L(s) = 1 | + 4.73·3-s − 18.0·5-s + 0.213·7-s − 4.58·9-s − 3.39·11-s − 90.7·13-s − 85.5·15-s − 2.59·17-s + 19·19-s + 1.01·21-s + 26.6·23-s + 201.·25-s − 149.·27-s + 60.1·29-s − 176.·31-s − 16.0·33-s − 3.85·35-s − 154.·37-s − 429.·39-s + 434.·41-s − 365.·43-s + 82.8·45-s + 204.·47-s − 342.·49-s − 12.2·51-s − 135.·53-s + 61.3·55-s + ⋯ |
L(s) = 1 | + 0.911·3-s − 1.61·5-s + 0.0115·7-s − 0.169·9-s − 0.0930·11-s − 1.93·13-s − 1.47·15-s − 0.0370·17-s + 0.229·19-s + 0.0104·21-s + 0.241·23-s + 1.61·25-s − 1.06·27-s + 0.384·29-s − 1.02·31-s − 0.0847·33-s − 0.0186·35-s − 0.684·37-s − 1.76·39-s + 1.65·41-s − 1.29·43-s + 0.274·45-s + 0.633·47-s − 0.999·49-s − 0.0337·51-s − 0.351·53-s + 0.150·55-s + ⋯ |
Λ(s)=(=(152s/2ΓC(s)L(s)−Λ(4−s)
Λ(s)=(=(152s/2ΓC(s+3/2)L(s)−Λ(1−s)
Particular Values
L(2) |
= |
0 |
L(21) |
= |
0 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 19 | 1−19T |
good | 3 | 1−4.73T+27T2 |
| 5 | 1+18.0T+125T2 |
| 7 | 1−0.213T+343T2 |
| 11 | 1+3.39T+1.33e3T2 |
| 13 | 1+90.7T+2.19e3T2 |
| 17 | 1+2.59T+4.91e3T2 |
| 23 | 1−26.6T+1.21e4T2 |
| 29 | 1−60.1T+2.43e4T2 |
| 31 | 1+176.T+2.97e4T2 |
| 37 | 1+154.T+5.06e4T2 |
| 41 | 1−434.T+6.89e4T2 |
| 43 | 1+365.T+7.95e4T2 |
| 47 | 1−204.T+1.03e5T2 |
| 53 | 1+135.T+1.48e5T2 |
| 59 | 1−759.T+2.05e5T2 |
| 61 | 1−284.T+2.26e5T2 |
| 67 | 1−590.T+3.00e5T2 |
| 71 | 1+972.T+3.57e5T2 |
| 73 | 1−368.T+3.89e5T2 |
| 79 | 1−204.T+4.93e5T2 |
| 83 | 1+782.T+5.71e5T2 |
| 89 | 1−213.T+7.04e5T2 |
| 97 | 1+1.21e3T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.02598662687045501501526509585, −11.20933989573261919616816403860, −9.818124951287173822617524905056, −8.712379338474662743522963162737, −7.79599978064815841842736831794, −7.13871577742217804496965110189, −5.05181218860378821487185358045, −3.78771939816173543288843192489, −2.62957810903665442177864465320, 0,
2.62957810903665442177864465320, 3.78771939816173543288843192489, 5.05181218860378821487185358045, 7.13871577742217804496965110189, 7.79599978064815841842736831794, 8.712379338474662743522963162737, 9.818124951287173822617524905056, 11.20933989573261919616816403860, 12.02598662687045501501526509585