L(s) = 1 | + (−2.78 + 0.491i)2-s + (6.01 + 7.16i)3-s + (7.51 − 2.73i)4-s + (−20.2 − 17.0i)6-s + (−19.5 + 11.3i)8-s + (−10.5 + 59.6i)9-s + (15.8 + 27.4i)11-s + (64.8 + 37.4i)12-s + (49.0 − 41.1i)16-s + (8.34 + 47.3i)17-s − 171. i·18-s + (−71.5 − 41.6i)19-s + (−57.5 − 68.6i)22-s + (−198. − 72.4i)24-s + (95.7 + 80.3i)25-s + ⋯ |
L(s) = 1 | + (−0.984 + 0.173i)2-s + (1.15 + 1.37i)3-s + (0.939 − 0.342i)4-s + (−1.37 − 1.15i)6-s + (−0.866 + 0.500i)8-s + (−0.389 + 2.20i)9-s + (0.433 + 0.751i)11-s + (1.55 + 0.900i)12-s + (0.766 − 0.642i)16-s + (0.119 + 0.675i)17-s − 2.24i·18-s + (−0.864 − 0.503i)19-s + (−0.557 − 0.664i)22-s + (−1.69 − 0.615i)24-s + (0.766 + 0.642i)25-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 152 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.657 - 0.753i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 152 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (-0.657 - 0.753i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(0.608313 + 1.33839i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.608313 + 1.33839i\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (2.78 - 0.491i)T \) |
| 19 | \( 1 + (71.5 + 41.6i)T \) |
good | 3 | \( 1 + (-6.01 - 7.16i)T + (-4.68 + 26.5i)T^{2} \) |
| 5 | \( 1 + (-95.7 - 80.3i)T^{2} \) |
| 7 | \( 1 + (171.5 + 297. i)T^{2} \) |
| 11 | \( 1 + (-15.8 - 27.4i)T + (-665.5 + 1.15e3i)T^{2} \) |
| 13 | \( 1 + (381. + 2.16e3i)T^{2} \) |
| 17 | \( 1 + (-8.34 - 47.3i)T + (-4.61e3 + 1.68e3i)T^{2} \) |
| 23 | \( 1 + (-9.32e3 + 7.82e3i)T^{2} \) |
| 29 | \( 1 + (-2.29e4 - 8.34e3i)T^{2} \) |
| 31 | \( 1 + (-1.48e4 - 2.57e4i)T^{2} \) |
| 37 | \( 1 + 5.06e4T^{2} \) |
| 41 | \( 1 + (-148. - 177. i)T + (-1.19e4 + 6.78e4i)T^{2} \) |
| 43 | \( 1 + (529. + 192. i)T + (6.09e4 + 5.11e4i)T^{2} \) |
| 47 | \( 1 + (9.75e4 + 3.55e4i)T^{2} \) |
| 53 | \( 1 + (1.14e5 - 9.56e4i)T^{2} \) |
| 59 | \( 1 + (-780. + 137. i)T + (1.92e5 - 7.02e4i)T^{2} \) |
| 61 | \( 1 + (-1.73e5 + 1.45e5i)T^{2} \) |
| 67 | \( 1 + (-989. - 174. i)T + (2.82e5 + 1.02e5i)T^{2} \) |
| 71 | \( 1 + (2.74e5 + 2.30e5i)T^{2} \) |
| 73 | \( 1 + (-828. + 695. i)T + (6.75e4 - 3.83e5i)T^{2} \) |
| 79 | \( 1 + (8.56e4 - 4.85e5i)T^{2} \) |
| 83 | \( 1 + (750. - 1.30e3i)T + (-2.85e5 - 4.95e5i)T^{2} \) |
| 89 | \( 1 + (-998. + 1.18e3i)T + (-1.22e5 - 6.94e5i)T^{2} \) |
| 97 | \( 1 + (-690. + 121. i)T + (8.57e5 - 3.12e5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.96223477658494971783905144126, −11.39979544961405474650181398290, −10.41011045896599701014566174721, −9.728457385777116695349208429615, −8.852521234056794221984483123096, −8.138242389345972128736139124804, −6.78789371008576191925981448444, −4.99652956535270464342227418017, −3.57859315060834975182625151706, −2.13492000025554616971096775820,
0.856748576121686104493027374618, 2.22075539093337598479561376346, 3.39619935824342537616619862505, 6.27447333148520681368330301809, 7.08377941808247979339685443593, 8.198123186365362086699420802683, 8.700661126753645737556492718148, 9.793807277229731576281343492364, 11.22892870130606601609593593685, 12.22734625895099001876013048595