49} + 3 q^{51} - q^{53} - 5 q^{57} + 18 q^{59} + 9 q^{61} + 2 q^{63} + 18 q^{67} + 3 q^{69} + 20 q^{71} + 16 q^{73} - 8 q^{77} + 21 q^{79} + 2 q^{81} - 3 q^{83} - 8 q^{87} - 10 q^{89} - 13 q^{93} + 24 q^{97} + 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.00000 −0.577350
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 3.23607 1.22312 0.611559 0.791199i \(-0.290543\pi\)
0.611559 + 0.791199i \(0.290543\pi\)
\(8\) 0 0
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) −1.23607 −0.372689 −0.186344 0.982485i \(-0.559664\pi\)
−0.186344 + 0.982485i \(0.559664\pi\)
\(12\) 0 0
\(13\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −0.381966 −0.0926404 −0.0463202 0.998927i \(-0.514749\pi\)
−0.0463202 + 0.998927i \(0.514749\pi\)
\(18\) 0 0
\(19\) 5.85410 1.34302 0.671512 0.740994i \(-0.265645\pi\)
0.671512 + 0.740994i \(0.265645\pi\)
\(20\) 0 0
\(21\) −3.23607 −0.706168
\(22\) 0 0
\(23\) −4.85410 −1.01215 −0.506075 0.862489i \(-0.668904\pi\)
−0.506075 + 0.862489i \(0.668904\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) −1.00000 −0.192450
\(28\) 0 0
\(29\) 8.47214 1.57324 0.786618 0.617440i \(-0.211830\pi\)
0.786618 + 0.617440i \(0.211830\pi\)
\(30\) 0 0
\(31\) 7.61803 1.36824 0.684120 0.729370i \(-0.260187\pi\)
0.684120 + 0.729370i \(0.260187\pi\)
\(32\) 0 0
\(33\) 1.23607 0.215172
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −2.00000 −0.328798 −0.164399 0.986394i \(-0.552568\pi\)
−0.164399 + 0.986394i \(0.552568\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −4.47214 −0.698430 −0.349215 0.937043i \(-0.613552\pi\)
−0.349215 + 0.937043i \(0.613552\pi\)
\(42\) 0 0
\(43\) −5.70820 −0.870493 −0.435246 0.900311i \(-0.643339\pi\)
−0.435246 + 0.900311i \(0.643339\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −9.09017 −1.32594 −0.662969 0.748647i \(-0.730704\pi\)
−0.662969 + 0.748647i \(0.730704\pi\)
\(48\) 0 0
\(49\) 3.47214 0.496019
\(50\) 0 0
\(51\) 0.381966 0.0534859
\(52\) 0 0
\(53\) 5.09017 0.699189 0.349594 0.936901i \(-0.386319\pi\)
0.349594 + 0.936901i \(0.386319\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) −5.85410 −0.775395
\(58\) 0 0
\(59\) 11.2361 1.46281 0.731406 0.681943i \(-0.238865\pi\)
0.731406 + 0.681943i \(0.238865\pi\)
\(60\) 0 0
\(61\) −5.56231 −0.712180 −0.356090 0.934452i \(-0.615890\pi\)
−0.356090 + 0.934452i \(0.615890\pi\)
\(62\) 0 0
\(63\) 3.23607 0.407706
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 15.7082 1.91906 0.959531 0.281602i \(-0.0908658\pi\)
0.959531 + 0.281602i \(0.0908658\pi\)
\(68\) 0 0
\(69\) 4.85410 0.584365
\(70\) 0 0
\(71\) 5.52786 0.656037 0.328018 0.944671i \(-0.393619\pi\)
0.328018 + 0.944671i \(0.393619\pi\)
\(72\) 0 0
\(73\) 3.52786 0.412905 0.206453 0.978457i \(-0.433808\pi\)
0.206453 + 0.978457i \(0.433808\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −4.00000 −0.455842
\(78\) 0 0
\(79\) 13.8541 1.55871 0.779354 0.626584i \(-0.215547\pi\)
0.779354 + 0.626584i \(0.215547\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) 6.32624 0.694395 0.347197 0.937792i \(-0.387133\pi\)
0.347197 + 0.937792i \(0.387133\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) −8.47214 −0.908308
\(88\) 0 0
\(89\) −2.76393 −0.292976 −0.146488 0.989212i \(-0.546797\pi\)
−0.146488 + 0.989212i \(0.546797\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) −7.61803 −0.789953
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 12.0000 1.21842 0.609208 0.793011i \(-0.291488\pi\)
0.609208 + 0.793011i \(0.291488\pi\)
\(98\) 0 0
\(99\) −1.23607 −0.124230
\(100\) 0 0
\(101\) 0.763932 0.0760141 0.0380070 0.999277i \(-0.487899\pi\)
0.0380070 + 0.999277i \(0.487899\pi\)
\(102\) 0 0
\(103\) 2.29180 0.225817 0.112909 0.993605i \(-0.463983\pi\)
0.112909 + 0.993605i \(0.463983\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 14.3820 1.39036 0.695179 0.718837i \(-0.255325\pi\)
0.695179 + 0.718837i \(0.255325\pi\)
\(108\) 0 0
\(109\) 1.61803 0.154980 0.0774898 0.996993i \(-0.475309\pi\)
0.0774898 + 0.996993i \(0.475309\pi\)
\(110\) 0 0
\(111\) 2.00000 0.189832
\(112\) 0 0
\(113\) −1.67376 −0.157454 −0.0787271 0.996896i \(-0.525086\pi\)
−0.0787271 + 0.996896i \(0.525086\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −1.23607 −0.113310
\(120\) 0 0
\(121\) −9.47214 −0.861103
\(122\) 0 0
\(123\) 4.47214 0.403239
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 9.41641 0.835571 0.417786 0.908546i \(-0.362806\pi\)
0.417786 + 0.908546i \(0.362806\pi\)
\(128\) 0 0
\(129\) 5.70820 0.502579
\(130\) 0 0
\(131\) 10.9443 0.956205 0.478103 0.878304i \(-0.341325\pi\)
0.478103 + 0.878304i \(0.341325\pi\)
\(132\) 0 0
\(133\) 18.9443 1.64268
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −16.4721 −1.40731 −0.703655 0.710542i \(-0.748450\pi\)
−0.703655 + 0.710542i \(0.748450\pi\)
\(138\) 0 0
\(139\) 5.14590 0.436469 0.218235 0.975896i \(-0.429970\pi\)
0.218235 + 0.975896i \(0.429970\pi\)
\(140\) 0 0
\(141\) 9.09017 0.765530
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) −3.47214 −0.286377
\(148\) 0 0
\(149\) 23.1246 1.89444 0.947221 0.320581i \(-0.103878\pi\)
0.947221 + 0.320581i \(0.103878\pi\)
\(150\) 0 0
\(151\) −5.85410 −0.476400 −0.238200 0.971216i \(-0.576557\pi\)
−0.238200 + 0.971216i \(0.576557\pi\)
\(152\) 0 0
\(153\) −0.381966 −0.0308801
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 14.7639 1.17829 0.589145 0.808027i \(-0.299465\pi\)
0.589145 + 0.808027i \(0.299465\pi\)
\(158\) 0 0
\(159\) −5.09017 −0.403677
\(160\) 0 0
\(161\) −15.7082 −1.23798
\(162\) 0 0
\(163\) 2.76393 0.216488 0.108244 0.994124i \(-0.465477\pi\)
0.108244 + 0.994124i \(0.465477\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −7.85410 −0.607769 −0.303884 0.952709i \(-0.598284\pi\)
−0.303884 + 0.952709i \(0.598284\pi\)
\(168\) 0 0
\(169\) −13.0000 −1.00000
\(170\) 0 0
\(171\) 5.85410 0.447674
\(172\) 0 0
\(173\) −23.8885 −1.81621 −0.908106 0.418740i \(-0.862472\pi\)
−0.908106 + 0.418740i \(0.862472\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −11.2361 −0.844555
\(178\) 0 0
\(179\) −23.8885 −1.78551 −0.892757 0.450539i \(-0.851232\pi\)
−0.892757 + 0.450539i \(0.851232\pi\)
\(180\) 0 0
\(181\) −17.5623 −1.30540 −0.652698 0.757618i \(-0.726363\pi\)
−0.652698 + 0.757618i \(0.726363\pi\)
\(182\) 0 0
\(183\) 5.56231 0.411177
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 0.472136 0.0345260
\(188\) 0 0
\(189\) −3.23607 −0.235389
\(190\) 0 0
\(191\) 12.9443 0.936615 0.468307 0.883566i \(-0.344864\pi\)
0.468307 + 0.883566i \(0.344864\pi\)
\(192\) 0 0
\(193\) −21.1246 −1.52058 −0.760291 0.649582i \(-0.774944\pi\)
−0.760291 + 0.649582i \(0.774944\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −23.0344 −1.64114 −0.820568 0.571549i \(-0.806343\pi\)
−0.820568 + 0.571549i \(0.806343\pi\)
\(198\) 0 0
\(199\) −11.7984 −0.836365 −0.418182 0.908363i \(-0.637333\pi\)
−0.418182 + 0.908363i \(0.637333\pi\)
\(200\) 0 0
\(201\) −15.7082 −1.10797
\(202\) 0 0
\(203\) 27.4164 1.92425
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) −4.85410 −0.337383
\(208\) 0 0
\(209\) −7.23607 −0.500529
\(210\) 0 0
\(211\) 12.5623 0.864825 0.432412 0.901676i \(-0.357662\pi\)
0.432412 + 0.901676i \(0.357662\pi\)
\(212\) 0 0
\(213\) −5.52786 −0.378763
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 24.6525 1.67352
\(218\) 0 0
\(219\) −3.52786 −0.238391
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) −26.8328 −1.79686 −0.898429 0.439119i \(-0.855291\pi\)
−0.898429 + 0.439119i \(0.855291\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −11.9098 −0.790483 −0.395242 0.918577i \(-0.629339\pi\)
−0.395242 + 0.918577i \(0.629339\pi\)
\(228\) 0 0
\(229\) −3.14590 −0.207887 −0.103943 0.994583i \(-0.533146\pi\)
−0.103943 + 0.994583i \(0.533146\pi\)
\(230\) 0 0
\(231\) 4.00000 0.263181
\(232\) 0 0
\(233\) 13.4164 0.878938 0.439469 0.898258i \(-0.355167\pi\)
0.439469 + 0.898258i \(0.355167\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) −13.8541 −0.899921
\(238\) 0 0
\(239\) 0.763932 0.0494147 0.0247073 0.999695i \(-0.492135\pi\)
0.0247073 + 0.999695i \(0.492135\pi\)
\(240\) 0 0
\(241\) 12.2705 0.790413 0.395207 0.918592i \(-0.370673\pi\)
0.395207 + 0.918592i \(0.370673\pi\)
\(242\) 0 0
\(243\) −1.00000 −0.0641500
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) −6.32624 −0.400909
\(250\) 0 0
\(251\) 14.1803 0.895055 0.447528 0.894270i \(-0.352305\pi\)
0.447528 + 0.894270i \(0.352305\pi\)
\(252\) 0 0
\(253\) 6.00000 0.377217
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 9.38197 0.585231 0.292615 0.956230i \(-0.405474\pi\)
0.292615 + 0.956230i \(0.405474\pi\)
\(258\) 0 0
\(259\) −6.47214 −0.402159
\(260\) 0 0
\(261\) 8.47214 0.524412
\(262\) 0 0
\(263\) −17.6180 −1.08637 −0.543187 0.839612i \(-0.682783\pi\)
−0.543187 + 0.839612i \(0.682783\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 2.76393 0.169150
\(268\) 0 0
\(269\) −29.1246 −1.77576 −0.887879 0.460076i \(-0.847822\pi\)
−0.887879 + 0.460076i \(0.847822\pi\)
\(270\) 0 0
\(271\) 18.2705 1.10985 0.554927 0.831899i \(-0.312746\pi\)
0.554927 + 0.831899i \(0.312746\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 15.4164 0.926282 0.463141 0.886285i \(-0.346722\pi\)
0.463141 + 0.886285i \(0.346722\pi\)
\(278\) 0 0
\(279\) 7.61803 0.456080
\(280\) 0 0
\(281\) −26.7639 −1.59660 −0.798301 0.602258i \(-0.794268\pi\)
−0.798301 + 0.602258i \(0.794268\pi\)
\(282\) 0 0
\(283\) 4.18034 0.248495 0.124248 0.992251i \(-0.460348\pi\)
0.124248 + 0.992251i \(0.460348\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −14.4721 −0.854263
\(288\) 0 0
\(289\) −16.8541 −0.991418
\(290\) 0 0
\(291\) −12.0000 −0.703452
\(292\) 0 0
\(293\) −19.0344 −1.11200 −0.556002 0.831181i \(-0.687665\pi\)
−0.556002 + 0.831181i \(0.687665\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 1.23607 0.0717239
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) −18.4721 −1.06472
\(302\) 0 0
\(303\) −0.763932 −0.0438867
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 24.1803 1.38004 0.690022 0.723788i \(-0.257601\pi\)
0.690022 + 0.723788i \(0.257601\pi\)
\(308\) 0 0
\(309\) −2.29180 −0.130376
\(310\) 0 0
\(311\) −14.2918 −0.810413 −0.405207 0.914225i \(-0.632800\pi\)
−0.405207 + 0.914225i \(0.632800\pi\)
\(312\) 0 0
\(313\) 15.7082 0.887880 0.443940 0.896056i \(-0.353580\pi\)
0.443940 + 0.896056i \(0.353580\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 32.8328 1.84407 0.922037 0.387101i \(-0.126524\pi\)
0.922037 + 0.387101i \(0.126524\pi\)
\(318\) 0 0
\(319\) −10.4721 −0.586327
\(320\) 0 0
\(321\) −14.3820 −0.802723
\(322\) 0 0
\(323\) −2.23607 −0.124418
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) −1.61803 −0.0894775
\(328\) 0 0
\(329\) −29.4164 −1.62178
\(330\) 0 0
\(331\) 24.0344 1.32105 0.660526 0.750803i \(-0.270333\pi\)
0.660526 + 0.750803i \(0.270333\pi\)
\(332\) 0 0
\(333\) −2.00000 −0.109599
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −18.1803 −0.990346 −0.495173 0.868794i \(-0.664895\pi\)
−0.495173 + 0.868794i \(0.664895\pi\)
\(338\) 0 0
\(339\) 1.67376 0.0909063
\(340\) 0 0
\(341\) −9.41641 −0.509927
\(342\) 0 0
\(343\) −11.4164 −0.616428
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −8.50658 −0.456657 −0.228329 0.973584i \(-0.573326\pi\)
−0.228329 + 0.973584i \(0.573326\pi\)
\(348\) 0 0
\(349\) −4.85410 −0.259834 −0.129917 0.991525i \(-0.541471\pi\)
−0.129917 + 0.991525i \(0.541471\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −22.8541 −1.21640 −0.608201 0.793783i \(-0.708108\pi\)
−0.608201 + 0.793783i \(0.708108\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 1.23607 0.0654197
\(358\) 0 0
\(359\) −10.4721 −0.552698 −0.276349 0.961057i \(-0.589125\pi\)
−0.276349 + 0.961057i \(0.589125\pi\)
\(360\) 0 0
\(361\) 15.2705 0.803711
\(362\) 0 0
\(363\) 9.47214 0.497158
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 19.4164 1.01353 0.506764 0.862085i \(-0.330842\pi\)
0.506764 + 0.862085i \(0.330842\pi\)
\(368\) 0 0
\(369\) −4.47214 −0.232810
\(370\) 0 0
\(371\) 16.4721 0.855191
\(372\) 0 0
\(373\) 21.5279 1.11467 0.557335 0.830288i \(-0.311824\pi\)
0.557335 + 0.830288i \(0.311824\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) −12.0000 −0.616399 −0.308199 0.951322i \(-0.599726\pi\)
−0.308199 + 0.951322i \(0.599726\pi\)
\(380\) 0 0
\(381\) −9.41641 −0.482417
\(382\) 0 0
\(383\) 21.2148 1.08402 0.542012 0.840371i \(-0.317663\pi\)
0.542012 + 0.840371i \(0.317663\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −5.70820 −0.290164
\(388\) 0 0
\(389\) 6.65248 0.337294 0.168647 0.985677i \(-0.446060\pi\)
0.168647 + 0.985677i \(0.446060\pi\)
\(390\) 0 0
\(391\) 1.85410 0.0937660
\(392\) 0 0
\(393\) −10.9443 −0.552065
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 6.29180 0.315776 0.157888 0.987457i \(-0.449531\pi\)
0.157888 + 0.987457i \(0.449531\pi\)
\(398\) 0 0
\(399\) −18.9443 −0.948400
\(400\) 0 0
\(401\) 18.3607 0.916889 0.458444 0.888723i \(-0.348407\pi\)
0.458444 + 0.888723i \(0.348407\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 2.47214 0.122539
\(408\) 0 0
\(409\) −21.5623 −1.06619 −0.533094 0.846056i \(-0.678971\pi\)
−0.533094 + 0.846056i \(0.678971\pi\)
\(410\) 0 0
\(411\) 16.4721 0.812511
\(412\) 0 0
\(413\) 36.3607 1.78919
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) −5.14590 −0.251996
\(418\) 0 0
\(419\) 5.81966 0.284309 0.142155 0.989844i \(-0.454597\pi\)
0.142155 + 0.989844i \(0.454597\pi\)
\(420\) 0 0
\(421\) −20.3262 −0.990640 −0.495320 0.868711i \(-0.664949\pi\)
−0.495320 + 0.868711i \(0.664949\pi\)
\(422\) 0 0
\(423\) −9.09017 −0.441979
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) −18.0000 −0.871081
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −7.52786 −0.362604 −0.181302 0.983427i \(-0.558031\pi\)
−0.181302 + 0.983427i \(0.558031\pi\)
\(432\) 0 0
\(433\) 27.4164 1.31755 0.658774 0.752341i \(-0.271075\pi\)
0.658774 + 0.752341i \(0.271075\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −28.4164 −1.35934
\(438\) 0 0
\(439\) −15.4164 −0.735785 −0.367893 0.929868i \(-0.619921\pi\)
−0.367893 + 0.929868i \(0.619921\pi\)
\(440\) 0 0
\(441\) 3.47214 0.165340
\(442\) 0 0
\(443\) −20.7984 −0.988161 −0.494080 0.869416i \(-0.664495\pi\)
−0.494080 + 0.869416i \(0.664495\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) −23.1246 −1.09376
\(448\) 0 0
\(449\) −5.81966 −0.274647 −0.137323 0.990526i \(-0.543850\pi\)
−0.137323 + 0.990526i \(0.543850\pi\)
\(450\) 0 0
\(451\) 5.52786 0.260297
\(452\) 0 0
\(453\) 5.85410 0.275050
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −5.12461 −0.239719 −0.119860 0.992791i \(-0.538244\pi\)
−0.119860 + 0.992791i \(0.538244\pi\)
\(458\) 0 0
\(459\) 0.381966 0.0178286
\(460\) 0 0
\(461\) −20.1803 −0.939892 −0.469946 0.882695i \(-0.655727\pi\)
−0.469946 + 0.882695i \(0.655727\pi\)
\(462\) 0 0
\(463\) −30.9443 −1.43810 −0.719051 0.694957i \(-0.755423\pi\)
−0.719051 + 0.694957i \(0.755423\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −5.74265 −0.265738 −0.132869 0.991134i \(-0.542419\pi\)
−0.132869 + 0.991134i \(0.542419\pi\)
\(468\) 0 0
\(469\) 50.8328 2.34724
\(470\) 0 0
\(471\) −14.7639 −0.680286
\(472\) 0 0
\(473\) 7.05573 0.324423
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 5.09017 0.233063
\(478\) 0 0
\(479\) −11.1246 −0.508296 −0.254148 0.967165i \(-0.581795\pi\)
−0.254148 + 0.967165i \(0.581795\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 15.7082 0.714748
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) −10.7639 −0.487760 −0.243880 0.969805i \(-0.578420\pi\)
−0.243880 + 0.969805i \(0.578420\pi\)
\(488\) 0 0
\(489\) −2.76393 −0.124989
\(490\) 0 0
\(491\) −32.8328 −1.48172 −0.740862 0.671657i \(-0.765583\pi\)
−0.740862 + 0.671657i \(0.765583\pi\)
\(492\) 0 0
\(493\) −3.23607 −0.145745
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 17.8885 0.802411
\(498\) 0 0
\(499\) −28.6869 −1.28420 −0.642101 0.766620i \(-0.721937\pi\)
−0.642101 + 0.766620i \(0.721937\pi\)
\(500\) 0 0
\(501\) 7.85410 0.350895
\(502\) 0 0
\(503\) 32.9443 1.46891 0.734456 0.678656i \(-0.237437\pi\)
0.734456 + 0.678656i \(0.237437\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 13.0000 0.577350
\(508\) 0 0
\(509\) 29.8885 1.32479 0.662393 0.749156i \(-0.269541\pi\)
0.662393 + 0.749156i \(0.269541\pi\)
\(510\) 0 0
\(511\) 11.4164 0.505032
\(512\) 0 0
\(513\) −5.85410 −0.258465
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 11.2361 0.494162
\(518\) 0 0
\(519\) 23.8885 1.04859
\(520\) 0 0
\(521\) 29.8885 1.30944 0.654720 0.755871i \(-0.272786\pi\)
0.654720 + 0.755871i \(0.272786\pi\)
\(522\) 0 0
\(523\) −39.8885 −1.74420 −0.872102 0.489324i \(-0.837244\pi\)
−0.872102 + 0.489324i \(0.837244\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −2.90983 −0.126754
\(528\) 0 0
\(529\) 0.562306 0.0244481
\(530\) 0 0
\(531\) 11.2361 0.487604
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 23.8885 1.03087
\(538\) 0 0
\(539\) −4.29180 −0.184861
\(540\) 0 0
\(541\) −16.2705 −0.699524 −0.349762 0.936839i \(-0.613738\pi\)
−0.349762 + 0.936839i \(0.613738\pi\)
\(542\) 0 0
\(543\) 17.5623 0.753671
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) −44.8328 −1.91691 −0.958456 0.285239i \(-0.907927\pi\)
−0.958456 + 0.285239i \(0.907927\pi\)
\(548\) 0 0
\(549\) −5.56231 −0.237393
\(550\) 0 0
\(551\) 49.5967 2.11289
\(552\) 0 0
\(553\) 44.8328 1.90649
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −10.3607 −0.438996 −0.219498 0.975613i \(-0.570442\pi\)
−0.219498 + 0.975613i \(0.570442\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) −0.472136 −0.0199336
\(562\) 0 0
\(563\) 6.38197 0.268968 0.134484 0.990916i \(-0.457062\pi\)
0.134484 + 0.990916i \(0.457062\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 3.23607 0.135902
\(568\) 0 0
\(569\) −25.3050 −1.06084 −0.530419 0.847735i \(-0.677966\pi\)
−0.530419 + 0.847735i \(0.677966\pi\)
\(570\) 0 0
\(571\) −37.8885 −1.58559 −0.792793 0.609491i \(-0.791374\pi\)
−0.792793 + 0.609491i \(0.791374\pi\)
\(572\) 0 0
\(573\) −12.9443 −0.540755
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) −23.1246 −0.962690 −0.481345 0.876531i \(-0.659852\pi\)
−0.481345 + 0.876531i \(0.659852\pi\)
\(578\) 0 0
\(579\) 21.1246 0.877909
\(580\) 0 0
\(581\) 20.4721 0.849327
\(582\) 0 0
\(583\) −6.29180 −0.260580
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 13.0344 0.537989 0.268994 0.963142i \(-0.413309\pi\)
0.268994 + 0.963142i \(0.413309\pi\)
\(588\) 0 0
\(589\) 44.5967 1.83758
\(590\) 0 0
\(591\) 23.0344 0.947510
\(592\) 0 0
\(593\) −20.5066 −0.842104 −0.421052 0.907036i \(-0.638339\pi\)
−0.421052 + 0.907036i \(0.638339\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 11.7984 0.482875
\(598\) 0 0
\(599\) 32.8328 1.34151 0.670756 0.741678i \(-0.265970\pi\)
0.670756 + 0.741678i \(0.265970\pi\)
\(600\) 0 0
\(601\) −12.8541 −0.524330 −0.262165 0.965023i \(-0.584436\pi\)
−0.262165 + 0.965023i \(0.584436\pi\)
\(602\) 0 0
\(603\) 15.7082 0.639688
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 48.2492 1.95838 0.979188 0.202956i \(-0.0650550\pi\)
0.979188 + 0.202956i \(0.0650550\pi\)
\(608\) 0 0
\(609\) −27.4164 −1.11097
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 7.59675 0.306830 0.153415 0.988162i \(-0.450973\pi\)
0.153415 + 0.988162i \(0.450973\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 34.4508 1.38694 0.693469 0.720486i \(-0.256081\pi\)
0.693469 + 0.720486i \(0.256081\pi\)
\(618\) 0 0
\(619\) 23.7984 0.956537 0.478269 0.878214i \(-0.341265\pi\)
0.478269 + 0.878214i \(0.341265\pi\)
\(620\) 0 0
\(621\) 4.85410 0.194788
\(622\) 0 0
\(623\) −8.94427 −0.358345
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 7.23607 0.288981
\(628\) 0 0
\(629\) 0.763932 0.0304600
\(630\) 0 0
\(631\) −29.3050 −1.16661 −0.583306 0.812253i \(-0.698241\pi\)
−0.583306 + 0.812253i \(0.698241\pi\)
\(632\) 0 0
\(633\) −12.5623 −0.499307
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 5.52786 0.218679
\(640\) 0 0
\(641\) −41.7771 −1.65010 −0.825048 0.565063i \(-0.808852\pi\)
−0.825048 + 0.565063i \(0.808852\pi\)
\(642\) 0 0
\(643\) 4.65248 0.183476 0.0917379 0.995783i \(-0.470758\pi\)
0.0917379 + 0.995783i \(0.470758\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 19.0557 0.749158 0.374579 0.927195i \(-0.377787\pi\)
0.374579 + 0.927195i \(0.377787\pi\)
\(648\) 0 0
\(649\) −13.8885 −0.545173
\(650\) 0 0
\(651\) −24.6525 −0.966207
\(652\) 0 0
\(653\) −46.6869 −1.82700 −0.913500 0.406838i \(-0.866631\pi\)
−0.913500 + 0.406838i \(0.866631\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 3.52786 0.137635
\(658\) 0 0
\(659\) 32.0689 1.24923 0.624613 0.780934i \(-0.285257\pi\)
0.624613 + 0.780934i \(0.285257\pi\)
\(660\) 0 0
\(661\) 18.2016 0.707961 0.353981 0.935253i \(-0.384828\pi\)
0.353981 + 0.935253i \(0.384828\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −41.1246 −1.59235
\(668\) 0 0
\(669\) 26.8328 1.03742
\(670\) 0 0
\(671\) 6.87539 0.265421
\(672\) 0 0
\(673\) 7.88854 0.304081 0.152041 0.988374i \(-0.451416\pi\)
0.152041 + 0.988374i \(0.451416\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 6.97871 0.268214 0.134107 0.990967i \(-0.457183\pi\)
0.134107 + 0.990967i \(0.457183\pi\)
\(678\) 0 0
\(679\) 38.8328 1.49027
\(680\) 0 0
\(681\) 11.9098 0.456386
\(682\) 0 0
\(683\) 19.3262 0.739498 0.369749 0.929132i \(-0.379444\pi\)
0.369749 + 0.929132i \(0.379444\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 3.14590 0.120023
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) −4.56231 −0.173558 −0.0867791 0.996228i \(-0.527657\pi\)
−0.0867791 + 0.996228i \(0.527657\pi\)
\(692\) 0 0
\(693\) −4.00000 −0.151947
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 1.70820 0.0647028
\(698\) 0 0
\(699\) −13.4164 −0.507455
\(700\) 0 0
\(701\) −1.88854 −0.0713293 −0.0356647 0.999364i \(-0.511355\pi\)
−0.0356647 + 0.999364i \(0.511355\pi\)
\(702\) 0 0
\(703\) −11.7082 −0.441583
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 2.47214 0.0929742
\(708\) 0 0
\(709\) 12.6180 0.473880 0.236940 0.971524i \(-0.423855\pi\)
0.236940 + 0.971524i \(0.423855\pi\)
\(710\) 0 0
\(711\) 13.8541 0.519569
\(712\) 0 0
\(713\) −36.9787 −1.38486
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −0.763932 −0.0285296
\(718\) 0 0
\(719\) 20.7639 0.774364 0.387182 0.922003i \(-0.373449\pi\)
0.387182 + 0.922003i \(0.373449\pi\)
\(720\) 0 0
\(721\) 7.41641 0.276201
\(722\) 0 0
\(723\) −12.2705 −0.456345
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 18.8328 0.698470 0.349235 0.937035i \(-0.386441\pi\)
0.349235 + 0.937035i \(0.386441\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) 2.18034 0.0806428
\(732\) 0 0
\(733\) −10.1803 −0.376019 −0.188010 0.982167i \(-0.560204\pi\)
−0.188010 + 0.982167i \(0.560204\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −19.4164 −0.715213
\(738\) 0 0
\(739\) −12.5623 −0.462112 −0.231056 0.972940i \(-0.574218\pi\)
−0.231056 + 0.972940i \(0.574218\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 7.41641 0.272082 0.136041 0.990703i \(-0.456562\pi\)
0.136041 + 0.990703i \(0.456562\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 6.32624 0.231465
\(748\) 0 0
\(749\) 46.5410 1.70057
\(750\) 0 0
\(751\) 8.90983 0.325124 0.162562 0.986698i \(-0.448024\pi\)
0.162562 + 0.986698i \(0.448024\pi\)
\(752\) 0 0
\(753\) −14.1803 −0.516760
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) −43.4853 −1.58050 −0.790250 0.612785i \(-0.790049\pi\)
−0.790250 + 0.612785i \(0.790049\pi\)
\(758\) 0 0
\(759\) −6.00000 −0.217786
\(760\) 0 0
\(761\) −13.5279 −0.490385 −0.245192 0.969474i \(-0.578851\pi\)
−0.245192 + 0.969474i \(0.578851\pi\)
\(762\) 0 0
\(763\) 5.23607 0.189558
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) −2.14590 −0.0773831 −0.0386915 0.999251i \(-0.512319\pi\)
−0.0386915 + 0.999251i \(0.512319\pi\)
\(770\) 0 0
\(771\) −9.38197 −0.337883
\(772\) 0 0
\(773\) 51.9230 1.86754 0.933770 0.357874i \(-0.116498\pi\)
0.933770 + 0.357874i \(0.116498\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 6.47214 0.232187
\(778\) 0 0
\(779\) −26.1803 −0.938008
\(780\) 0 0
\(781\) −6.83282 −0.244497
\(782\) 0 0
\(783\) −8.47214 −0.302769
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) −39.7082 −1.41544 −0.707722 0.706491i \(-0.750277\pi\)
−0.707722 + 0.706491i \(0.750277\pi\)
\(788\) 0 0
\(789\) 17.6180 0.627219
\(790\) 0 0
\(791\) −5.41641 −0.192585
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 20.7426 0.734742 0.367371 0.930074i \(-0.380258\pi\)
0.367371 + 0.930074i \(0.380258\pi\)
\(798\) 0 0
\(799\) 3.47214 0.122835
\(800\) 0 0
\(801\) −2.76393 −0.0976587
\(802\) 0 0
\(803\) −4.36068 −0.153885
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 29.1246 1.02523
\(808\) 0 0
\(809\) 49.4164 1.73739 0.868694 0.495349i \(-0.164960\pi\)
0.868694 + 0.495349i \(0.164960\pi\)
\(810\) 0 0
\(811\) 2.43769 0.0855990 0.0427995 0.999084i \(-0.486372\pi\)
0.0427995 + 0.999084i \(0.486372\pi\)
\(812\) 0 0
\(813\) −18.2705 −0.640775
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) −33.4164 −1.16909
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 41.5279 1.44933 0.724666 0.689100i \(-0.241994\pi\)
0.724666 + 0.689100i \(0.241994\pi\)
\(822\) 0 0
\(823\) −14.7639 −0.514638 −0.257319 0.966326i \(-0.582839\pi\)
−0.257319 + 0.966326i \(0.582839\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 16.1459 0.561448 0.280724 0.959789i \(-0.409425\pi\)
0.280724 + 0.959789i \(0.409425\pi\)
\(828\) 0 0
\(829\) 37.8541 1.31473 0.657364 0.753574i \(-0.271672\pi\)
0.657364 + 0.753574i \(0.271672\pi\)
\(830\) 0 0
\(831\) −15.4164 −0.534789
\(832\) 0 0
\(833\) −1.32624 −0.0459514
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) −7.61803 −0.263318
\(838\) 0 0
\(839\) 27.0132 0.932598 0.466299 0.884627i \(-0.345587\pi\)
0.466299 + 0.884627i \(0.345587\pi\)
\(840\) 0 0
\(841\) 42.7771 1.47507
\(842\) 0 0
\(843\) 26.7639 0.921799
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) −30.6525 −1.05323
\(848\) 0 0
\(849\) −4.18034 −0.143469
\(850\) 0 0
\(851\) 9.70820 0.332793
\(852\) 0 0
\(853\) −26.2918 −0.900214 −0.450107 0.892975i \(-0.648614\pi\)
−0.450107 + 0.892975i \(0.648614\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −34.9098 −1.19250 −0.596249 0.802800i \(-0.703343\pi\)
−0.596249 + 0.802800i \(0.703343\pi\)
\(858\) 0 0
\(859\) 26.8328 0.915524 0.457762 0.889075i \(-0.348651\pi\)
0.457762 + 0.889075i \(0.348651\pi\)
\(860\) 0 0
\(861\) 14.4721 0.493209
\(862\) 0 0
\(863\) 17.5279 0.596655 0.298328 0.954464i \(-0.403571\pi\)
0.298328 + 0.954464i \(0.403571\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 16.8541 0.572395
\(868\) 0 0
\(869\) −17.1246 −0.580913
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 12.0000 0.406138
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −34.5410 −1.16637 −0.583184 0.812340i \(-0.698193\pi\)
−0.583184 + 0.812340i \(0.698193\pi\)
\(878\) 0 0
\(879\) 19.0344 0.642016
\(880\) 0 0
\(881\) −16.5836 −0.558715 −0.279358 0.960187i \(-0.590122\pi\)
−0.279358 + 0.960187i \(0.590122\pi\)
\(882\) 0 0
\(883\) −10.1115 −0.340278 −0.170139 0.985420i \(-0.554422\pi\)
−0.170139 + 0.985420i \(0.554422\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 22.9098 0.769237 0.384618 0.923076i \(-0.374333\pi\)
0.384618 + 0.923076i \(0.374333\pi\)
\(888\) 0 0
\(889\) 30.4721 1.02200
\(890\) 0 0
\(891\) −1.23607 −0.0414098
\(892\) 0 0
\(893\) −53.2148 −1.78076
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 64.5410 2.15256
\(900\) 0 0
\(901\) −1.94427 −0.0647731
\(902\) 0 0
\(903\) 18.4721 0.614714
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) −53.7082 −1.78335 −0.891676 0.452675i \(-0.850470\pi\)
−0.891676 + 0.452675i \(0.850470\pi\)
\(908\) 0 0
\(909\) 0.763932 0.0253380
\(910\) 0 0
\(911\) −56.0689 −1.85764 −0.928822 0.370525i \(-0.879178\pi\)
−0.928822 + 0.370525i \(0.879178\pi\)
\(912\) 0 0
\(913\) −7.81966 −0.258793
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 35.4164 1.16955
\(918\) 0 0
\(919\) −3.25735 −0.107450 −0.0537251 0.998556i \(-0.517109\pi\)
−0.0537251 + 0.998556i \(0.517109\pi\)
\(920\) 0 0
\(921\) −24.1803 −0.796769
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 2.29180 0.0752725
\(928\) 0 0
\(929\) −49.4853 −1.62356 −0.811780 0.583964i \(-0.801501\pi\)
−0.811780 + 0.583964i \(0.801501\pi\)
\(930\) 0 0
\(931\) 20.3262 0.666166
\(932\) 0 0
\(933\) 14.2918 0.467892
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 14.5836 0.476425 0.238213 0.971213i \(-0.423438\pi\)
0.238213 + 0.971213i \(0.423438\pi\)
\(938\) 0 0
\(939\) −15.7082 −0.512618
\(940\) 0 0
\(941\) 38.2918 1.24828 0.624138 0.781314i \(-0.285450\pi\)
0.624138 + 0.781314i \(0.285450\pi\)
\(942\) 0 0
\(943\) 21.7082 0.706916
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 21.2148 0.689388 0.344694 0.938715i \(-0.387983\pi\)
0.344694 + 0.938715i \(0.387983\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) −32.8328 −1.06468
\(952\) 0 0
\(953\) 12.7426 0.412775 0.206387 0.978470i \(-0.433829\pi\)
0.206387 + 0.978470i \(0.433829\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 10.4721 0.338516
\(958\) 0 0
\(959\) −53.3050 −1.72131
\(960\) 0 0
\(961\) 27.0344 0.872079
\(962\) 0 0
\(963\) 14.3820 0.463452
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) −18.9443 −0.609207 −0.304603 0.952479i \(-0.598524\pi\)
−0.304603 + 0.952479i \(0.598524\pi\)
\(968\) 0 0
\(969\) 2.23607 0.0718329
\(970\) 0 0
\(971\) −30.5410 −0.980108 −0.490054 0.871692i \(-0.663023\pi\)
−0.490054 + 0.871692i \(0.663023\pi\)
\(972\) 0 0
\(973\) 16.6525 0.533854
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 17.7295 0.567217 0.283608 0.958940i \(-0.408468\pi\)
0.283608 + 0.958940i \(0.408468\pi\)
\(978\) 0 0
\(979\) 3.41641 0.109189
\(980\) 0 0
\(981\) 1.61803 0.0516598
\(982\) 0 0
\(983\) −48.5066 −1.54712 −0.773560 0.633723i \(-0.781526\pi\)
−0.773560 + 0.633723i \(0.781526\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 29.4164 0.936335
\(988\) 0 0
\(989\) 27.7082 0.881070
\(990\) 0 0
\(991\) 5.56231 0.176692 0.0883462 0.996090i \(-0.471842\pi\)
0.0883462 + 0.996090i \(0.471842\pi\)
\(992\) 0 0
\(993\) −24.0344 −0.762710
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) −6.00000 −0.190022 −0.0950110 0.995476i \(-0.530289\pi\)
−0.0950110 + 0.995476i \(0.530289\pi\)
\(998\) 0 0
\(999\) 2.00000 0.0632772
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1500.2.a.c.1.2 2
3.2 odd 2 4500.2.a.h.1.2 2
4.3 odd 2 6000.2.a.s.1.1 2
5.2 odd 4 1500.2.d.b.1249.4 4
5.3 odd 4 1500.2.d.b.1249.1 4
5.4 even 2 1500.2.a.g.1.1 yes 2
15.2 even 4 4500.2.d.a.4249.4 4
15.8 even 4 4500.2.d.a.4249.1 4
15.14 odd 2 4500.2.a.d.1.1 2
20.3 even 4 6000.2.f.f.1249.4 4
20.7 even 4 6000.2.f.f.1249.1 4
20.19 odd 2 6000.2.a.i.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1500.2.a.c.1.2 2 1.1 even 1 trivial
1500.2.a.g.1.1 yes 2 5.4 even 2
1500.2.d.b.1249.1 4 5.3 odd 4
1500.2.d.b.1249.4 4 5.2 odd 4
4500.2.a.d.1.1 2 15.14 odd 2
4500.2.a.h.1.2 2 3.2 odd 2
4500.2.d.a.4249.1 4 15.8 even 4
4500.2.d.a.4249.4 4 15.2 even 4
6000.2.a.i.1.2 2 20.19 odd 2
6000.2.a.s.1.1 2 4.3 odd 2
6000.2.f.f.1249.1 4 20.7 even 4
6000.2.f.f.1249.4 4 20.3 even 4