Properties

Label 2-152-1.1-c3-0-12
Degree $2$
Conductor $152$
Sign $-1$
Analytic cond. $8.96829$
Root an. cond. $2.99471$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4.73·3-s − 18.0·5-s + 0.213·7-s − 4.58·9-s − 3.39·11-s − 90.7·13-s − 85.5·15-s − 2.59·17-s + 19·19-s + 1.01·21-s + 26.6·23-s + 201.·25-s − 149.·27-s + 60.1·29-s − 176.·31-s − 16.0·33-s − 3.85·35-s − 154.·37-s − 429.·39-s + 434.·41-s − 365.·43-s + 82.8·45-s + 204.·47-s − 342.·49-s − 12.2·51-s − 135.·53-s + 61.3·55-s + ⋯
L(s)  = 1  + 0.911·3-s − 1.61·5-s + 0.0115·7-s − 0.169·9-s − 0.0930·11-s − 1.93·13-s − 1.47·15-s − 0.0370·17-s + 0.229·19-s + 0.0104·21-s + 0.241·23-s + 1.61·25-s − 1.06·27-s + 0.384·29-s − 1.02·31-s − 0.0847·33-s − 0.0186·35-s − 0.684·37-s − 1.76·39-s + 1.65·41-s − 1.29·43-s + 0.274·45-s + 0.633·47-s − 0.999·49-s − 0.0337·51-s − 0.351·53-s + 0.150·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 152 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 152 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(152\)    =    \(2^{3} \cdot 19\)
Sign: $-1$
Analytic conductor: \(8.96829\)
Root analytic conductor: \(2.99471\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 152,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
19 \( 1 - 19T \)
good3 \( 1 - 4.73T + 27T^{2} \)
5 \( 1 + 18.0T + 125T^{2} \)
7 \( 1 - 0.213T + 343T^{2} \)
11 \( 1 + 3.39T + 1.33e3T^{2} \)
13 \( 1 + 90.7T + 2.19e3T^{2} \)
17 \( 1 + 2.59T + 4.91e3T^{2} \)
23 \( 1 - 26.6T + 1.21e4T^{2} \)
29 \( 1 - 60.1T + 2.43e4T^{2} \)
31 \( 1 + 176.T + 2.97e4T^{2} \)
37 \( 1 + 154.T + 5.06e4T^{2} \)
41 \( 1 - 434.T + 6.89e4T^{2} \)
43 \( 1 + 365.T + 7.95e4T^{2} \)
47 \( 1 - 204.T + 1.03e5T^{2} \)
53 \( 1 + 135.T + 1.48e5T^{2} \)
59 \( 1 - 759.T + 2.05e5T^{2} \)
61 \( 1 - 284.T + 2.26e5T^{2} \)
67 \( 1 - 590.T + 3.00e5T^{2} \)
71 \( 1 + 972.T + 3.57e5T^{2} \)
73 \( 1 - 368.T + 3.89e5T^{2} \)
79 \( 1 - 204.T + 4.93e5T^{2} \)
83 \( 1 + 782.T + 5.71e5T^{2} \)
89 \( 1 - 213.T + 7.04e5T^{2} \)
97 \( 1 + 1.21e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.02598662687045501501526509585, −11.20933989573261919616816403860, −9.818124951287173822617524905056, −8.712379338474662743522963162737, −7.79599978064815841842736831794, −7.13871577742217804496965110189, −5.05181218860378821487185358045, −3.78771939816173543288843192489, −2.62957810903665442177864465320, 0, 2.62957810903665442177864465320, 3.78771939816173543288843192489, 5.05181218860378821487185358045, 7.13871577742217804496965110189, 7.79599978064815841842736831794, 8.712379338474662743522963162737, 9.818124951287173822617524905056, 11.20933989573261919616816403860, 12.02598662687045501501526509585

Graph of the $Z$-function along the critical line