L(s) = 1 | + (−0.909 + 1.08i)2-s + (−0.301 − 0.827i)3-s + (−0.347 − 1.96i)4-s + (1.17 + 0.426i)6-s + (2.44 + 1.41i)8-s + (1.70 − 1.42i)9-s + (3.30 − 5.72i)11-s + (−1.52 + 0.881i)12-s + (−3.75 + 1.36i)16-s + (6.05 + 5.07i)17-s + 3.14i·18-s + (−4.35 − 0.248i)19-s + (3.19 + 8.77i)22-s + (0.432 − 2.45i)24-s + (−4.69 − 1.71i)25-s + ⋯ |
L(s) = 1 | + (−0.642 + 0.766i)2-s + (−0.173 − 0.478i)3-s + (−0.173 − 0.984i)4-s + (0.478 + 0.173i)6-s + (0.866 + 0.500i)8-s + (0.567 − 0.476i)9-s + (0.995 − 1.72i)11-s + (−0.440 + 0.254i)12-s + (−0.939 + 0.342i)16-s + (1.46 + 1.23i)17-s + 0.741i·18-s + (−0.998 − 0.0569i)19-s + (0.681 + 1.87i)22-s + (0.0883 − 0.500i)24-s + (−0.939 − 0.342i)25-s + ⋯ |
Λ(s)=(=(152s/2ΓC(s)L(s)(0.973+0.228i)Λ(2−s)
Λ(s)=(=(152s/2ΓC(s+1/2)L(s)(0.973+0.228i)Λ(1−s)
Degree: |
2 |
Conductor: |
152
= 23⋅19
|
Sign: |
0.973+0.228i
|
Analytic conductor: |
1.21372 |
Root analytic conductor: |
1.10169 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ152(3,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 152, ( :1/2), 0.973+0.228i)
|
Particular Values
L(1) |
≈ |
0.813199−0.0942721i |
L(21) |
≈ |
0.813199−0.0942721i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.909−1.08i)T |
| 19 | 1+(4.35+0.248i)T |
good | 3 | 1+(0.301+0.827i)T+(−2.29+1.92i)T2 |
| 5 | 1+(4.69+1.71i)T2 |
| 7 | 1+(3.5−6.06i)T2 |
| 11 | 1+(−3.30+5.72i)T+(−5.5−9.52i)T2 |
| 13 | 1+(9.95+8.35i)T2 |
| 17 | 1+(−6.05−5.07i)T+(2.95+16.7i)T2 |
| 23 | 1+(21.6−7.86i)T2 |
| 29 | 1+(5.03−28.5i)T2 |
| 31 | 1+(−15.5+26.8i)T2 |
| 37 | 1+37T2 |
| 41 | 1+(−2.69−7.39i)T+(−31.4+26.3i)T2 |
| 43 | 1+(−0.407+2.31i)T+(−40.4−14.7i)T2 |
| 47 | 1+(−8.16+46.2i)T2 |
| 53 | 1+(−49.8+18.1i)T2 |
| 59 | 1+(7.22−8.60i)T+(−10.2−58.1i)T2 |
| 61 | 1+(57.3−20.8i)T2 |
| 67 | 1+(−9.80−11.6i)T+(−11.6+65.9i)T2 |
| 71 | 1+(−66.7−24.2i)T2 |
| 73 | 1+(−3.68+1.34i)T+(55.9−46.9i)T2 |
| 79 | 1+(60.5−50.7i)T2 |
| 83 | 1+(−2.95−5.11i)T+(−41.5+71.8i)T2 |
| 89 | 1+(−6.29+17.3i)T+(−68.1−57.2i)T2 |
| 97 | 1+(4.43−5.28i)T+(−16.8−95.5i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−13.07482231180679303543512066997, −11.89594468628853079833119689944, −10.80078428672623333388142665165, −9.734985002909662170362569711242, −8.623048456520989462616240695639, −7.77569394510154983700580920265, −6.38399005978254315131365728324, −5.90973811349493966543244836810, −3.92052484443969237383655736151, −1.21541994548878993584620893262,
1.90200545587019748011711658207, 3.83484545583305213281099402193, 4.89751354304518334996476133390, 6.98003123486786605352473131954, 7.85843426211155480476401217387, 9.487318723284728690832799457103, 9.788292758988419294752434454636, 10.88888174547306215194455936554, 12.00298418444139303176535939512, 12.60813916181447631343762511840