gp: [N,k,chi] = [152,4,Mod(3,152)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(152, base_ring=CyclotomicField(18))
chi = DirichletCharacter(H, H._module([9, 9, 13]))
N = Newforms(chi, 4, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("152.3");
S:= CuspForms(chi, 4);
N := Newforms(S);
Newform invariants
sage: traces = [12]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the q q q -expansion are expressed in terms of a basis 1 , β 1 , … , β 11 1,\beta_1,\ldots,\beta_{11} 1 , β 1 , … , β 1 1 for the coefficient ring described below.
We also show the integral q q q -expansion of the trace form .
Basis of coefficient ring in terms of a root ν \nu ν of
x 12 − 8 x 6 + 64 x^{12} - 8x^{6} + 64 x 1 2 − 8 x 6 + 6 4
x^12 - 8*x^6 + 64
:
β 1 \beta_{1} β 1 = = =
ν \nu ν
v
β 2 \beta_{2} β 2 = = =
( ν 2 ) / 2 ( \nu^{2} ) / 2 ( ν 2 ) / 2
(v^2) / 2
β 3 \beta_{3} β 3 = = =
( ν 3 ) / 2 ( \nu^{3} ) / 2 ( ν 3 ) / 2
(v^3) / 2
β 4 \beta_{4} β 4 = = =
( ν 4 ) / 4 ( \nu^{4} ) / 4 ( ν 4 ) / 4
(v^4) / 4
β 5 \beta_{5} β 5 = = =
( ν 5 ) / 4 ( \nu^{5} ) / 4 ( ν 5 ) / 4
(v^5) / 4
β 6 \beta_{6} β 6 = = =
( ν 6 ) / 8 ( \nu^{6} ) / 8 ( ν 6 ) / 8
(v^6) / 8
β 7 \beta_{7} β 7 = = =
( ν 7 ) / 8 ( \nu^{7} ) / 8 ( ν 7 ) / 8
(v^7) / 8
β 8 \beta_{8} β 8 = = =
( ν 8 ) / 16 ( \nu^{8} ) / 16 ( ν 8 ) / 1 6
(v^8) / 16
β 9 \beta_{9} β 9 = = =
( ν 9 ) / 16 ( \nu^{9} ) / 16 ( ν 9 ) / 1 6
(v^9) / 16
β 10 \beta_{10} β 1 0 = = =
( ν 10 ) / 32 ( \nu^{10} ) / 32 ( ν 1 0 ) / 3 2
(v^10) / 32
β 11 \beta_{11} β 1 1 = = =
( ν 11 ) / 32 ( \nu^{11} ) / 32 ( ν 1 1 ) / 3 2
(v^11) / 32
ν \nu ν = = =
β 1 \beta_1 β 1
b1
ν 2 \nu^{2} ν 2 = = =
2 β 2 2\beta_{2} 2 β 2
2*b2
ν 3 \nu^{3} ν 3 = = =
2 β 3 2\beta_{3} 2 β 3
2*b3
ν 4 \nu^{4} ν 4 = = =
4 β 4 4\beta_{4} 4 β 4
4*b4
ν 5 \nu^{5} ν 5 = = =
4 β 5 4\beta_{5} 4 β 5
4*b5
ν 6 \nu^{6} ν 6 = = =
8 β 6 8\beta_{6} 8 β 6
8*b6
ν 7 \nu^{7} ν 7 = = =
8 β 7 8\beta_{7} 8 β 7
8*b7
ν 8 \nu^{8} ν 8 = = =
16 β 8 16\beta_{8} 1 6 β 8
16*b8
ν 9 \nu^{9} ν 9 = = =
16 β 9 16\beta_{9} 1 6 β 9
16*b9
ν 10 \nu^{10} ν 1 0 = = =
32 β 10 32\beta_{10} 3 2 β 1 0
32*b10
ν 11 \nu^{11} ν 1 1 = = =
32 β 11 32\beta_{11} 3 2 β 1 1
32*b11
Character values
We give the values of χ \chi χ on generators for ( Z / 152 Z ) × \left(\mathbb{Z}/152\mathbb{Z}\right)^\times ( Z / 1 5 2 Z ) × .
n n n
39 39 3 9
77 77 7 7
97 97 9 7
χ ( n ) \chi(n) χ ( n )
− 1 -1 − 1
− 1 -1 − 1
− β 4 -\beta_{4} − β 4
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the kernel of the linear operator
T 3 12 − 30 T 3 11 + 519 T 3 10 − 6000 T 3 9 + 58026 T 3 8 − 484080 T 3 7 + ⋯ + 269517889 T_{3}^{12} - 30 T_{3}^{11} + 519 T_{3}^{10} - 6000 T_{3}^{9} + 58026 T_{3}^{8} - 484080 T_{3}^{7} + \cdots + 269517889 T 3 1 2 − 3 0 T 3 1 1 + 5 1 9 T 3 1 0 − 6 0 0 0 T 3 9 + 5 8 0 2 6 T 3 8 − 4 8 4 0 8 0 T 3 7 + ⋯ + 2 6 9 5 1 7 8 8 9
T3^12 - 30*T3^11 + 519*T3^10 - 6000*T3^9 + 58026*T3^8 - 484080*T3^7 + 3330364*T3^6 - 16901430*T3^5 + 62476329*T3^4 - 230638110*T3^3 + 728828421*T3^2 - 789493530*T3 + 269517889
acting on S 4 n e w ( 152 , [ χ ] ) S_{4}^{\mathrm{new}}(152, [\chi]) S 4 n e w ( 1 5 2 , [ χ ] ) .
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T 12 − 512 T 6 + 262144 T^{12} - 512 T^{6} + 262144 T 1 2 − 5 1 2 T 6 + 2 6 2 1 4 4
T^12 - 512*T^6 + 262144
3 3 3
T 12 + ⋯ + 269517889 T^{12} + \cdots + 269517889 T 1 2 + ⋯ + 2 6 9 5 1 7 8 8 9
T^12 - 30*T^11 + 519*T^10 - 6000*T^9 + 58026*T^8 - 484080*T^7 + 3330364*T^6 - 16901430*T^5 + 62476329*T^4 - 230638110*T^3 + 728828421*T^2 - 789493530*T + 269517889
5 5 5
T 12 T^{12} T 1 2
T^12
7 7 7
T 12 T^{12} T 1 2
T^12
11 11 1 1
T 12 + ⋯ + 73 ⋯ 81 T^{12} + \cdots + 73\!\cdots\!81 T 1 2 + ⋯ + 7 3 ⋯ 8 1
T^12 + 7986*T^10 - 132084*T^9 + 47832147*T^8 - 791117118*T^7 + 126266126460*T^6 - 3158930652174*T^5 + 249967944440379*T^4 - 3846285620281638*T^3 + 112785700574222577*T^2 + 715248276751745154*T + 7356556692408641481
13 13 1 3
T 12 T^{12} T 1 2
T^12
17 17 1 7
T 12 + ⋯ + 85 ⋯ 61 T^{12} + \cdots + 85\!\cdots\!61 T 1 2 + ⋯ + 8 5 ⋯ 6 1
T^12 - 2521530*T^9 + 6650736236019*T^6 + 737856904423412070*T^3 + 85628041698707226424161
19 19 1 9
T 12 + ⋯ + 10 ⋯ 41 T^{12} + \cdots + 10\!\cdots\!41 T 1 2 + ⋯ + 1 0 ⋯ 4 1
T^12 - 990146*T^9 + 657701403537*T^6 - 319507933205085734*T^3 + 104127350297911241532841
23 23 2 3
T 12 T^{12} T 1 2
T^12
29 29 2 9
T 12 T^{12} T 1 2
T^12
31 31 3 1
T 12 T^{12} T 1 2
T^12
37 37 3 7
T 12 T^{12} T 1 2
T^12
41 41 4 1
T 12 + ⋯ + 72 ⋯ 89 T^{12} + \cdots + 72\!\cdots\!89 T 1 2 + ⋯ + 7 2 ⋯ 8 9
T^12 + 1566*T^11 + 1428141*T^10 + 853419888*T^9 + 336083450952*T^8 + 90284053802472*T^7 + 15625219305237562*T^6 + 2589365438917772778*T^5 + 1124567833854324670116*T^4 + 260738849018849236673076*T^3 + 2348460401200590654038400*T^2 - 866616056600931854750764800*T + 721725924222307576390481652889
43 43 4 3
T 12 + ⋯ + 13 ⋯ 21 T^{12} + \cdots + 13\!\cdots\!21 T 1 2 + ⋯ + 1 3 ⋯ 2 1
T^12 + 158735270*T^9 + 28879185209933361*T^6 - 584510768520506126159470*T^3 + 13559327898822146962486659332521
47 47 4 7
T 12 T^{12} T 1 2
T^12
53 53 5 3
T 12 T^{12} T 1 2
T^12
59 59 5 9
T 12 + ⋯ + 24 ⋯ 89 T^{12} + \cdots + 24\!\cdots\!89 T 1 2 + ⋯ + 2 4 ⋯ 8 9
T^12 - 2538*T^11 + 3678159*T^10 - 3632974416*T^9 + 2483893690752*T^8 - 1421686227945096*T^7 + 801028018200030238*T^6 - 473626079775300603546*T^5 + 267070205080990678904916*T^4 - 85386909904227544029611868*T^3 + 10967861533513378764349224600*T^2 - 214594409634946322985726548400*T + 2452269092891991294917977556689
61 61 6 1
T 12 T^{12} T 1 2
T^12
67 67 6 7
T 12 + ⋯ + 54 ⋯ 09 T^{12} + \cdots + 54\!\cdots\!09 T 1 2 + ⋯ + 5 4 ⋯ 0 9
T^12 + 210*T^11 - 872889*T^10 + 2058000*T^9 - 524993398614*T^8 - 299612414409840*T^7 + 174181940954087676*T^6 + 36665387704029636090*T^5 + 557008608785425142277609*T^4 + 95895889810761222106633170*T^3 + 16666485298753238163249159429*T^2 - 3057164913938272182908275371210*T + 541052256412265733940283157670209
71 71 7 1
T 12 T^{12} T 1 2
T^12
73 73 7 3
T 12 + ⋯ + 30 ⋯ 21 T^{12} + \cdots + 30\!\cdots\!21 T 1 2 + ⋯ + 3 0 ⋯ 2 1
T^12 - 2580*T^11 + 5107602*T^10 - 7030784230*T^9 + 7495968833901*T^8 - 5829106454676720*T^7 + 3646019790481357839*T^6 - 1161913659605613630450*T^5 - 198406178619590703610944*T^4 - 20800614339685144494012130*T^3 + 238293290748946678663725496761*T^2 - 1599406069236530863403913981690*T + 3040093446043537407652054747921
79 79 7 9
T 12 T^{12} T 1 2
T^12
83 83 8 3
T 12 + ⋯ + 29 ⋯ 81 T^{12} + \cdots + 29\!\cdots\!81 T 1 2 + ⋯ + 2 9 ⋯ 8 1
T^12 + 3430722*T^10 - 289275300*T^9 + 8827390080963*T^8 - 744317351824950*T^7 + 9035892402234506844*T^6 - 1276772956943798056950*T^5 + 6841726800157834817207643*T^4 - 573862237139433729013681950*T^3 + 1650194555081377365264043648089*T^2 + 133952490395103156414935346329850*T + 291492783142818249279577284833466681
89 89 8 9
T 12 + ⋯ + 17 ⋯ 49 T^{12} + \cdots + 17\!\cdots\!49 T 1 2 + ⋯ + 1 7 ⋯ 4 9
T^12 + 6509683746*T^9 + 14167365322164066415*T^6 + 273652986383402956979842278*T^3 + 1767179250755562218409736812231049
97 97 9 7
T 12 + ⋯ + 51 ⋯ 89 T^{12} + \cdots + 51\!\cdots\!89 T 1 2 + ⋯ + 5 1 ⋯ 8 9
T^12 - 5730*T^11 + 19150581*T^10 - 41807226000*T^9 + 74882337256026*T^8 - 114468940628495280*T^7 + 154834507235217726636*T^6 - 169443568576547579181870*T^5 + 155282209859339637978508929*T^4 - 130319774579058109008732287010*T^3 + 84762975241818613099216241521479*T^2 - 32287184043205162452702396245518770*T + 5113470355171342451873493204428167689
show more
show less