Properties

Label 6000.dy
Modulus $6000$
Conductor $2000$
Order $100$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(6000, base_ring=CyclotomicField(100))
 
M = H._module
 
chi = DirichletCharacter(H, M([50,75,0,13]))
 
chi.galois_orbit()
 
[g,chi] = znchar(Mod(67,6000))
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(6000\)
Conductor: \(2000\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(100\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from 2000.by
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Related number fields

Field of values: $\Q(\zeta_{100})$
Fixed field: Number field defined by a degree 100 polynomial

First 31 of 40 characters in Galois orbit

Character \(-1\) \(1\) \(7\) \(11\) \(13\) \(17\) \(19\) \(23\) \(29\) \(31\) \(37\) \(41\)
\(\chi_{6000}(67,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{20}\right)\) \(e\left(\frac{13}{100}\right)\) \(e\left(\frac{8}{25}\right)\) \(e\left(\frac{49}{100}\right)\) \(e\left(\frac{9}{100}\right)\) \(e\left(\frac{3}{100}\right)\) \(e\left(\frac{31}{100}\right)\) \(e\left(\frac{37}{50}\right)\) \(e\left(\frac{13}{25}\right)\) \(e\left(\frac{11}{50}\right)\)
\(\chi_{6000}(283,\cdot)\) \(1\) \(1\) \(e\left(\frac{11}{20}\right)\) \(e\left(\frac{83}{100}\right)\) \(e\left(\frac{3}{25}\right)\) \(e\left(\frac{59}{100}\right)\) \(e\left(\frac{19}{100}\right)\) \(e\left(\frac{73}{100}\right)\) \(e\left(\frac{21}{100}\right)\) \(e\left(\frac{17}{50}\right)\) \(e\left(\frac{8}{25}\right)\) \(e\left(\frac{1}{50}\right)\)
\(\chi_{6000}(523,\cdot)\) \(1\) \(1\) \(e\left(\frac{7}{20}\right)\) \(e\left(\frac{31}{100}\right)\) \(e\left(\frac{21}{25}\right)\) \(e\left(\frac{63}{100}\right)\) \(e\left(\frac{83}{100}\right)\) \(e\left(\frac{61}{100}\right)\) \(e\left(\frac{97}{100}\right)\) \(e\left(\frac{19}{50}\right)\) \(e\left(\frac{6}{25}\right)\) \(e\left(\frac{7}{50}\right)\)
\(\chi_{6000}(547,\cdot)\) \(1\) \(1\) \(e\left(\frac{9}{20}\right)\) \(e\left(\frac{97}{100}\right)\) \(e\left(\frac{2}{25}\right)\) \(e\left(\frac{81}{100}\right)\) \(e\left(\frac{21}{100}\right)\) \(e\left(\frac{7}{100}\right)\) \(e\left(\frac{39}{100}\right)\) \(e\left(\frac{3}{50}\right)\) \(e\left(\frac{22}{25}\right)\) \(e\left(\frac{9}{50}\right)\)
\(\chi_{6000}(763,\cdot)\) \(1\) \(1\) \(e\left(\frac{3}{20}\right)\) \(e\left(\frac{39}{100}\right)\) \(e\left(\frac{24}{25}\right)\) \(e\left(\frac{47}{100}\right)\) \(e\left(\frac{27}{100}\right)\) \(e\left(\frac{9}{100}\right)\) \(e\left(\frac{93}{100}\right)\) \(e\left(\frac{11}{50}\right)\) \(e\left(\frac{14}{25}\right)\) \(e\left(\frac{33}{50}\right)\)
\(\chi_{6000}(787,\cdot)\) \(1\) \(1\) \(e\left(\frac{13}{20}\right)\) \(e\left(\frac{29}{100}\right)\) \(e\left(\frac{14}{25}\right)\) \(e\left(\frac{17}{100}\right)\) \(e\left(\frac{97}{100}\right)\) \(e\left(\frac{99}{100}\right)\) \(e\left(\frac{23}{100}\right)\) \(e\left(\frac{21}{50}\right)\) \(e\left(\frac{4}{25}\right)\) \(e\left(\frac{13}{50}\right)\)
\(\chi_{6000}(1003,\cdot)\) \(1\) \(1\) \(e\left(\frac{19}{20}\right)\) \(e\left(\frac{7}{100}\right)\) \(e\left(\frac{12}{25}\right)\) \(e\left(\frac{11}{100}\right)\) \(e\left(\frac{51}{100}\right)\) \(e\left(\frac{17}{100}\right)\) \(e\left(\frac{9}{100}\right)\) \(e\left(\frac{43}{50}\right)\) \(e\left(\frac{7}{25}\right)\) \(e\left(\frac{29}{50}\right)\)
\(\chi_{6000}(1027,\cdot)\) \(1\) \(1\) \(e\left(\frac{17}{20}\right)\) \(e\left(\frac{21}{100}\right)\) \(e\left(\frac{11}{25}\right)\) \(e\left(\frac{33}{100}\right)\) \(e\left(\frac{53}{100}\right)\) \(e\left(\frac{51}{100}\right)\) \(e\left(\frac{27}{100}\right)\) \(e\left(\frac{29}{50}\right)\) \(e\left(\frac{21}{25}\right)\) \(e\left(\frac{37}{50}\right)\)
\(\chi_{6000}(1267,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{20}\right)\) \(e\left(\frac{73}{100}\right)\) \(e\left(\frac{18}{25}\right)\) \(e\left(\frac{29}{100}\right)\) \(e\left(\frac{89}{100}\right)\) \(e\left(\frac{63}{100}\right)\) \(e\left(\frac{51}{100}\right)\) \(e\left(\frac{27}{50}\right)\) \(e\left(\frac{23}{25}\right)\) \(e\left(\frac{31}{50}\right)\)
\(\chi_{6000}(1483,\cdot)\) \(1\) \(1\) \(e\left(\frac{11}{20}\right)\) \(e\left(\frac{23}{100}\right)\) \(e\left(\frac{18}{25}\right)\) \(e\left(\frac{79}{100}\right)\) \(e\left(\frac{39}{100}\right)\) \(e\left(\frac{13}{100}\right)\) \(e\left(\frac{1}{100}\right)\) \(e\left(\frac{27}{50}\right)\) \(e\left(\frac{23}{25}\right)\) \(e\left(\frac{31}{50}\right)\)
\(\chi_{6000}(1723,\cdot)\) \(1\) \(1\) \(e\left(\frac{7}{20}\right)\) \(e\left(\frac{71}{100}\right)\) \(e\left(\frac{11}{25}\right)\) \(e\left(\frac{83}{100}\right)\) \(e\left(\frac{3}{100}\right)\) \(e\left(\frac{1}{100}\right)\) \(e\left(\frac{77}{100}\right)\) \(e\left(\frac{29}{50}\right)\) \(e\left(\frac{21}{25}\right)\) \(e\left(\frac{37}{50}\right)\)
\(\chi_{6000}(1747,\cdot)\) \(1\) \(1\) \(e\left(\frac{9}{20}\right)\) \(e\left(\frac{57}{100}\right)\) \(e\left(\frac{12}{25}\right)\) \(e\left(\frac{61}{100}\right)\) \(e\left(\frac{1}{100}\right)\) \(e\left(\frac{67}{100}\right)\) \(e\left(\frac{59}{100}\right)\) \(e\left(\frac{43}{50}\right)\) \(e\left(\frac{7}{25}\right)\) \(e\left(\frac{29}{50}\right)\)
\(\chi_{6000}(1963,\cdot)\) \(1\) \(1\) \(e\left(\frac{3}{20}\right)\) \(e\left(\frac{79}{100}\right)\) \(e\left(\frac{14}{25}\right)\) \(e\left(\frac{67}{100}\right)\) \(e\left(\frac{47}{100}\right)\) \(e\left(\frac{49}{100}\right)\) \(e\left(\frac{73}{100}\right)\) \(e\left(\frac{21}{50}\right)\) \(e\left(\frac{4}{25}\right)\) \(e\left(\frac{13}{50}\right)\)
\(\chi_{6000}(1987,\cdot)\) \(1\) \(1\) \(e\left(\frac{13}{20}\right)\) \(e\left(\frac{89}{100}\right)\) \(e\left(\frac{24}{25}\right)\) \(e\left(\frac{97}{100}\right)\) \(e\left(\frac{77}{100}\right)\) \(e\left(\frac{59}{100}\right)\) \(e\left(\frac{43}{100}\right)\) \(e\left(\frac{11}{50}\right)\) \(e\left(\frac{14}{25}\right)\) \(e\left(\frac{33}{50}\right)\)
\(\chi_{6000}(2203,\cdot)\) \(1\) \(1\) \(e\left(\frac{19}{20}\right)\) \(e\left(\frac{47}{100}\right)\) \(e\left(\frac{2}{25}\right)\) \(e\left(\frac{31}{100}\right)\) \(e\left(\frac{71}{100}\right)\) \(e\left(\frac{57}{100}\right)\) \(e\left(\frac{89}{100}\right)\) \(e\left(\frac{3}{50}\right)\) \(e\left(\frac{22}{25}\right)\) \(e\left(\frac{9}{50}\right)\)
\(\chi_{6000}(2227,\cdot)\) \(1\) \(1\) \(e\left(\frac{17}{20}\right)\) \(e\left(\frac{81}{100}\right)\) \(e\left(\frac{21}{25}\right)\) \(e\left(\frac{13}{100}\right)\) \(e\left(\frac{33}{100}\right)\) \(e\left(\frac{11}{100}\right)\) \(e\left(\frac{47}{100}\right)\) \(e\left(\frac{19}{50}\right)\) \(e\left(\frac{6}{25}\right)\) \(e\left(\frac{7}{50}\right)\)
\(\chi_{6000}(2467,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{20}\right)\) \(e\left(\frac{33}{100}\right)\) \(e\left(\frac{3}{25}\right)\) \(e\left(\frac{9}{100}\right)\) \(e\left(\frac{69}{100}\right)\) \(e\left(\frac{23}{100}\right)\) \(e\left(\frac{71}{100}\right)\) \(e\left(\frac{17}{50}\right)\) \(e\left(\frac{8}{25}\right)\) \(e\left(\frac{1}{50}\right)\)
\(\chi_{6000}(2683,\cdot)\) \(1\) \(1\) \(e\left(\frac{11}{20}\right)\) \(e\left(\frac{63}{100}\right)\) \(e\left(\frac{8}{25}\right)\) \(e\left(\frac{99}{100}\right)\) \(e\left(\frac{59}{100}\right)\) \(e\left(\frac{53}{100}\right)\) \(e\left(\frac{81}{100}\right)\) \(e\left(\frac{37}{50}\right)\) \(e\left(\frac{13}{25}\right)\) \(e\left(\frac{11}{50}\right)\)
\(\chi_{6000}(2923,\cdot)\) \(1\) \(1\) \(e\left(\frac{7}{20}\right)\) \(e\left(\frac{11}{100}\right)\) \(e\left(\frac{1}{25}\right)\) \(e\left(\frac{3}{100}\right)\) \(e\left(\frac{23}{100}\right)\) \(e\left(\frac{41}{100}\right)\) \(e\left(\frac{57}{100}\right)\) \(e\left(\frac{39}{50}\right)\) \(e\left(\frac{11}{25}\right)\) \(e\left(\frac{17}{50}\right)\)
\(\chi_{6000}(2947,\cdot)\) \(1\) \(1\) \(e\left(\frac{9}{20}\right)\) \(e\left(\frac{17}{100}\right)\) \(e\left(\frac{22}{25}\right)\) \(e\left(\frac{41}{100}\right)\) \(e\left(\frac{81}{100}\right)\) \(e\left(\frac{27}{100}\right)\) \(e\left(\frac{79}{100}\right)\) \(e\left(\frac{33}{50}\right)\) \(e\left(\frac{17}{25}\right)\) \(e\left(\frac{49}{50}\right)\)
\(\chi_{6000}(3163,\cdot)\) \(1\) \(1\) \(e\left(\frac{3}{20}\right)\) \(e\left(\frac{19}{100}\right)\) \(e\left(\frac{4}{25}\right)\) \(e\left(\frac{87}{100}\right)\) \(e\left(\frac{67}{100}\right)\) \(e\left(\frac{89}{100}\right)\) \(e\left(\frac{53}{100}\right)\) \(e\left(\frac{31}{50}\right)\) \(e\left(\frac{19}{25}\right)\) \(e\left(\frac{43}{50}\right)\)
\(\chi_{6000}(3187,\cdot)\) \(1\) \(1\) \(e\left(\frac{13}{20}\right)\) \(e\left(\frac{49}{100}\right)\) \(e\left(\frac{9}{25}\right)\) \(e\left(\frac{77}{100}\right)\) \(e\left(\frac{57}{100}\right)\) \(e\left(\frac{19}{100}\right)\) \(e\left(\frac{63}{100}\right)\) \(e\left(\frac{1}{50}\right)\) \(e\left(\frac{24}{25}\right)\) \(e\left(\frac{3}{50}\right)\)
\(\chi_{6000}(3403,\cdot)\) \(1\) \(1\) \(e\left(\frac{19}{20}\right)\) \(e\left(\frac{87}{100}\right)\) \(e\left(\frac{17}{25}\right)\) \(e\left(\frac{51}{100}\right)\) \(e\left(\frac{91}{100}\right)\) \(e\left(\frac{97}{100}\right)\) \(e\left(\frac{69}{100}\right)\) \(e\left(\frac{13}{50}\right)\) \(e\left(\frac{12}{25}\right)\) \(e\left(\frac{39}{50}\right)\)
\(\chi_{6000}(3427,\cdot)\) \(1\) \(1\) \(e\left(\frac{17}{20}\right)\) \(e\left(\frac{41}{100}\right)\) \(e\left(\frac{6}{25}\right)\) \(e\left(\frac{93}{100}\right)\) \(e\left(\frac{13}{100}\right)\) \(e\left(\frac{71}{100}\right)\) \(e\left(\frac{67}{100}\right)\) \(e\left(\frac{9}{50}\right)\) \(e\left(\frac{16}{25}\right)\) \(e\left(\frac{27}{50}\right)\)
\(\chi_{6000}(3667,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{20}\right)\) \(e\left(\frac{93}{100}\right)\) \(e\left(\frac{13}{25}\right)\) \(e\left(\frac{89}{100}\right)\) \(e\left(\frac{49}{100}\right)\) \(e\left(\frac{83}{100}\right)\) \(e\left(\frac{91}{100}\right)\) \(e\left(\frac{7}{50}\right)\) \(e\left(\frac{18}{25}\right)\) \(e\left(\frac{21}{50}\right)\)
\(\chi_{6000}(3883,\cdot)\) \(1\) \(1\) \(e\left(\frac{11}{20}\right)\) \(e\left(\frac{3}{100}\right)\) \(e\left(\frac{23}{25}\right)\) \(e\left(\frac{19}{100}\right)\) \(e\left(\frac{79}{100}\right)\) \(e\left(\frac{93}{100}\right)\) \(e\left(\frac{61}{100}\right)\) \(e\left(\frac{47}{50}\right)\) \(e\left(\frac{3}{25}\right)\) \(e\left(\frac{41}{50}\right)\)
\(\chi_{6000}(4123,\cdot)\) \(1\) \(1\) \(e\left(\frac{7}{20}\right)\) \(e\left(\frac{51}{100}\right)\) \(e\left(\frac{16}{25}\right)\) \(e\left(\frac{23}{100}\right)\) \(e\left(\frac{43}{100}\right)\) \(e\left(\frac{81}{100}\right)\) \(e\left(\frac{37}{100}\right)\) \(e\left(\frac{49}{50}\right)\) \(e\left(\frac{1}{25}\right)\) \(e\left(\frac{47}{50}\right)\)
\(\chi_{6000}(4147,\cdot)\) \(1\) \(1\) \(e\left(\frac{9}{20}\right)\) \(e\left(\frac{77}{100}\right)\) \(e\left(\frac{7}{25}\right)\) \(e\left(\frac{21}{100}\right)\) \(e\left(\frac{61}{100}\right)\) \(e\left(\frac{87}{100}\right)\) \(e\left(\frac{99}{100}\right)\) \(e\left(\frac{23}{50}\right)\) \(e\left(\frac{2}{25}\right)\) \(e\left(\frac{19}{50}\right)\)
\(\chi_{6000}(4363,\cdot)\) \(1\) \(1\) \(e\left(\frac{3}{20}\right)\) \(e\left(\frac{59}{100}\right)\) \(e\left(\frac{19}{25}\right)\) \(e\left(\frac{7}{100}\right)\) \(e\left(\frac{87}{100}\right)\) \(e\left(\frac{29}{100}\right)\) \(e\left(\frac{33}{100}\right)\) \(e\left(\frac{41}{50}\right)\) \(e\left(\frac{9}{25}\right)\) \(e\left(\frac{23}{50}\right)\)
\(\chi_{6000}(4387,\cdot)\) \(1\) \(1\) \(e\left(\frac{13}{20}\right)\) \(e\left(\frac{9}{100}\right)\) \(e\left(\frac{19}{25}\right)\) \(e\left(\frac{57}{100}\right)\) \(e\left(\frac{37}{100}\right)\) \(e\left(\frac{79}{100}\right)\) \(e\left(\frac{83}{100}\right)\) \(e\left(\frac{41}{50}\right)\) \(e\left(\frac{9}{25}\right)\) \(e\left(\frac{23}{50}\right)\)
\(\chi_{6000}(4603,\cdot)\) \(1\) \(1\) \(e\left(\frac{19}{20}\right)\) \(e\left(\frac{27}{100}\right)\) \(e\left(\frac{7}{25}\right)\) \(e\left(\frac{71}{100}\right)\) \(e\left(\frac{11}{100}\right)\) \(e\left(\frac{37}{100}\right)\) \(e\left(\frac{49}{100}\right)\) \(e\left(\frac{23}{50}\right)\) \(e\left(\frac{2}{25}\right)\) \(e\left(\frac{19}{50}\right)\)