Properties

Label 6000.2.f.f.1249.4
Level $6000$
Weight $2$
Character 6000.1249
Analytic conductor $47.910$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [6000,2,Mod(1249,6000)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(6000, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("6000.1249");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 6000 = 2^{4} \cdot 3 \cdot 5^{3} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6000.f (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(47.9102412128\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{5})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 3x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 1500)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1249.4
Root \(1.61803i\) of defining polynomial
Character \(\chi\) \(=\) 6000.1249
Dual form 6000.2.f.f.1249.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000i q^{3} +3.23607i q^{7} -1.00000 q^{9} +O(q^{10})\) \(q+1.00000i q^{3} +3.23607i q^{7} -1.00000 q^{9} +1.23607 q^{11} +0.381966i q^{17} +5.85410 q^{19} -3.23607 q^{21} +4.85410i q^{23} -1.00000i q^{27} -8.47214 q^{29} -7.61803 q^{31} +1.23607i q^{33} +2.00000i q^{37} -4.47214 q^{41} +5.70820i q^{43} -9.09017i q^{47} -3.47214 q^{49} -0.381966 q^{51} +5.09017i q^{53} +5.85410i q^{57} +11.2361 q^{59} -5.56231 q^{61} -3.23607i q^{63} +15.7082i q^{67} -4.85410 q^{69} -5.52786 q^{71} +3.52786i q^{73} +4.00000i q^{77} +13.8541 q^{79} +1.00000 q^{81} -6.32624i q^{83} -8.47214i q^{87} +2.76393 q^{89} -7.61803i q^{93} -12.0000i q^{97} -1.23607 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 4 q - 4 q^{9} - 4 q^{11} + 10 q^{19} - 4 q^{21} - 16 q^{29} - 26 q^{31} + 4 q^{49} - 6 q^{51} + 36 q^{59} + 18 q^{61} - 6 q^{69} - 40 q^{71} + 42 q^{79} + 4 q^{81} + 20 q^{89} + 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/6000\mathbb{Z}\right)^\times\).

\(n\) \(751\) \(4001\) \(4501\) \(5377\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.00000i 0.577350i
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 3.23607i 1.22312i 0.791199 + 0.611559i \(0.209457\pi\)
−0.791199 + 0.611559i \(0.790543\pi\)
\(8\) 0 0
\(9\) −1.00000 −0.333333
\(10\) 0 0
\(11\) 1.23607 0.372689 0.186344 0.982485i \(-0.440336\pi\)
0.186344 + 0.982485i \(0.440336\pi\)
\(12\) 0 0
\(13\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 0.381966i 0.0926404i 0.998927 + 0.0463202i \(0.0147494\pi\)
−0.998927 + 0.0463202i \(0.985251\pi\)
\(18\) 0 0
\(19\) 5.85410 1.34302 0.671512 0.740994i \(-0.265645\pi\)
0.671512 + 0.740994i \(0.265645\pi\)
\(20\) 0 0
\(21\) −3.23607 −0.706168
\(22\) 0 0
\(23\) 4.85410i 1.01215i 0.862489 + 0.506075i \(0.168904\pi\)
−0.862489 + 0.506075i \(0.831096\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) − 1.00000i − 0.192450i
\(28\) 0 0
\(29\) −8.47214 −1.57324 −0.786618 0.617440i \(-0.788170\pi\)
−0.786618 + 0.617440i \(0.788170\pi\)
\(30\) 0 0
\(31\) −7.61803 −1.36824 −0.684120 0.729370i \(-0.739813\pi\)
−0.684120 + 0.729370i \(0.739813\pi\)
\(32\) 0 0
\(33\) 1.23607i 0.215172i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 2.00000i 0.328798i 0.986394 + 0.164399i \(0.0525685\pi\)
−0.986394 + 0.164399i \(0.947432\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −4.47214 −0.698430 −0.349215 0.937043i \(-0.613552\pi\)
−0.349215 + 0.937043i \(0.613552\pi\)
\(42\) 0 0
\(43\) 5.70820i 0.870493i 0.900311 + 0.435246i \(0.143339\pi\)
−0.900311 + 0.435246i \(0.856661\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) − 9.09017i − 1.32594i −0.748647 0.662969i \(-0.769296\pi\)
0.748647 0.662969i \(-0.230704\pi\)
\(48\) 0 0
\(49\) −3.47214 −0.496019
\(50\) 0 0
\(51\) −0.381966 −0.0534859
\(52\) 0 0
\(53\) 5.09017i 0.699189i 0.936901 + 0.349594i \(0.113681\pi\)
−0.936901 + 0.349594i \(0.886319\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 5.85410i 0.775395i
\(58\) 0 0
\(59\) 11.2361 1.46281 0.731406 0.681943i \(-0.238865\pi\)
0.731406 + 0.681943i \(0.238865\pi\)
\(60\) 0 0
\(61\) −5.56231 −0.712180 −0.356090 0.934452i \(-0.615890\pi\)
−0.356090 + 0.934452i \(0.615890\pi\)
\(62\) 0 0
\(63\) − 3.23607i − 0.407706i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 15.7082i 1.91906i 0.281602 + 0.959531i \(0.409134\pi\)
−0.281602 + 0.959531i \(0.590866\pi\)
\(68\) 0 0
\(69\) −4.85410 −0.584365
\(70\) 0 0
\(71\) −5.52786 −0.656037 −0.328018 0.944671i \(-0.606381\pi\)
−0.328018 + 0.944671i \(0.606381\pi\)
\(72\) 0 0
\(73\) 3.52786i 0.412905i 0.978457 + 0.206453i \(0.0661919\pi\)
−0.978457 + 0.206453i \(0.933808\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 4.00000i 0.455842i
\(78\) 0 0
\(79\) 13.8541 1.55871 0.779354 0.626584i \(-0.215547\pi\)
0.779354 + 0.626584i \(0.215547\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) − 6.32624i − 0.694395i −0.937792 0.347197i \(-0.887133\pi\)
0.937792 0.347197i \(-0.112867\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) − 8.47214i − 0.908308i
\(88\) 0 0
\(89\) 2.76393 0.292976 0.146488 0.989212i \(-0.453203\pi\)
0.146488 + 0.989212i \(0.453203\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) − 7.61803i − 0.789953i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) − 12.0000i − 1.21842i −0.793011 0.609208i \(-0.791488\pi\)
0.793011 0.609208i \(-0.208512\pi\)
\(98\) 0 0
\(99\) −1.23607 −0.124230
\(100\) 0 0
\(101\) 0.763932 0.0760141 0.0380070 0.999277i \(-0.487899\pi\)
0.0380070 + 0.999277i \(0.487899\pi\)
\(102\) 0 0
\(103\) − 2.29180i − 0.225817i −0.993605 0.112909i \(-0.963983\pi\)
0.993605 0.112909i \(-0.0360168\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 14.3820i 1.39036i 0.718837 + 0.695179i \(0.244675\pi\)
−0.718837 + 0.695179i \(0.755325\pi\)
\(108\) 0 0
\(109\) −1.61803 −0.154980 −0.0774898 0.996993i \(-0.524691\pi\)
−0.0774898 + 0.996993i \(0.524691\pi\)
\(110\) 0 0
\(111\) −2.00000 −0.189832
\(112\) 0 0
\(113\) − 1.67376i − 0.157454i −0.996896 0.0787271i \(-0.974914\pi\)
0.996896 0.0787271i \(-0.0250856\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −1.23607 −0.113310
\(120\) 0 0
\(121\) −9.47214 −0.861103
\(122\) 0 0
\(123\) − 4.47214i − 0.403239i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 9.41641i 0.835571i 0.908546 + 0.417786i \(0.137194\pi\)
−0.908546 + 0.417786i \(0.862806\pi\)
\(128\) 0 0
\(129\) −5.70820 −0.502579
\(130\) 0 0
\(131\) −10.9443 −0.956205 −0.478103 0.878304i \(-0.658675\pi\)
−0.478103 + 0.878304i \(0.658675\pi\)
\(132\) 0 0
\(133\) 18.9443i 1.64268i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 16.4721i 1.40731i 0.710542 + 0.703655i \(0.248450\pi\)
−0.710542 + 0.703655i \(0.751550\pi\)
\(138\) 0 0
\(139\) 5.14590 0.436469 0.218235 0.975896i \(-0.429970\pi\)
0.218235 + 0.975896i \(0.429970\pi\)
\(140\) 0 0
\(141\) 9.09017 0.765530
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) − 3.47214i − 0.286377i
\(148\) 0 0
\(149\) −23.1246 −1.89444 −0.947221 0.320581i \(-0.896122\pi\)
−0.947221 + 0.320581i \(0.896122\pi\)
\(150\) 0 0
\(151\) 5.85410 0.476400 0.238200 0.971216i \(-0.423443\pi\)
0.238200 + 0.971216i \(0.423443\pi\)
\(152\) 0 0
\(153\) − 0.381966i − 0.0308801i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) − 14.7639i − 1.17829i −0.808027 0.589145i \(-0.799465\pi\)
0.808027 0.589145i \(-0.200535\pi\)
\(158\) 0 0
\(159\) −5.09017 −0.403677
\(160\) 0 0
\(161\) −15.7082 −1.23798
\(162\) 0 0
\(163\) − 2.76393i − 0.216488i −0.994124 0.108244i \(-0.965477\pi\)
0.994124 0.108244i \(-0.0345228\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) − 7.85410i − 0.607769i −0.952709 0.303884i \(-0.901716\pi\)
0.952709 0.303884i \(-0.0982836\pi\)
\(168\) 0 0
\(169\) 13.0000 1.00000
\(170\) 0 0
\(171\) −5.85410 −0.447674
\(172\) 0 0
\(173\) − 23.8885i − 1.81621i −0.418740 0.908106i \(-0.637528\pi\)
0.418740 0.908106i \(-0.362472\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 11.2361i 0.844555i
\(178\) 0 0
\(179\) −23.8885 −1.78551 −0.892757 0.450539i \(-0.851232\pi\)
−0.892757 + 0.450539i \(0.851232\pi\)
\(180\) 0 0
\(181\) −17.5623 −1.30540 −0.652698 0.757618i \(-0.726363\pi\)
−0.652698 + 0.757618i \(0.726363\pi\)
\(182\) 0 0
\(183\) − 5.56231i − 0.411177i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 0.472136i 0.0345260i
\(188\) 0 0
\(189\) 3.23607 0.235389
\(190\) 0 0
\(191\) −12.9443 −0.936615 −0.468307 0.883566i \(-0.655136\pi\)
−0.468307 + 0.883566i \(0.655136\pi\)
\(192\) 0 0
\(193\) − 21.1246i − 1.52058i −0.649582 0.760291i \(-0.725056\pi\)
0.649582 0.760291i \(-0.274944\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 23.0344i 1.64114i 0.571549 + 0.820568i \(0.306343\pi\)
−0.571549 + 0.820568i \(0.693657\pi\)
\(198\) 0 0
\(199\) −11.7984 −0.836365 −0.418182 0.908363i \(-0.637333\pi\)
−0.418182 + 0.908363i \(0.637333\pi\)
\(200\) 0 0
\(201\) −15.7082 −1.10797
\(202\) 0 0
\(203\) − 27.4164i − 1.92425i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) − 4.85410i − 0.337383i
\(208\) 0 0
\(209\) 7.23607 0.500529
\(210\) 0 0
\(211\) −12.5623 −0.864825 −0.432412 0.901676i \(-0.642338\pi\)
−0.432412 + 0.901676i \(0.642338\pi\)
\(212\) 0 0
\(213\) − 5.52786i − 0.378763i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) − 24.6525i − 1.67352i
\(218\) 0 0
\(219\) −3.52786 −0.238391
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 26.8328i 1.79686i 0.439119 + 0.898429i \(0.355291\pi\)
−0.439119 + 0.898429i \(0.644709\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) − 11.9098i − 0.790483i −0.918577 0.395242i \(-0.870661\pi\)
0.918577 0.395242i \(-0.129339\pi\)
\(228\) 0 0
\(229\) 3.14590 0.207887 0.103943 0.994583i \(-0.466854\pi\)
0.103943 + 0.994583i \(0.466854\pi\)
\(230\) 0 0
\(231\) −4.00000 −0.263181
\(232\) 0 0
\(233\) 13.4164i 0.878938i 0.898258 + 0.439469i \(0.144833\pi\)
−0.898258 + 0.439469i \(0.855167\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 13.8541i 0.899921i
\(238\) 0 0
\(239\) 0.763932 0.0494147 0.0247073 0.999695i \(-0.492135\pi\)
0.0247073 + 0.999695i \(0.492135\pi\)
\(240\) 0 0
\(241\) 12.2705 0.790413 0.395207 0.918592i \(-0.370673\pi\)
0.395207 + 0.918592i \(0.370673\pi\)
\(242\) 0 0
\(243\) 1.00000i 0.0641500i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 6.32624 0.400909
\(250\) 0 0
\(251\) −14.1803 −0.895055 −0.447528 0.894270i \(-0.647695\pi\)
−0.447528 + 0.894270i \(0.647695\pi\)
\(252\) 0 0
\(253\) 6.00000i 0.377217i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) − 9.38197i − 0.585231i −0.956230 0.292615i \(-0.905474\pi\)
0.956230 0.292615i \(-0.0945256\pi\)
\(258\) 0 0
\(259\) −6.47214 −0.402159
\(260\) 0 0
\(261\) 8.47214 0.524412
\(262\) 0 0
\(263\) 17.6180i 1.08637i 0.839612 + 0.543187i \(0.182783\pi\)
−0.839612 + 0.543187i \(0.817217\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 2.76393i 0.169150i
\(268\) 0 0
\(269\) 29.1246 1.77576 0.887879 0.460076i \(-0.152178\pi\)
0.887879 + 0.460076i \(0.152178\pi\)
\(270\) 0 0
\(271\) −18.2705 −1.10985 −0.554927 0.831899i \(-0.687254\pi\)
−0.554927 + 0.831899i \(0.687254\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) − 15.4164i − 0.926282i −0.886285 0.463141i \(-0.846722\pi\)
0.886285 0.463141i \(-0.153278\pi\)
\(278\) 0 0
\(279\) 7.61803 0.456080
\(280\) 0 0
\(281\) −26.7639 −1.59660 −0.798301 0.602258i \(-0.794268\pi\)
−0.798301 + 0.602258i \(0.794268\pi\)
\(282\) 0 0
\(283\) − 4.18034i − 0.248495i −0.992251 0.124248i \(-0.960348\pi\)
0.992251 0.124248i \(-0.0396517\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) − 14.4721i − 0.854263i
\(288\) 0 0
\(289\) 16.8541 0.991418
\(290\) 0 0
\(291\) 12.0000 0.703452
\(292\) 0 0
\(293\) − 19.0344i − 1.11200i −0.831181 0.556002i \(-0.812335\pi\)
0.831181 0.556002i \(-0.187665\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) − 1.23607i − 0.0717239i
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) −18.4721 −1.06472
\(302\) 0 0
\(303\) 0.763932i 0.0438867i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 24.1803i 1.38004i 0.723788 + 0.690022i \(0.242399\pi\)
−0.723788 + 0.690022i \(0.757601\pi\)
\(308\) 0 0
\(309\) 2.29180 0.130376
\(310\) 0 0
\(311\) 14.2918 0.810413 0.405207 0.914225i \(-0.367200\pi\)
0.405207 + 0.914225i \(0.367200\pi\)
\(312\) 0 0
\(313\) 15.7082i 0.887880i 0.896056 + 0.443940i \(0.146420\pi\)
−0.896056 + 0.443940i \(0.853580\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) − 32.8328i − 1.84407i −0.387101 0.922037i \(-0.626524\pi\)
0.387101 0.922037i \(-0.373476\pi\)
\(318\) 0 0
\(319\) −10.4721 −0.586327
\(320\) 0 0
\(321\) −14.3820 −0.802723
\(322\) 0 0
\(323\) 2.23607i 0.124418i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) − 1.61803i − 0.0894775i
\(328\) 0 0
\(329\) 29.4164 1.62178
\(330\) 0 0
\(331\) −24.0344 −1.32105 −0.660526 0.750803i \(-0.729667\pi\)
−0.660526 + 0.750803i \(0.729667\pi\)
\(332\) 0 0
\(333\) − 2.00000i − 0.109599i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 18.1803i 0.990346i 0.868794 + 0.495173i \(0.164895\pi\)
−0.868794 + 0.495173i \(0.835105\pi\)
\(338\) 0 0
\(339\) 1.67376 0.0909063
\(340\) 0 0
\(341\) −9.41641 −0.509927
\(342\) 0 0
\(343\) 11.4164i 0.616428i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) − 8.50658i − 0.456657i −0.973584 0.228329i \(-0.926674\pi\)
0.973584 0.228329i \(-0.0733260\pi\)
\(348\) 0 0
\(349\) 4.85410 0.259834 0.129917 0.991525i \(-0.458529\pi\)
0.129917 + 0.991525i \(0.458529\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) − 22.8541i − 1.21640i −0.793783 0.608201i \(-0.791892\pi\)
0.793783 0.608201i \(-0.208108\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) − 1.23607i − 0.0654197i
\(358\) 0 0
\(359\) −10.4721 −0.552698 −0.276349 0.961057i \(-0.589125\pi\)
−0.276349 + 0.961057i \(0.589125\pi\)
\(360\) 0 0
\(361\) 15.2705 0.803711
\(362\) 0 0
\(363\) − 9.47214i − 0.497158i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 19.4164i 1.01353i 0.862085 + 0.506764i \(0.169158\pi\)
−0.862085 + 0.506764i \(0.830842\pi\)
\(368\) 0 0
\(369\) 4.47214 0.232810
\(370\) 0 0
\(371\) −16.4721 −0.855191
\(372\) 0 0
\(373\) 21.5279i 1.11467i 0.830288 + 0.557335i \(0.188176\pi\)
−0.830288 + 0.557335i \(0.811824\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) −12.0000 −0.616399 −0.308199 0.951322i \(-0.599726\pi\)
−0.308199 + 0.951322i \(0.599726\pi\)
\(380\) 0 0
\(381\) −9.41641 −0.482417
\(382\) 0 0
\(383\) − 21.2148i − 1.08402i −0.840371 0.542012i \(-0.817663\pi\)
0.840371 0.542012i \(-0.182337\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) − 5.70820i − 0.290164i
\(388\) 0 0
\(389\) −6.65248 −0.337294 −0.168647 0.985677i \(-0.553940\pi\)
−0.168647 + 0.985677i \(0.553940\pi\)
\(390\) 0 0
\(391\) −1.85410 −0.0937660
\(392\) 0 0
\(393\) − 10.9443i − 0.552065i
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) − 6.29180i − 0.315776i −0.987457 0.157888i \(-0.949531\pi\)
0.987457 0.157888i \(-0.0504685\pi\)
\(398\) 0 0
\(399\) −18.9443 −0.948400
\(400\) 0 0
\(401\) 18.3607 0.916889 0.458444 0.888723i \(-0.348407\pi\)
0.458444 + 0.888723i \(0.348407\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 2.47214i 0.122539i
\(408\) 0 0
\(409\) 21.5623 1.06619 0.533094 0.846056i \(-0.321029\pi\)
0.533094 + 0.846056i \(0.321029\pi\)
\(410\) 0 0
\(411\) −16.4721 −0.812511
\(412\) 0 0
\(413\) 36.3607i 1.78919i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 5.14590i 0.251996i
\(418\) 0 0
\(419\) 5.81966 0.284309 0.142155 0.989844i \(-0.454597\pi\)
0.142155 + 0.989844i \(0.454597\pi\)
\(420\) 0 0
\(421\) −20.3262 −0.990640 −0.495320 0.868711i \(-0.664949\pi\)
−0.495320 + 0.868711i \(0.664949\pi\)
\(422\) 0 0
\(423\) 9.09017i 0.441979i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) − 18.0000i − 0.871081i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 7.52786 0.362604 0.181302 0.983427i \(-0.441969\pi\)
0.181302 + 0.983427i \(0.441969\pi\)
\(432\) 0 0
\(433\) 27.4164i 1.31755i 0.752341 + 0.658774i \(0.228925\pi\)
−0.752341 + 0.658774i \(0.771075\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 28.4164i 1.35934i
\(438\) 0 0
\(439\) −15.4164 −0.735785 −0.367893 0.929868i \(-0.619921\pi\)
−0.367893 + 0.929868i \(0.619921\pi\)
\(440\) 0 0
\(441\) 3.47214 0.165340
\(442\) 0 0
\(443\) 20.7984i 0.988161i 0.869416 + 0.494080i \(0.164495\pi\)
−0.869416 + 0.494080i \(0.835505\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) − 23.1246i − 1.09376i
\(448\) 0 0
\(449\) 5.81966 0.274647 0.137323 0.990526i \(-0.456150\pi\)
0.137323 + 0.990526i \(0.456150\pi\)
\(450\) 0 0
\(451\) −5.52786 −0.260297
\(452\) 0 0
\(453\) 5.85410i 0.275050i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 5.12461i 0.239719i 0.992791 + 0.119860i \(0.0382444\pi\)
−0.992791 + 0.119860i \(0.961756\pi\)
\(458\) 0 0
\(459\) 0.381966 0.0178286
\(460\) 0 0
\(461\) −20.1803 −0.939892 −0.469946 0.882695i \(-0.655727\pi\)
−0.469946 + 0.882695i \(0.655727\pi\)
\(462\) 0 0
\(463\) 30.9443i 1.43810i 0.694957 + 0.719051i \(0.255423\pi\)
−0.694957 + 0.719051i \(0.744577\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) − 5.74265i − 0.265738i −0.991134 0.132869i \(-0.957581\pi\)
0.991134 0.132869i \(-0.0424190\pi\)
\(468\) 0 0
\(469\) −50.8328 −2.34724
\(470\) 0 0
\(471\) 14.7639 0.680286
\(472\) 0 0
\(473\) 7.05573i 0.324423i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) − 5.09017i − 0.233063i
\(478\) 0 0
\(479\) −11.1246 −0.508296 −0.254148 0.967165i \(-0.581795\pi\)
−0.254148 + 0.967165i \(0.581795\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) − 15.7082i − 0.714748i
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) − 10.7639i − 0.487760i −0.969805 0.243880i \(-0.921580\pi\)
0.969805 0.243880i \(-0.0784204\pi\)
\(488\) 0 0
\(489\) 2.76393 0.124989
\(490\) 0 0
\(491\) 32.8328 1.48172 0.740862 0.671657i \(-0.234417\pi\)
0.740862 + 0.671657i \(0.234417\pi\)
\(492\) 0 0
\(493\) − 3.23607i − 0.145745i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) − 17.8885i − 0.802411i
\(498\) 0 0
\(499\) −28.6869 −1.28420 −0.642101 0.766620i \(-0.721937\pi\)
−0.642101 + 0.766620i \(0.721937\pi\)
\(500\) 0 0
\(501\) 7.85410 0.350895
\(502\) 0 0
\(503\) − 32.9443i − 1.46891i −0.678656 0.734456i \(-0.737437\pi\)
0.678656 0.734456i \(-0.262563\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 13.0000i 0.577350i
\(508\) 0 0
\(509\) −29.8885 −1.32479 −0.662393 0.749156i \(-0.730459\pi\)
−0.662393 + 0.749156i \(0.730459\pi\)
\(510\) 0 0
\(511\) −11.4164 −0.505032
\(512\) 0 0
\(513\) − 5.85410i − 0.258465i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) − 11.2361i − 0.494162i
\(518\) 0 0
\(519\) 23.8885 1.04859
\(520\) 0 0
\(521\) 29.8885 1.30944 0.654720 0.755871i \(-0.272786\pi\)
0.654720 + 0.755871i \(0.272786\pi\)
\(522\) 0 0
\(523\) 39.8885i 1.74420i 0.489324 + 0.872102i \(0.337244\pi\)
−0.489324 + 0.872102i \(0.662756\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) − 2.90983i − 0.126754i
\(528\) 0 0
\(529\) −0.562306 −0.0244481
\(530\) 0 0
\(531\) −11.2361 −0.487604
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) − 23.8885i − 1.03087i
\(538\) 0 0
\(539\) −4.29180 −0.184861
\(540\) 0 0
\(541\) −16.2705 −0.699524 −0.349762 0.936839i \(-0.613738\pi\)
−0.349762 + 0.936839i \(0.613738\pi\)
\(542\) 0 0
\(543\) − 17.5623i − 0.753671i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) − 44.8328i − 1.91691i −0.285239 0.958456i \(-0.592073\pi\)
0.285239 0.958456i \(-0.407927\pi\)
\(548\) 0 0
\(549\) 5.56231 0.237393
\(550\) 0 0
\(551\) −49.5967 −2.11289
\(552\) 0 0
\(553\) 44.8328i 1.90649i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 10.3607i 0.438996i 0.975613 + 0.219498i \(0.0704420\pi\)
−0.975613 + 0.219498i \(0.929558\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) −0.472136 −0.0199336
\(562\) 0 0
\(563\) − 6.38197i − 0.268968i −0.990916 0.134484i \(-0.957062\pi\)
0.990916 0.134484i \(-0.0429377\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 3.23607i 0.135902i
\(568\) 0 0
\(569\) 25.3050 1.06084 0.530419 0.847735i \(-0.322034\pi\)
0.530419 + 0.847735i \(0.322034\pi\)
\(570\) 0 0
\(571\) 37.8885 1.58559 0.792793 0.609491i \(-0.208626\pi\)
0.792793 + 0.609491i \(0.208626\pi\)
\(572\) 0 0
\(573\) − 12.9443i − 0.540755i
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 23.1246i 0.962690i 0.876531 + 0.481345i \(0.159852\pi\)
−0.876531 + 0.481345i \(0.840148\pi\)
\(578\) 0 0
\(579\) 21.1246 0.877909
\(580\) 0 0
\(581\) 20.4721 0.849327
\(582\) 0 0
\(583\) 6.29180i 0.260580i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 13.0344i 0.537989i 0.963142 + 0.268994i \(0.0866913\pi\)
−0.963142 + 0.268994i \(0.913309\pi\)
\(588\) 0 0
\(589\) −44.5967 −1.83758
\(590\) 0 0
\(591\) −23.0344 −0.947510
\(592\) 0 0
\(593\) − 20.5066i − 0.842104i −0.907036 0.421052i \(-0.861661\pi\)
0.907036 0.421052i \(-0.138339\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) − 11.7984i − 0.482875i
\(598\) 0 0
\(599\) 32.8328 1.34151 0.670756 0.741678i \(-0.265970\pi\)
0.670756 + 0.741678i \(0.265970\pi\)
\(600\) 0 0
\(601\) −12.8541 −0.524330 −0.262165 0.965023i \(-0.584436\pi\)
−0.262165 + 0.965023i \(0.584436\pi\)
\(602\) 0 0
\(603\) − 15.7082i − 0.639688i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 48.2492i 1.95838i 0.202956 + 0.979188i \(0.434945\pi\)
−0.202956 + 0.979188i \(0.565055\pi\)
\(608\) 0 0
\(609\) 27.4164 1.11097
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 7.59675i 0.306830i 0.988162 + 0.153415i \(0.0490271\pi\)
−0.988162 + 0.153415i \(0.950973\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) − 34.4508i − 1.38694i −0.720486 0.693469i \(-0.756081\pi\)
0.720486 0.693469i \(-0.243919\pi\)
\(618\) 0 0
\(619\) 23.7984 0.956537 0.478269 0.878214i \(-0.341265\pi\)
0.478269 + 0.878214i \(0.341265\pi\)
\(620\) 0 0
\(621\) 4.85410 0.194788
\(622\) 0 0
\(623\) 8.94427i 0.358345i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 7.23607i 0.288981i
\(628\) 0 0
\(629\) −0.763932 −0.0304600
\(630\) 0 0
\(631\) 29.3050 1.16661 0.583306 0.812253i \(-0.301759\pi\)
0.583306 + 0.812253i \(0.301759\pi\)
\(632\) 0 0
\(633\) − 12.5623i − 0.499307i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 5.52786 0.218679
\(640\) 0 0
\(641\) −41.7771 −1.65010 −0.825048 0.565063i \(-0.808852\pi\)
−0.825048 + 0.565063i \(0.808852\pi\)
\(642\) 0 0
\(643\) − 4.65248i − 0.183476i −0.995783 0.0917379i \(-0.970758\pi\)
0.995783 0.0917379i \(-0.0292422\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 19.0557i 0.749158i 0.927195 + 0.374579i \(0.122213\pi\)
−0.927195 + 0.374579i \(0.877787\pi\)
\(648\) 0 0
\(649\) 13.8885 0.545173
\(650\) 0 0
\(651\) 24.6525 0.966207
\(652\) 0 0
\(653\) − 46.6869i − 1.82700i −0.406838 0.913500i \(-0.633369\pi\)
0.406838 0.913500i \(-0.366631\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) − 3.52786i − 0.137635i
\(658\) 0 0
\(659\) 32.0689 1.24923 0.624613 0.780934i \(-0.285257\pi\)
0.624613 + 0.780934i \(0.285257\pi\)
\(660\) 0 0
\(661\) 18.2016 0.707961 0.353981 0.935253i \(-0.384828\pi\)
0.353981 + 0.935253i \(0.384828\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) − 41.1246i − 1.59235i
\(668\) 0 0
\(669\) −26.8328 −1.03742
\(670\) 0 0
\(671\) −6.87539 −0.265421
\(672\) 0 0
\(673\) 7.88854i 0.304081i 0.988374 + 0.152041i \(0.0485844\pi\)
−0.988374 + 0.152041i \(0.951416\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) − 6.97871i − 0.268214i −0.990967 0.134107i \(-0.957183\pi\)
0.990967 0.134107i \(-0.0428165\pi\)
\(678\) 0 0
\(679\) 38.8328 1.49027
\(680\) 0 0
\(681\) 11.9098 0.456386
\(682\) 0 0
\(683\) − 19.3262i − 0.739498i −0.929132 0.369749i \(-0.879444\pi\)
0.929132 0.369749i \(-0.120556\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 3.14590i 0.120023i
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) 4.56231 0.173558 0.0867791 0.996228i \(-0.472343\pi\)
0.0867791 + 0.996228i \(0.472343\pi\)
\(692\) 0 0
\(693\) − 4.00000i − 0.151947i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) − 1.70820i − 0.0647028i
\(698\) 0 0
\(699\) −13.4164 −0.507455
\(700\) 0 0
\(701\) −1.88854 −0.0713293 −0.0356647 0.999364i \(-0.511355\pi\)
−0.0356647 + 0.999364i \(0.511355\pi\)
\(702\) 0 0
\(703\) 11.7082i 0.441583i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 2.47214i 0.0929742i
\(708\) 0 0
\(709\) −12.6180 −0.473880 −0.236940 0.971524i \(-0.576145\pi\)
−0.236940 + 0.971524i \(0.576145\pi\)
\(710\) 0 0
\(711\) −13.8541 −0.519569
\(712\) 0 0
\(713\) − 36.9787i − 1.38486i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0.763932i 0.0285296i
\(718\) 0 0
\(719\) 20.7639 0.774364 0.387182 0.922003i \(-0.373449\pi\)
0.387182 + 0.922003i \(0.373449\pi\)
\(720\) 0 0
\(721\) 7.41641 0.276201
\(722\) 0 0
\(723\) 12.2705i 0.456345i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 18.8328i 0.698470i 0.937035 + 0.349235i \(0.113559\pi\)
−0.937035 + 0.349235i \(0.886441\pi\)
\(728\) 0 0
\(729\) −1.00000 −0.0370370
\(730\) 0 0
\(731\) −2.18034 −0.0806428
\(732\) 0 0
\(733\) − 10.1803i − 0.376019i −0.982167 0.188010i \(-0.939796\pi\)
0.982167 0.188010i \(-0.0602036\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 19.4164i 0.715213i
\(738\) 0 0
\(739\) −12.5623 −0.462112 −0.231056 0.972940i \(-0.574218\pi\)
−0.231056 + 0.972940i \(0.574218\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) − 7.41641i − 0.272082i −0.990703 0.136041i \(-0.956562\pi\)
0.990703 0.136041i \(-0.0434378\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 6.32624i 0.231465i
\(748\) 0 0
\(749\) −46.5410 −1.70057
\(750\) 0 0
\(751\) −8.90983 −0.325124 −0.162562 0.986698i \(-0.551976\pi\)
−0.162562 + 0.986698i \(0.551976\pi\)
\(752\) 0 0
\(753\) − 14.1803i − 0.516760i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 43.4853i 1.58050i 0.612785 + 0.790250i \(0.290049\pi\)
−0.612785 + 0.790250i \(0.709951\pi\)
\(758\) 0 0
\(759\) −6.00000 −0.217786
\(760\) 0 0
\(761\) −13.5279 −0.490385 −0.245192 0.969474i \(-0.578851\pi\)
−0.245192 + 0.969474i \(0.578851\pi\)
\(762\) 0 0
\(763\) − 5.23607i − 0.189558i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 2.14590 0.0773831 0.0386915 0.999251i \(-0.487681\pi\)
0.0386915 + 0.999251i \(0.487681\pi\)
\(770\) 0 0
\(771\) 9.38197 0.337883
\(772\) 0 0
\(773\) 51.9230i 1.86754i 0.357874 + 0.933770i \(0.383502\pi\)
−0.357874 + 0.933770i \(0.616498\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) − 6.47214i − 0.232187i
\(778\) 0 0
\(779\) −26.1803 −0.938008
\(780\) 0 0
\(781\) −6.83282 −0.244497
\(782\) 0 0
\(783\) 8.47214i 0.302769i
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) − 39.7082i − 1.41544i −0.706491 0.707722i \(-0.749723\pi\)
0.706491 0.707722i \(-0.250277\pi\)
\(788\) 0 0
\(789\) −17.6180 −0.627219
\(790\) 0 0
\(791\) 5.41641 0.192585
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) − 20.7426i − 0.734742i −0.930074 0.367371i \(-0.880258\pi\)
0.930074 0.367371i \(-0.119742\pi\)
\(798\) 0 0
\(799\) 3.47214 0.122835
\(800\) 0 0
\(801\) −2.76393 −0.0976587
\(802\) 0 0
\(803\) 4.36068i 0.153885i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 29.1246i 1.02523i
\(808\) 0 0
\(809\) −49.4164 −1.73739 −0.868694 0.495349i \(-0.835040\pi\)
−0.868694 + 0.495349i \(0.835040\pi\)
\(810\) 0 0
\(811\) −2.43769 −0.0855990 −0.0427995 0.999084i \(-0.513628\pi\)
−0.0427995 + 0.999084i \(0.513628\pi\)
\(812\) 0 0
\(813\) − 18.2705i − 0.640775i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 33.4164i 1.16909i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 41.5279 1.44933 0.724666 0.689100i \(-0.241994\pi\)
0.724666 + 0.689100i \(0.241994\pi\)
\(822\) 0 0
\(823\) 14.7639i 0.514638i 0.966326 + 0.257319i \(0.0828392\pi\)
−0.966326 + 0.257319i \(0.917161\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 16.1459i 0.561448i 0.959789 + 0.280724i \(0.0905745\pi\)
−0.959789 + 0.280724i \(0.909425\pi\)
\(828\) 0 0
\(829\) −37.8541 −1.31473 −0.657364 0.753574i \(-0.728328\pi\)
−0.657364 + 0.753574i \(0.728328\pi\)
\(830\) 0 0
\(831\) 15.4164 0.534789
\(832\) 0 0
\(833\) − 1.32624i − 0.0459514i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 7.61803i 0.263318i
\(838\) 0 0
\(839\) 27.0132 0.932598 0.466299 0.884627i \(-0.345587\pi\)
0.466299 + 0.884627i \(0.345587\pi\)
\(840\) 0 0
\(841\) 42.7771 1.47507
\(842\) 0 0
\(843\) − 26.7639i − 0.921799i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) − 30.6525i − 1.05323i
\(848\) 0 0
\(849\) 4.18034 0.143469
\(850\) 0 0
\(851\) −9.70820 −0.332793
\(852\) 0 0
\(853\) − 26.2918i − 0.900214i −0.892975 0.450107i \(-0.851386\pi\)
0.892975 0.450107i \(-0.148614\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 34.9098i 1.19250i 0.802800 + 0.596249i \(0.203343\pi\)
−0.802800 + 0.596249i \(0.796657\pi\)
\(858\) 0 0
\(859\) 26.8328 0.915524 0.457762 0.889075i \(-0.348651\pi\)
0.457762 + 0.889075i \(0.348651\pi\)
\(860\) 0 0
\(861\) 14.4721 0.493209
\(862\) 0 0
\(863\) − 17.5279i − 0.596655i −0.954464 0.298328i \(-0.903571\pi\)
0.954464 0.298328i \(-0.0964288\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 16.8541i 0.572395i
\(868\) 0 0
\(869\) 17.1246 0.580913
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 12.0000i 0.406138i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 34.5410i 1.16637i 0.812340 + 0.583184i \(0.198193\pi\)
−0.812340 + 0.583184i \(0.801807\pi\)
\(878\) 0 0
\(879\) 19.0344 0.642016
\(880\) 0 0
\(881\) −16.5836 −0.558715 −0.279358 0.960187i \(-0.590122\pi\)
−0.279358 + 0.960187i \(0.590122\pi\)
\(882\) 0 0
\(883\) 10.1115i 0.340278i 0.985420 + 0.170139i \(0.0544216\pi\)
−0.985420 + 0.170139i \(0.945578\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 22.9098i 0.769237i 0.923076 + 0.384618i \(0.125667\pi\)
−0.923076 + 0.384618i \(0.874333\pi\)
\(888\) 0 0
\(889\) −30.4721 −1.02200
\(890\) 0 0
\(891\) 1.23607 0.0414098
\(892\) 0 0
\(893\) − 53.2148i − 1.78076i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 64.5410 2.15256
\(900\) 0 0
\(901\) −1.94427 −0.0647731
\(902\) 0 0
\(903\) − 18.4721i − 0.614714i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) − 53.7082i − 1.78335i −0.452675 0.891676i \(-0.649530\pi\)
0.452675 0.891676i \(-0.350470\pi\)
\(908\) 0 0
\(909\) −0.763932 −0.0253380
\(910\) 0 0
\(911\) 56.0689 1.85764 0.928822 0.370525i \(-0.120822\pi\)
0.928822 + 0.370525i \(0.120822\pi\)
\(912\) 0 0
\(913\) − 7.81966i − 0.258793i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) − 35.4164i − 1.16955i
\(918\) 0 0
\(919\) −3.25735 −0.107450 −0.0537251 0.998556i \(-0.517109\pi\)
−0.0537251 + 0.998556i \(0.517109\pi\)
\(920\) 0 0
\(921\) −24.1803 −0.796769
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 2.29180i 0.0752725i
\(928\) 0 0
\(929\) 49.4853 1.62356 0.811780 0.583964i \(-0.198499\pi\)
0.811780 + 0.583964i \(0.198499\pi\)
\(930\) 0 0
\(931\) −20.3262 −0.666166
\(932\) 0 0
\(933\) 14.2918i 0.467892i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) − 14.5836i − 0.476425i −0.971213 0.238213i \(-0.923438\pi\)
0.971213 0.238213i \(-0.0765615\pi\)
\(938\) 0 0
\(939\) −15.7082 −0.512618
\(940\) 0 0
\(941\) 38.2918 1.24828 0.624138 0.781314i \(-0.285450\pi\)
0.624138 + 0.781314i \(0.285450\pi\)
\(942\) 0 0
\(943\) − 21.7082i − 0.706916i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 21.2148i 0.689388i 0.938715 + 0.344694i \(0.112017\pi\)
−0.938715 + 0.344694i \(0.887983\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 32.8328 1.06468
\(952\) 0 0
\(953\) 12.7426i 0.412775i 0.978470 + 0.206387i \(0.0661707\pi\)
−0.978470 + 0.206387i \(0.933829\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) − 10.4721i − 0.338516i
\(958\) 0 0
\(959\) −53.3050 −1.72131
\(960\) 0 0
\(961\) 27.0344 0.872079
\(962\) 0 0
\(963\) − 14.3820i − 0.463452i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) − 18.9443i − 0.609207i −0.952479 0.304603i \(-0.901476\pi\)
0.952479 0.304603i \(-0.0985239\pi\)
\(968\) 0 0
\(969\) −2.23607 −0.0718329
\(970\) 0 0
\(971\) 30.5410 0.980108 0.490054 0.871692i \(-0.336977\pi\)
0.490054 + 0.871692i \(0.336977\pi\)
\(972\) 0 0
\(973\) 16.6525i 0.533854i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) − 17.7295i − 0.567217i −0.958940 0.283608i \(-0.908468\pi\)
0.958940 0.283608i \(-0.0915316\pi\)
\(978\) 0 0
\(979\) 3.41641 0.109189
\(980\) 0 0
\(981\) 1.61803 0.0516598
\(982\) 0 0
\(983\) 48.5066i 1.54712i 0.633723 + 0.773560i \(0.281526\pi\)
−0.633723 + 0.773560i \(0.718474\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 29.4164i 0.936335i
\(988\) 0 0
\(989\) −27.7082 −0.881070
\(990\) 0 0
\(991\) −5.56231 −0.176692 −0.0883462 0.996090i \(-0.528158\pi\)
−0.0883462 + 0.996090i \(0.528158\pi\)
\(992\) 0 0
\(993\) − 24.0344i − 0.762710i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 6.00000i 0.190022i 0.995476 + 0.0950110i \(0.0302886\pi\)
−0.995476 + 0.0950110i \(0.969711\pi\)
\(998\) 0 0
\(999\) 2.00000 0.0632772
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 6000.2.f.f.1249.4 4
4.3 odd 2 1500.2.d.b.1249.1 4
5.2 odd 4 6000.2.a.s.1.1 2
5.3 odd 4 6000.2.a.i.1.2 2
5.4 even 2 inner 6000.2.f.f.1249.1 4
12.11 even 2 4500.2.d.a.4249.1 4
20.3 even 4 1500.2.a.g.1.1 yes 2
20.7 even 4 1500.2.a.c.1.2 2
20.19 odd 2 1500.2.d.b.1249.4 4
60.23 odd 4 4500.2.a.d.1.1 2
60.47 odd 4 4500.2.a.h.1.2 2
60.59 even 2 4500.2.d.a.4249.4 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1500.2.a.c.1.2 2 20.7 even 4
1500.2.a.g.1.1 yes 2 20.3 even 4
1500.2.d.b.1249.1 4 4.3 odd 2
1500.2.d.b.1249.4 4 20.19 odd 2
4500.2.a.d.1.1 2 60.23 odd 4
4500.2.a.h.1.2 2 60.47 odd 4
4500.2.d.a.4249.1 4 12.11 even 2
4500.2.d.a.4249.4 4 60.59 even 2
6000.2.a.i.1.2 2 5.3 odd 4
6000.2.a.s.1.1 2 5.2 odd 4
6000.2.f.f.1249.1 4 5.4 even 2 inner
6000.2.f.f.1249.4 4 1.1 even 1 trivial