Properties

Label 6000.2
Level 6000
Weight 2
Dimension 372096
Nonzero newspaces 42
Sturm bound 3840000

Downloads

Learn more

Defining parameters

Level: N N = 6000=24353 6000 = 2^{4} \cdot 3 \cdot 5^{3}
Weight: k k = 2 2
Nonzero newspaces: 42 42
Sturm bound: 38400003840000

Dimensions

The following table gives the dimensions of various subspaces of M2(Γ1(6000))M_{2}(\Gamma_1(6000)).

Total New Old
Modular forms 970080 374400 595680
Cusp forms 949921 372096 577825
Eisenstein series 20159 2304 17855

Decomposition of S2new(Γ1(6000))S_{2}^{\mathrm{new}}(\Gamma_1(6000))

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space Sknew(N,χ) S_k^{\mathrm{new}}(N, \chi) we list available newforms together with their dimension.

Label χ\chi Newforms Dimension χ\chi degree
6000.2.a χ6000(1,)\chi_{6000}(1, \cdot) 6000.2.a.a 2 1
6000.2.a.b 2
6000.2.a.c 2
6000.2.a.d 2
6000.2.a.e 2
6000.2.a.f 2
6000.2.a.g 2
6000.2.a.h 2
6000.2.a.i 2
6000.2.a.j 2
6000.2.a.k 2
6000.2.a.l 2
6000.2.a.m 2
6000.2.a.n 2
6000.2.a.o 2
6000.2.a.p 2
6000.2.a.q 2
6000.2.a.r 2
6000.2.a.s 2
6000.2.a.t 2
6000.2.a.u 2
6000.2.a.v 2
6000.2.a.w 2
6000.2.a.x 2
6000.2.a.y 2
6000.2.a.z 2
6000.2.a.ba 2
6000.2.a.bb 2
6000.2.a.bc 4
6000.2.a.bd 4
6000.2.a.be 4
6000.2.a.bf 4
6000.2.a.bg 4
6000.2.a.bh 4
6000.2.a.bi 4
6000.2.a.bj 4
6000.2.a.bk 4
6000.2.a.bl 4
6000.2.b χ6000(1751,)\chi_{6000}(1751, \cdot) None 0 1
6000.2.d χ6000(4249,)\chi_{6000}(4249, \cdot) None 0 1
6000.2.f χ6000(1249,)\chi_{6000}(1249, \cdot) 6000.2.f.a 4 1
6000.2.f.b 4
6000.2.f.c 4
6000.2.f.d 4
6000.2.f.e 4
6000.2.f.f 4
6000.2.f.g 4
6000.2.f.h 4
6000.2.f.i 4
6000.2.f.j 4
6000.2.f.k 4
6000.2.f.l 4
6000.2.f.m 4
6000.2.f.n 4
6000.2.f.o 8
6000.2.f.p 8
6000.2.f.q 8
6000.2.f.r 8
6000.2.f.s 8
6000.2.h χ6000(4751,)\chi_{6000}(4751, \cdot) n/a 192 1
6000.2.k χ6000(3001,)\chi_{6000}(3001, \cdot) None 0 1
6000.2.m χ6000(2999,)\chi_{6000}(2999, \cdot) None 0 1
6000.2.o χ6000(5999,)\chi_{6000}(5999, \cdot) n/a 192 1
6000.2.s χ6000(1501,)\chi_{6000}(1501, \cdot) n/a 768 2
6000.2.t χ6000(1499,)\chi_{6000}(1499, \cdot) n/a 1536 2
6000.2.v χ6000(4193,)\chi_{6000}(4193, \cdot) n/a 384 2
6000.2.w χ6000(943,)\chi_{6000}(943, \cdot) n/a 192 2
6000.2.y χ6000(3307,)\chi_{6000}(3307, \cdot) n/a 768 2
6000.2.bb χ6000(3557,)\chi_{6000}(3557, \cdot) n/a 1536 2
6000.2.bc χ6000(307,)\chi_{6000}(307, \cdot) n/a 768 2
6000.2.bf χ6000(557,)\chi_{6000}(557, \cdot) n/a 1536 2
6000.2.bh χ6000(3943,)\chi_{6000}(3943, \cdot) None 0 2
6000.2.bi χ6000(1193,)\chi_{6000}(1193, \cdot) None 0 2
6000.2.bk χ6000(251,)\chi_{6000}(251, \cdot) n/a 1536 2
6000.2.bl χ6000(2749,)\chi_{6000}(2749, \cdot) n/a 768 2
6000.2.bo χ6000(1201,)\chi_{6000}(1201, \cdot) n/a 360 4
6000.2.bq χ6000(1151,)\chi_{6000}(1151, \cdot) n/a 720 4
6000.2.bs χ6000(49,)\chi_{6000}(49, \cdot) n/a 360 4
6000.2.bu χ6000(649,)\chi_{6000}(649, \cdot) None 0 4
6000.2.bw χ6000(551,)\chi_{6000}(551, \cdot) None 0 4
6000.2.by χ6000(1199,)\chi_{6000}(1199, \cdot) n/a 720 4
6000.2.ca χ6000(599,)\chi_{6000}(599, \cdot) None 0 4
6000.2.cc χ6000(601,)\chi_{6000}(601, \cdot) None 0 4
6000.2.ce χ6000(299,)\chi_{6000}(299, \cdot) n/a 5664 8
6000.2.cf χ6000(301,)\chi_{6000}(301, \cdot) n/a 2880 8
6000.2.cj χ6000(857,)\chi_{6000}(857, \cdot) None 0 8
6000.2.ck χ6000(7,)\chi_{6000}(7, \cdot) None 0 8
6000.2.cm χ6000(293,)\chi_{6000}(293, \cdot) n/a 5664 8
6000.2.cp χ6000(43,)\chi_{6000}(43, \cdot) n/a 2880 8
6000.2.cq χ6000(893,)\chi_{6000}(893, \cdot) n/a 5664 8
6000.2.ct χ6000(643,)\chi_{6000}(643, \cdot) n/a 2880 8
6000.2.cv χ6000(607,)\chi_{6000}(607, \cdot) n/a 720 8
6000.2.cw χ6000(257,)\chi_{6000}(257, \cdot) n/a 1392 8
6000.2.da χ6000(349,)\chi_{6000}(349, \cdot) n/a 2880 8
6000.2.db χ6000(851,)\chi_{6000}(851, \cdot) n/a 5664 8
6000.2.dc χ6000(241,)\chi_{6000}(241, \cdot) n/a 3000 20
6000.2.df χ6000(239,)\chi_{6000}(239, \cdot) n/a 6000 20
6000.2.dh χ6000(119,)\chi_{6000}(119, \cdot) None 0 20
6000.2.di χ6000(121,)\chi_{6000}(121, \cdot) None 0 20
6000.2.dl χ6000(71,)\chi_{6000}(71, \cdot) None 0 20
6000.2.dm χ6000(169,)\chi_{6000}(169, \cdot) None 0 20
6000.2.do χ6000(289,)\chi_{6000}(289, \cdot) n/a 3000 20
6000.2.dr χ6000(191,)\chi_{6000}(191, \cdot) n/a 6000 20
6000.2.ds χ6000(11,)\chi_{6000}(11, \cdot) n/a 47840 40
6000.2.dv χ6000(109,)\chi_{6000}(109, \cdot) n/a 24000 40
6000.2.dx χ6000(173,)\chi_{6000}(173, \cdot) n/a 47840 40
6000.2.dy χ6000(67,)\chi_{6000}(67, \cdot) n/a 24000 40
6000.2.eb χ6000(137,)\chi_{6000}(137, \cdot) None 0 40
6000.2.ec χ6000(127,)\chi_{6000}(127, \cdot) n/a 6000 40
6000.2.ee χ6000(17,)\chi_{6000}(17, \cdot) n/a 11920 40
6000.2.eh χ6000(103,)\chi_{6000}(103, \cdot) None 0 40
6000.2.ei χ6000(163,)\chi_{6000}(163, \cdot) n/a 24000 40
6000.2.el χ6000(53,)\chi_{6000}(53, \cdot) n/a 47840 40
6000.2.en χ6000(61,)\chi_{6000}(61, \cdot) n/a 24000 40
6000.2.eo χ6000(59,)\chi_{6000}(59, \cdot) n/a 47840 40

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of S2old(Γ1(6000))S_{2}^{\mathrm{old}}(\Gamma_1(6000)) into lower level spaces

S2old(Γ1(6000)) S_{2}^{\mathrm{old}}(\Gamma_1(6000)) \cong S2new(Γ1(1))S_{2}^{\mathrm{new}}(\Gamma_1(1))40^{\oplus 40}\oplusS2new(Γ1(2))S_{2}^{\mathrm{new}}(\Gamma_1(2))32^{\oplus 32}\oplusS2new(Γ1(3))S_{2}^{\mathrm{new}}(\Gamma_1(3))20^{\oplus 20}\oplusS2new(Γ1(4))S_{2}^{\mathrm{new}}(\Gamma_1(4))24^{\oplus 24}\oplusS2new(Γ1(5))S_{2}^{\mathrm{new}}(\Gamma_1(5))30^{\oplus 30}\oplusS2new(Γ1(6))S_{2}^{\mathrm{new}}(\Gamma_1(6))16^{\oplus 16}\oplusS2new(Γ1(8))S_{2}^{\mathrm{new}}(\Gamma_1(8))16^{\oplus 16}\oplusS2new(Γ1(10))S_{2}^{\mathrm{new}}(\Gamma_1(10))24^{\oplus 24}\oplusS2new(Γ1(12))S_{2}^{\mathrm{new}}(\Gamma_1(12))12^{\oplus 12}\oplusS2new(Γ1(15))S_{2}^{\mathrm{new}}(\Gamma_1(15))15^{\oplus 15}\oplusS2new(Γ1(16))S_{2}^{\mathrm{new}}(\Gamma_1(16))8^{\oplus 8}\oplusS2new(Γ1(20))S_{2}^{\mathrm{new}}(\Gamma_1(20))18^{\oplus 18}\oplusS2new(Γ1(24))S_{2}^{\mathrm{new}}(\Gamma_1(24))8^{\oplus 8}\oplusS2new(Γ1(25))S_{2}^{\mathrm{new}}(\Gamma_1(25))20^{\oplus 20}\oplusS2new(Γ1(30))S_{2}^{\mathrm{new}}(\Gamma_1(30))12^{\oplus 12}\oplusS2new(Γ1(40))S_{2}^{\mathrm{new}}(\Gamma_1(40))12^{\oplus 12}\oplusS2new(Γ1(48))S_{2}^{\mathrm{new}}(\Gamma_1(48))4^{\oplus 4}\oplusS2new(Γ1(50))S_{2}^{\mathrm{new}}(\Gamma_1(50))16^{\oplus 16}\oplusS2new(Γ1(60))S_{2}^{\mathrm{new}}(\Gamma_1(60))9^{\oplus 9}\oplusS2new(Γ1(75))S_{2}^{\mathrm{new}}(\Gamma_1(75))10^{\oplus 10}\oplusS2new(Γ1(80))S_{2}^{\mathrm{new}}(\Gamma_1(80))6^{\oplus 6}\oplusS2new(Γ1(100))S_{2}^{\mathrm{new}}(\Gamma_1(100))12^{\oplus 12}\oplusS2new(Γ1(120))S_{2}^{\mathrm{new}}(\Gamma_1(120))6^{\oplus 6}\oplusS2new(Γ1(125))S_{2}^{\mathrm{new}}(\Gamma_1(125))10^{\oplus 10}\oplusS2new(Γ1(150))S_{2}^{\mathrm{new}}(\Gamma_1(150))8^{\oplus 8}\oplusS2new(Γ1(200))S_{2}^{\mathrm{new}}(\Gamma_1(200))8^{\oplus 8}\oplusS2new(Γ1(240))S_{2}^{\mathrm{new}}(\Gamma_1(240))3^{\oplus 3}\oplusS2new(Γ1(250))S_{2}^{\mathrm{new}}(\Gamma_1(250))8^{\oplus 8}\oplusS2new(Γ1(300))S_{2}^{\mathrm{new}}(\Gamma_1(300))6^{\oplus 6}\oplusS2new(Γ1(375))S_{2}^{\mathrm{new}}(\Gamma_1(375))5^{\oplus 5}\oplusS2new(Γ1(400))S_{2}^{\mathrm{new}}(\Gamma_1(400))4^{\oplus 4}\oplusS2new(Γ1(500))S_{2}^{\mathrm{new}}(\Gamma_1(500))6^{\oplus 6}\oplusS2new(Γ1(600))S_{2}^{\mathrm{new}}(\Gamma_1(600))4^{\oplus 4}\oplusS2new(Γ1(750))S_{2}^{\mathrm{new}}(\Gamma_1(750))4^{\oplus 4}\oplusS2new(Γ1(1000))S_{2}^{\mathrm{new}}(\Gamma_1(1000))4^{\oplus 4}\oplusS2new(Γ1(1200))S_{2}^{\mathrm{new}}(\Gamma_1(1200))2^{\oplus 2}\oplusS2new(Γ1(1500))S_{2}^{\mathrm{new}}(\Gamma_1(1500))3^{\oplus 3}\oplusS2new(Γ1(2000))S_{2}^{\mathrm{new}}(\Gamma_1(2000))2^{\oplus 2}\oplusS2new(Γ1(3000))S_{2}^{\mathrm{new}}(\Gamma_1(3000))2^{\oplus 2}