Properties

Label 152.2.v.a
Level $152$
Weight $2$
Character orbit 152.v
Analytic conductor $1.214$
Analytic rank $0$
Dimension $12$
CM discriminant -8
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [152,2,Mod(3,152)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(152, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([9, 9, 13]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("152.3");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 152 = 2^{3} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 152.v (of order \(18\), degree \(6\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.21372611072\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(2\) over \(\Q(\zeta_{18})\)
Coefficient field: 12.0.101559956668416.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 8x^{6} + 64 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{18}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{11}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_{11} q^{2} + (\beta_{10} - \beta_{9} - \beta_{6} + \cdots + \beta_1) q^{3}+ \cdots + (2 \beta_{11} - 3 \beta_{10} + \cdots + 1) q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q - \beta_{11} q^{2} + (\beta_{10} - \beta_{9} - \beta_{6} + \cdots + \beta_1) q^{3}+ \cdots + (5 \beta_{11} - 5 \beta_{9} + 2 \beta_{8} + \cdots + 2) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 6 q^{3} + 12 q^{6} + 6 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 12 q - 6 q^{3} + 12 q^{6} + 6 q^{9} + 24 q^{22} - 24 q^{24} - 90 q^{27} + 30 q^{33} - 12 q^{36} + 36 q^{38} + 18 q^{41} - 72 q^{44} - 48 q^{48} - 42 q^{49} + 90 q^{51} - 36 q^{54} - 18 q^{59} + 48 q^{64} + 24 q^{66} + 42 q^{67} + 36 q^{68} + 96 q^{72} - 12 q^{73} + 78 q^{81} - 48 q^{82} - 30 q^{97} - 30 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{12} - 8x^{6} + 64 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{2} ) / 2 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( \nu^{3} ) / 2 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( \nu^{4} ) / 4 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( \nu^{5} ) / 4 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( \nu^{6} ) / 8 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( \nu^{7} ) / 8 \) Copy content Toggle raw display
\(\beta_{8}\)\(=\) \( ( \nu^{8} ) / 16 \) Copy content Toggle raw display
\(\beta_{9}\)\(=\) \( ( \nu^{9} ) / 16 \) Copy content Toggle raw display
\(\beta_{10}\)\(=\) \( ( \nu^{10} ) / 32 \) Copy content Toggle raw display
\(\beta_{11}\)\(=\) \( ( \nu^{11} ) / 32 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( 2\beta_{2} \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 2\beta_{3} \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( 4\beta_{4} \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( 4\beta_{5} \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( 8\beta_{6} \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( 8\beta_{7} \) Copy content Toggle raw display
\(\nu^{8}\)\(=\) \( 16\beta_{8} \) Copy content Toggle raw display
\(\nu^{9}\)\(=\) \( 16\beta_{9} \) Copy content Toggle raw display
\(\nu^{10}\)\(=\) \( 32\beta_{10} \) Copy content Toggle raw display
\(\nu^{11}\)\(=\) \( 32\beta_{11} \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/152\mathbb{Z}\right)^\times\).

\(n\) \(39\) \(77\) \(97\)
\(\chi(n)\) \(-1\) \(-1\) \(-\beta_{4}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
3.1
0.483690 1.32893i
−0.483690 + 1.32893i
0.483690 + 1.32893i
−0.483690 1.32893i
−0.909039 1.08335i
0.909039 + 1.08335i
−0.909039 + 1.08335i
0.909039 1.08335i
−1.39273 0.245576i
1.39273 + 0.245576i
−1.39273 + 0.245576i
1.39273 0.245576i
−0.909039 + 1.08335i −0.301363 0.827987i −0.347296 1.96962i 0 1.17095 + 0.426191i 0 2.44949 + 1.41421i 1.70339 1.42931i 0
3.2 0.909039 1.08335i 1.18075 + 3.24408i −0.347296 1.96962i 0 4.58782 + 1.66983i 0 −2.44949 1.41421i −6.83175 + 5.73252i 0
51.1 −0.909039 1.08335i −0.301363 + 0.827987i −0.347296 + 1.96962i 0 1.17095 0.426191i 0 2.44949 1.41421i 1.70339 + 1.42931i 0
51.2 0.909039 + 1.08335i 1.18075 3.24408i −0.347296 + 1.96962i 0 4.58782 1.66983i 0 −2.44949 + 1.41421i −6.83175 5.73252i 0
59.1 −1.39273 0.245576i −0.950339 + 1.13257i 1.87939 + 0.684040i 0 1.60169 1.34398i 0 −2.44949 1.41421i 0.141375 + 0.801775i 0
59.2 1.39273 + 0.245576i −1.58175 + 1.88506i 1.87939 + 0.684040i 0 −2.66587 + 2.23693i 0 2.44949 + 1.41421i −0.530560 3.00895i 0
67.1 −1.39273 + 0.245576i −0.950339 1.13257i 1.87939 0.684040i 0 1.60169 + 1.34398i 0 −2.44949 + 1.41421i 0.141375 0.801775i 0
67.2 1.39273 0.245576i −1.58175 1.88506i 1.87939 0.684040i 0 −2.66587 2.23693i 0 2.44949 1.41421i −0.530560 + 3.00895i 0
91.1 −0.483690 + 1.32893i −3.29112 + 0.580314i −1.53209 1.28558i 0 0.820687 4.65435i 0 2.44949 1.41421i 7.67564 2.79370i 0
91.2 0.483690 1.32893i 1.94383 0.342749i −1.53209 1.28558i 0 0.484720 2.74898i 0 −2.44949 + 1.41421i 0.841902 0.306427i 0
147.1 −0.483690 1.32893i −3.29112 0.580314i −1.53209 + 1.28558i 0 0.820687 + 4.65435i 0 2.44949 + 1.41421i 7.67564 + 2.79370i 0
147.2 0.483690 + 1.32893i 1.94383 + 0.342749i −1.53209 + 1.28558i 0 0.484720 + 2.74898i 0 −2.44949 1.41421i 0.841902 + 0.306427i 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 3.2
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
8.d odd 2 1 CM by \(\Q(\sqrt{-2}) \)
19.f odd 18 1 inner
152.v even 18 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 152.2.v.a 12
4.b odd 2 1 608.2.bh.a 12
8.b even 2 1 608.2.bh.a 12
8.d odd 2 1 CM 152.2.v.a 12
19.f odd 18 1 inner 152.2.v.a 12
76.k even 18 1 608.2.bh.a 12
152.s odd 18 1 608.2.bh.a 12
152.v even 18 1 inner 152.2.v.a 12
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
152.2.v.a 12 1.a even 1 1 trivial
152.2.v.a 12 8.d odd 2 1 CM
152.2.v.a 12 19.f odd 18 1 inner
152.2.v.a 12 152.v even 18 1 inner
608.2.bh.a 12 4.b odd 2 1
608.2.bh.a 12 8.b even 2 1
608.2.bh.a 12 76.k even 18 1
608.2.bh.a 12 152.s odd 18 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{12} + 6 T_{3}^{11} + 15 T_{3}^{10} + 48 T_{3}^{9} + 138 T_{3}^{8} + 48 T_{3}^{7} - 932 T_{3}^{6} + \cdots + 5329 \) acting on \(S_{2}^{\mathrm{new}}(152, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{12} - 8T^{6} + 64 \) Copy content Toggle raw display
$3$ \( T^{12} + 6 T^{11} + \cdots + 5329 \) Copy content Toggle raw display
$5$ \( T^{12} \) Copy content Toggle raw display
$7$ \( T^{12} \) Copy content Toggle raw display
$11$ \( T^{12} + 66 T^{10} + \cdots + 13461561 \) Copy content Toggle raw display
$13$ \( T^{12} \) Copy content Toggle raw display
$17$ \( T^{12} + 486 T^{9} + \cdots + 11390625 \) Copy content Toggle raw display
$19$ \( T^{12} + 106 T^{9} + \cdots + 47045881 \) Copy content Toggle raw display
$23$ \( T^{12} \) Copy content Toggle raw display
$29$ \( T^{12} \) Copy content Toggle raw display
$31$ \( T^{12} \) Copy content Toggle raw display
$37$ \( T^{12} \) Copy content Toggle raw display
$41$ \( T^{12} + \cdots + 41437894969 \) Copy content Toggle raw display
$43$ \( T^{12} + \cdots + 594823321 \) Copy content Toggle raw display
$47$ \( T^{12} \) Copy content Toggle raw display
$53$ \( T^{12} \) Copy content Toggle raw display
$59$ \( T^{12} + \cdots + 260443853569 \) Copy content Toggle raw display
$61$ \( T^{12} \) Copy content Toggle raw display
$67$ \( T^{12} + \cdots + 87534914769 \) Copy content Toggle raw display
$71$ \( T^{12} \) Copy content Toggle raw display
$73$ \( T^{12} + \cdots + 964620586801 \) Copy content Toggle raw display
$79$ \( T^{12} \) Copy content Toggle raw display
$83$ \( T^{12} + \cdots + 11478765321 \) Copy content Toggle raw display
$89$ \( T^{12} + \cdots + 168425239515625 \) Copy content Toggle raw display
$97$ \( T^{12} + \cdots + 7482560872329 \) Copy content Toggle raw display
show more
show less