Properties

Label 152.4.a.b
Level $152$
Weight $4$
Character orbit 152.a
Self dual yes
Analytic conductor $8.968$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [152,4,Mod(1,152)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(152, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("152.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 152 = 2^{3} \cdot 19 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 152.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(8.96829032087\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: 3.3.3221.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 9x + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta_{2} - 2) q^{3} + (2 \beta_{2} - \beta_1 + 1) q^{5} + (2 \beta_1 - 11) q^{7} + (6 \beta_{2} + 3 \beta_1 + 19) q^{9} + (\beta_1 - 9) q^{11} + (2 \beta_{2} - 7 \beta_1 - 38) q^{13} + ( - 5 \beta_{2} - 7 \beta_1 - 80) q^{15}+ \cdots + ( - 36 \beta_{2} - 41 \beta_1 + 3) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 5 q^{3} + 2 q^{5} - 35 q^{7} + 48 q^{9} - 28 q^{11} - 109 q^{13} - 228 q^{15} - 123 q^{17} + 57 q^{19} + 25 q^{21} - 193 q^{23} + 187 q^{25} - 719 q^{27} - 297 q^{29} - 140 q^{31} + 30 q^{33} - 246 q^{35}+ \cdots + 86 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{3} - x^{2} - 9x + 2 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( -\nu^{2} + 3\nu + 5 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} + \nu - 7 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{2} + \beta _1 + 2 ) / 4 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( 3\beta_{2} - \beta _1 + 26 ) / 4 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
3.44437
−2.66246
0.218090
0 −10.3081 0 14.1468 0 −4.06119 0 79.2568 0
1.2 0 0.573746 0 5.92862 0 −31.1522 0 −26.6708 0
1.3 0 4.73435 0 −18.0754 0 0.213413 0 −4.58596 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(19\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 152.4.a.b 3
3.b odd 2 1 1368.4.a.e 3
4.b odd 2 1 304.4.a.j 3
8.b even 2 1 1216.4.a.x 3
8.d odd 2 1 1216.4.a.q 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
152.4.a.b 3 1.a even 1 1 trivial
304.4.a.j 3 4.b odd 2 1
1216.4.a.q 3 8.d odd 2 1
1216.4.a.x 3 8.b even 2 1
1368.4.a.e 3 3.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{3} + 5T_{3}^{2} - 52T_{3} + 28 \) acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(152))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{3} \) Copy content Toggle raw display
$3$ \( T^{3} + 5 T^{2} + \cdots + 28 \) Copy content Toggle raw display
$5$ \( T^{3} - 2 T^{2} + \cdots + 1516 \) Copy content Toggle raw display
$7$ \( T^{3} + 35 T^{2} + \cdots - 27 \) Copy content Toggle raw display
$11$ \( T^{3} + 28 T^{2} + \cdots + 358 \) Copy content Toggle raw display
$13$ \( T^{3} + 109 T^{2} + \cdots - 113456 \) Copy content Toggle raw display
$17$ \( T^{3} + 123 T^{2} + \cdots + 6637 \) Copy content Toggle raw display
$19$ \( (T - 19)^{3} \) Copy content Toggle raw display
$23$ \( T^{3} + 193 T^{2} + \cdots - 246848 \) Copy content Toggle raw display
$29$ \( T^{3} + 297 T^{2} + \cdots - 1167636 \) Copy content Toggle raw display
$31$ \( T^{3} + 140 T^{2} + \cdots - 3668096 \) Copy content Toggle raw display
$37$ \( T^{3} - 38 T^{2} + \cdots - 3429384 \) Copy content Toggle raw display
$41$ \( T^{3} - 736 T^{2} + \cdots - 7266624 \) Copy content Toggle raw display
$43$ \( T^{3} + 514 T^{2} + \cdots - 25097948 \) Copy content Toggle raw display
$47$ \( T^{3} - 134 T^{2} + \cdots + 58888776 \) Copy content Toggle raw display
$53$ \( T^{3} - 311 T^{2} + \cdots - 13619792 \) Copy content Toggle raw display
$59$ \( T^{3} - 199 T^{2} + \cdots + 117609444 \) Copy content Toggle raw display
$61$ \( T^{3} - 56 T^{2} + \cdots + 120500582 \) Copy content Toggle raw display
$67$ \( T^{3} + 509 T^{2} + \cdots - 177822064 \) Copy content Toggle raw display
$71$ \( T^{3} + 874 T^{2} + \cdots - 112230216 \) Copy content Toggle raw display
$73$ \( T^{3} - 203 T^{2} + \cdots + 474103 \) Copy content Toggle raw display
$79$ \( T^{3} - 242 T^{2} + \cdots + 201599456 \) Copy content Toggle raw display
$83$ \( T^{3} + 62 T^{2} + \cdots + 83648992 \) Copy content Toggle raw display
$89$ \( T^{3} - 1764 T^{2} + \cdots - 127322496 \) Copy content Toggle raw display
$97$ \( T^{3} + 2178 T^{2} + \cdots + 99903104 \) Copy content Toggle raw display
show more
show less