L(s) = 1 | + (−0.918 + 1.59i)5-s + (−0.361 − 2.62i)7-s + (−1.54 − 2.68i)11-s + (2.40 + 4.16i)13-s + (−1.87 + 3.24i)17-s + (−2.71 − 4.70i)19-s + (−3.97 + 6.89i)23-s + (0.813 + 1.40i)25-s + (0.325 − 0.563i)29-s + 1.03·31-s + (4.50 + 1.83i)35-s + (0.873 + 1.51i)37-s + (−2.52 − 4.36i)41-s + (−6.09 + 10.5i)43-s + 4.61·47-s + ⋯ |
L(s) = 1 | + (−0.410 + 0.711i)5-s + (−0.136 − 0.990i)7-s + (−0.466 − 0.808i)11-s + (0.666 + 1.15i)13-s + (−0.453 + 0.786i)17-s + (−0.622 − 1.07i)19-s + (−0.829 + 1.43i)23-s + (0.162 + 0.281i)25-s + (0.0604 − 0.104i)29-s + 0.186·31-s + (0.760 + 0.309i)35-s + (0.143 + 0.248i)37-s + (−0.393 − 0.682i)41-s + (−0.929 + 1.61i)43-s + 0.672·47-s + ⋯ |
Λ(s)=(=(1512s/2ΓC(s)L(s)(−0.709−0.705i)Λ(2−s)
Λ(s)=(=(1512s/2ΓC(s+1/2)L(s)(−0.709−0.705i)Λ(1−s)
Degree: |
2 |
Conductor: |
1512
= 23⋅33⋅7
|
Sign: |
−0.709−0.705i
|
Analytic conductor: |
12.0733 |
Root analytic conductor: |
3.47467 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1512(1369,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1512, ( :1/2), −0.709−0.705i)
|
Particular Values
L(1) |
≈ |
0.6123136950 |
L(21) |
≈ |
0.6123136950 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 7 | 1+(0.361+2.62i)T |
good | 5 | 1+(0.918−1.59i)T+(−2.5−4.33i)T2 |
| 11 | 1+(1.54+2.68i)T+(−5.5+9.52i)T2 |
| 13 | 1+(−2.40−4.16i)T+(−6.5+11.2i)T2 |
| 17 | 1+(1.87−3.24i)T+(−8.5−14.7i)T2 |
| 19 | 1+(2.71+4.70i)T+(−9.5+16.4i)T2 |
| 23 | 1+(3.97−6.89i)T+(−11.5−19.9i)T2 |
| 29 | 1+(−0.325+0.563i)T+(−14.5−25.1i)T2 |
| 31 | 1−1.03T+31T2 |
| 37 | 1+(−0.873−1.51i)T+(−18.5+32.0i)T2 |
| 41 | 1+(2.52+4.36i)T+(−20.5+35.5i)T2 |
| 43 | 1+(6.09−10.5i)T+(−21.5−37.2i)T2 |
| 47 | 1−4.61T+47T2 |
| 53 | 1+(4.55−7.88i)T+(−26.5−45.8i)T2 |
| 59 | 1−5.79T+59T2 |
| 61 | 1+4.81T+61T2 |
| 67 | 1+14.4T+67T2 |
| 71 | 1−5.00T+71T2 |
| 73 | 1+(1.81−3.14i)T+(−36.5−63.2i)T2 |
| 79 | 1+14.3T+79T2 |
| 83 | 1+(3.83−6.63i)T+(−41.5−71.8i)T2 |
| 89 | 1+(−5.76−9.99i)T+(−44.5+77.0i)T2 |
| 97 | 1+(1.04−1.80i)T+(−48.5−84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.836984246029933207150585051536, −8.924782814413200175122733453721, −8.128218912206622742714048585531, −7.28579559672557891885959145038, −6.62411014058797412032210064569, −5.88701538634692788032419764732, −4.51434473295870697293694536632, −3.82164497379051396035567019265, −2.95438573127422286240971317541, −1.50152736652017719441902811481,
0.23734994505371332974361434345, 1.94744561100907289715647000971, 2.96536209258642349383044857445, 4.19708674610312290997571802440, 5.00010458303719611503768799998, 5.81492883805851386180600596126, 6.65424608869631129893589907273, 7.84278920998385155855116890952, 8.409589053741410420573621171354, 8.945099729721354150627616262592