L(s) = 1 | + (−2.78 + 0.491i)2-s + (6.01 + 7.16i)3-s + (7.51 − 2.73i)4-s + (−20.2 − 17.0i)6-s + (−19.5 + 11.3i)8-s + (−10.5 + 59.6i)9-s + (15.8 + 27.4i)11-s + (64.8 + 37.4i)12-s + (49.0 − 41.1i)16-s + (8.34 + 47.3i)17-s − 171. i·18-s + (−71.5 − 41.6i)19-s + (−57.5 − 68.6i)22-s + (−198. − 72.4i)24-s + (95.7 + 80.3i)25-s + ⋯ |
L(s) = 1 | + (−0.984 + 0.173i)2-s + (1.15 + 1.37i)3-s + (0.939 − 0.342i)4-s + (−1.37 − 1.15i)6-s + (−0.866 + 0.500i)8-s + (−0.389 + 2.20i)9-s + (0.433 + 0.751i)11-s + (1.55 + 0.900i)12-s + (0.766 − 0.642i)16-s + (0.119 + 0.675i)17-s − 2.24i·18-s + (−0.864 − 0.503i)19-s + (−0.557 − 0.664i)22-s + (−1.69 − 0.615i)24-s + (0.766 + 0.642i)25-s + ⋯ |
Λ(s)=(=(152s/2ΓC(s)L(s)(−0.657−0.753i)Λ(4−s)
Λ(s)=(=(152s/2ΓC(s+3/2)L(s)(−0.657−0.753i)Λ(1−s)
Degree: |
2 |
Conductor: |
152
= 23⋅19
|
Sign: |
−0.657−0.753i
|
Analytic conductor: |
8.96829 |
Root analytic conductor: |
2.99471 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ152(67,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 152, ( :3/2), −0.657−0.753i)
|
Particular Values
L(2) |
≈ |
0.608313+1.33839i |
L(21) |
≈ |
0.608313+1.33839i |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(2.78−0.491i)T |
| 19 | 1+(71.5+41.6i)T |
good | 3 | 1+(−6.01−7.16i)T+(−4.68+26.5i)T2 |
| 5 | 1+(−95.7−80.3i)T2 |
| 7 | 1+(171.5+297.i)T2 |
| 11 | 1+(−15.8−27.4i)T+(−665.5+1.15e3i)T2 |
| 13 | 1+(381.+2.16e3i)T2 |
| 17 | 1+(−8.34−47.3i)T+(−4.61e3+1.68e3i)T2 |
| 23 | 1+(−9.32e3+7.82e3i)T2 |
| 29 | 1+(−2.29e4−8.34e3i)T2 |
| 31 | 1+(−1.48e4−2.57e4i)T2 |
| 37 | 1+5.06e4T2 |
| 41 | 1+(−148.−177.i)T+(−1.19e4+6.78e4i)T2 |
| 43 | 1+(529.+192.i)T+(6.09e4+5.11e4i)T2 |
| 47 | 1+(9.75e4+3.55e4i)T2 |
| 53 | 1+(1.14e5−9.56e4i)T2 |
| 59 | 1+(−780.+137.i)T+(1.92e5−7.02e4i)T2 |
| 61 | 1+(−1.73e5+1.45e5i)T2 |
| 67 | 1+(−989.−174.i)T+(2.82e5+1.02e5i)T2 |
| 71 | 1+(2.74e5+2.30e5i)T2 |
| 73 | 1+(−828.+695.i)T+(6.75e4−3.83e5i)T2 |
| 79 | 1+(8.56e4−4.85e5i)T2 |
| 83 | 1+(750.−1.30e3i)T+(−2.85e5−4.95e5i)T2 |
| 89 | 1+(−998.+1.18e3i)T+(−1.22e5−6.94e5i)T2 |
| 97 | 1+(−690.+121.i)T+(8.57e5−3.12e5i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.96223477658494971783905144126, −11.39979544961405474650181398290, −10.41011045896599701014566174721, −9.728457385777116695349208429615, −8.852521234056794221984483123096, −8.138242389345972128736139124804, −6.78789371008576191925981448444, −4.99652956535270464342227418017, −3.57859315060834975182625151706, −2.13492000025554616971096775820,
0.856748576121686104493027374618, 2.22075539093337598479561376346, 3.39619935824342537616619862505, 6.27447333148520681368330301809, 7.08377941808247979339685443593, 8.198123186365362086699420802683, 8.700661126753645737556492718148, 9.793807277229731576281343492364, 11.22892870130606601609593593685, 12.22734625895099001876013048595