Properties

Label 6000.2683
Modulus $6000$
Conductor $2000$
Order $100$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(6000, base_ring=CyclotomicField(100))
 
M = H._module
 
chi = DirichletCharacter(H, M([50,25,0,63]))
 
pari: [g,chi] = znchar(Mod(2683,6000))
 

Basic properties

Modulus: \(6000\)
Conductor: \(2000\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(100\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{2000}(683,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 6000.dy

\(\chi_{6000}(67,\cdot)\) \(\chi_{6000}(283,\cdot)\) \(\chi_{6000}(523,\cdot)\) \(\chi_{6000}(547,\cdot)\) \(\chi_{6000}(763,\cdot)\) \(\chi_{6000}(787,\cdot)\) \(\chi_{6000}(1003,\cdot)\) \(\chi_{6000}(1027,\cdot)\) \(\chi_{6000}(1267,\cdot)\) \(\chi_{6000}(1483,\cdot)\) \(\chi_{6000}(1723,\cdot)\) \(\chi_{6000}(1747,\cdot)\) \(\chi_{6000}(1963,\cdot)\) \(\chi_{6000}(1987,\cdot)\) \(\chi_{6000}(2203,\cdot)\) \(\chi_{6000}(2227,\cdot)\) \(\chi_{6000}(2467,\cdot)\) \(\chi_{6000}(2683,\cdot)\) \(\chi_{6000}(2923,\cdot)\) \(\chi_{6000}(2947,\cdot)\) \(\chi_{6000}(3163,\cdot)\) \(\chi_{6000}(3187,\cdot)\) \(\chi_{6000}(3403,\cdot)\) \(\chi_{6000}(3427,\cdot)\) \(\chi_{6000}(3667,\cdot)\) \(\chi_{6000}(3883,\cdot)\) \(\chi_{6000}(4123,\cdot)\) \(\chi_{6000}(4147,\cdot)\) \(\chi_{6000}(4363,\cdot)\) \(\chi_{6000}(4387,\cdot)\) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{100})$
Fixed field: Number field defined by a degree 100 polynomial

Values on generators

\((751,4501,4001,5377)\) → \((-1,i,1,e\left(\frac{63}{100}\right))\)

First values

\(a\) \(-1\)\(1\)\(7\)\(11\)\(13\)\(17\)\(19\)\(23\)\(29\)\(31\)\(37\)\(41\)
\( \chi_{ 6000 }(2683, a) \) \(1\)\(1\)\(e\left(\frac{11}{20}\right)\)\(e\left(\frac{63}{100}\right)\)\(e\left(\frac{8}{25}\right)\)\(e\left(\frac{99}{100}\right)\)\(e\left(\frac{59}{100}\right)\)\(e\left(\frac{53}{100}\right)\)\(e\left(\frac{81}{100}\right)\)\(e\left(\frac{37}{50}\right)\)\(e\left(\frac{13}{25}\right)\)\(e\left(\frac{11}{50}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 6000 }(2683,a) \;\) at \(\;a = \) e.g. 2