L(s) = 1 | + (−0.918 − 1.59i)5-s + (−0.361 + 2.62i)7-s + (−1.54 + 2.68i)11-s + (2.40 − 4.16i)13-s + (−1.87 − 3.24i)17-s + (−2.71 + 4.70i)19-s + (−3.97 − 6.89i)23-s + (0.813 − 1.40i)25-s + (0.325 + 0.563i)29-s + 1.03·31-s + (4.50 − 1.83i)35-s + (0.873 − 1.51i)37-s + (−2.52 + 4.36i)41-s + (−6.09 − 10.5i)43-s + 4.61·47-s + ⋯ |
L(s) = 1 | + (−0.410 − 0.711i)5-s + (−0.136 + 0.990i)7-s + (−0.466 + 0.808i)11-s + (0.666 − 1.15i)13-s + (−0.453 − 0.786i)17-s + (−0.622 + 1.07i)19-s + (−0.829 − 1.43i)23-s + (0.162 − 0.281i)25-s + (0.0604 + 0.104i)29-s + 0.186·31-s + (0.760 − 0.309i)35-s + (0.143 − 0.248i)37-s + (−0.393 + 0.682i)41-s + (−0.929 − 1.61i)43-s + 0.672·47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1512 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.709 + 0.705i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1512 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.709 + 0.705i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.6123136950\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.6123136950\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 7 | \( 1 + (0.361 - 2.62i)T \) |
good | 5 | \( 1 + (0.918 + 1.59i)T + (-2.5 + 4.33i)T^{2} \) |
| 11 | \( 1 + (1.54 - 2.68i)T + (-5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + (-2.40 + 4.16i)T + (-6.5 - 11.2i)T^{2} \) |
| 17 | \( 1 + (1.87 + 3.24i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (2.71 - 4.70i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (3.97 + 6.89i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (-0.325 - 0.563i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 - 1.03T + 31T^{2} \) |
| 37 | \( 1 + (-0.873 + 1.51i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + (2.52 - 4.36i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (6.09 + 10.5i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 - 4.61T + 47T^{2} \) |
| 53 | \( 1 + (4.55 + 7.88i)T + (-26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 - 5.79T + 59T^{2} \) |
| 61 | \( 1 + 4.81T + 61T^{2} \) |
| 67 | \( 1 + 14.4T + 67T^{2} \) |
| 71 | \( 1 - 5.00T + 71T^{2} \) |
| 73 | \( 1 + (1.81 + 3.14i)T + (-36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + 14.3T + 79T^{2} \) |
| 83 | \( 1 + (3.83 + 6.63i)T + (-41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 + (-5.76 + 9.99i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (1.04 + 1.80i)T + (-48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.945099729721354150627616262592, −8.409589053741410420573621171354, −7.84278920998385155855116890952, −6.65424608869631129893589907273, −5.81492883805851386180600596126, −5.00010458303719611503768799998, −4.19708674610312290997571802440, −2.96536209258642349383044857445, −1.94744561100907289715647000971, −0.23734994505371332974361434345,
1.50152736652017719441902811481, 2.95438573127422286240971317541, 3.82164497379051396035567019265, 4.51434473295870697293694536632, 5.88701538634692788032419764732, 6.62411014058797412032210064569, 7.28579559672557891885959145038, 8.128218912206622742714048585531, 8.924782814413200175122733453721, 9.836984246029933207150585051536