Properties

Label 2-1512-63.58-c1-0-17
Degree 22
Conductor 15121512
Sign 0.709+0.705i-0.709 + 0.705i
Analytic cond. 12.073312.0733
Root an. cond. 3.474673.47467
Motivic weight 11
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.918 − 1.59i)5-s + (−0.361 + 2.62i)7-s + (−1.54 + 2.68i)11-s + (2.40 − 4.16i)13-s + (−1.87 − 3.24i)17-s + (−2.71 + 4.70i)19-s + (−3.97 − 6.89i)23-s + (0.813 − 1.40i)25-s + (0.325 + 0.563i)29-s + 1.03·31-s + (4.50 − 1.83i)35-s + (0.873 − 1.51i)37-s + (−2.52 + 4.36i)41-s + (−6.09 − 10.5i)43-s + 4.61·47-s + ⋯
L(s)  = 1  + (−0.410 − 0.711i)5-s + (−0.136 + 0.990i)7-s + (−0.466 + 0.808i)11-s + (0.666 − 1.15i)13-s + (−0.453 − 0.786i)17-s + (−0.622 + 1.07i)19-s + (−0.829 − 1.43i)23-s + (0.162 − 0.281i)25-s + (0.0604 + 0.104i)29-s + 0.186·31-s + (0.760 − 0.309i)35-s + (0.143 − 0.248i)37-s + (−0.393 + 0.682i)41-s + (−0.929 − 1.61i)43-s + 0.672·47-s + ⋯

Functional equation

Λ(s)=(1512s/2ΓC(s)L(s)=((0.709+0.705i)Λ(2s)\begin{aligned}\Lambda(s)=\mathstrut & 1512 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.709 + 0.705i)\, \overline{\Lambda}(2-s) \end{aligned}
Λ(s)=(1512s/2ΓC(s+1/2)L(s)=((0.709+0.705i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 1512 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.709 + 0.705i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 15121512    =    233372^{3} \cdot 3^{3} \cdot 7
Sign: 0.709+0.705i-0.709 + 0.705i
Analytic conductor: 12.073312.0733
Root analytic conductor: 3.474673.47467
Motivic weight: 11
Rational: no
Arithmetic: yes
Character: χ1512(793,)\chi_{1512} (793, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (2, 1512, ( :1/2), 0.709+0.705i)(2,\ 1512,\ (\ :1/2),\ -0.709 + 0.705i)

Particular Values

L(1)L(1) \approx 0.61231369500.6123136950
L(12)L(\frac12) \approx 0.61231369500.6123136950
L(32)L(\frac{3}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1 1
3 1 1
7 1+(0.3612.62i)T 1 + (0.361 - 2.62i)T
good5 1+(0.918+1.59i)T+(2.5+4.33i)T2 1 + (0.918 + 1.59i)T + (-2.5 + 4.33i)T^{2}
11 1+(1.542.68i)T+(5.59.52i)T2 1 + (1.54 - 2.68i)T + (-5.5 - 9.52i)T^{2}
13 1+(2.40+4.16i)T+(6.511.2i)T2 1 + (-2.40 + 4.16i)T + (-6.5 - 11.2i)T^{2}
17 1+(1.87+3.24i)T+(8.5+14.7i)T2 1 + (1.87 + 3.24i)T + (-8.5 + 14.7i)T^{2}
19 1+(2.714.70i)T+(9.516.4i)T2 1 + (2.71 - 4.70i)T + (-9.5 - 16.4i)T^{2}
23 1+(3.97+6.89i)T+(11.5+19.9i)T2 1 + (3.97 + 6.89i)T + (-11.5 + 19.9i)T^{2}
29 1+(0.3250.563i)T+(14.5+25.1i)T2 1 + (-0.325 - 0.563i)T + (-14.5 + 25.1i)T^{2}
31 11.03T+31T2 1 - 1.03T + 31T^{2}
37 1+(0.873+1.51i)T+(18.532.0i)T2 1 + (-0.873 + 1.51i)T + (-18.5 - 32.0i)T^{2}
41 1+(2.524.36i)T+(20.535.5i)T2 1 + (2.52 - 4.36i)T + (-20.5 - 35.5i)T^{2}
43 1+(6.09+10.5i)T+(21.5+37.2i)T2 1 + (6.09 + 10.5i)T + (-21.5 + 37.2i)T^{2}
47 14.61T+47T2 1 - 4.61T + 47T^{2}
53 1+(4.55+7.88i)T+(26.5+45.8i)T2 1 + (4.55 + 7.88i)T + (-26.5 + 45.8i)T^{2}
59 15.79T+59T2 1 - 5.79T + 59T^{2}
61 1+4.81T+61T2 1 + 4.81T + 61T^{2}
67 1+14.4T+67T2 1 + 14.4T + 67T^{2}
71 15.00T+71T2 1 - 5.00T + 71T^{2}
73 1+(1.81+3.14i)T+(36.5+63.2i)T2 1 + (1.81 + 3.14i)T + (-36.5 + 63.2i)T^{2}
79 1+14.3T+79T2 1 + 14.3T + 79T^{2}
83 1+(3.83+6.63i)T+(41.5+71.8i)T2 1 + (3.83 + 6.63i)T + (-41.5 + 71.8i)T^{2}
89 1+(5.76+9.99i)T+(44.577.0i)T2 1 + (-5.76 + 9.99i)T + (-44.5 - 77.0i)T^{2}
97 1+(1.04+1.80i)T+(48.5+84.0i)T2 1 + (1.04 + 1.80i)T + (-48.5 + 84.0i)T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−8.945099729721354150627616262592, −8.409589053741410420573621171354, −7.84278920998385155855116890952, −6.65424608869631129893589907273, −5.81492883805851386180600596126, −5.00010458303719611503768799998, −4.19708674610312290997571802440, −2.96536209258642349383044857445, −1.94744561100907289715647000971, −0.23734994505371332974361434345, 1.50152736652017719441902811481, 2.95438573127422286240971317541, 3.82164497379051396035567019265, 4.51434473295870697293694536632, 5.88701538634692788032419764732, 6.62411014058797412032210064569, 7.28579559672557891885959145038, 8.128218912206622742714048585531, 8.924782814413200175122733453721, 9.836984246029933207150585051536

Graph of the ZZ-function along the critical line