Properties

Label 2-1520-76.75-c1-0-6
Degree $2$
Conductor $1520$
Sign $-0.750 - 0.661i$
Analytic cond. $12.1372$
Root an. cond. $3.48385$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3.26·3-s + 5-s + 4.40i·7-s + 7.69·9-s + 4.40i·11-s + 4.96i·13-s − 3.26·15-s + (3.26 + 2.88i)19-s − 14.3i·21-s − 7.44i·23-s + 25-s − 15.3·27-s + 8.79·31-s − 14.3i·33-s + 4.40i·35-s + ⋯
L(s)  = 1  − 1.88·3-s + 0.447·5-s + 1.66i·7-s + 2.56·9-s + 1.32i·11-s + 1.37i·13-s − 0.844·15-s + (0.750 + 0.661i)19-s − 3.14i·21-s − 1.55i·23-s + 0.200·25-s − 2.95·27-s + 1.57·31-s − 2.50i·33-s + 0.744i·35-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1520 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.750 - 0.661i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1520 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.750 - 0.661i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1520\)    =    \(2^{4} \cdot 5 \cdot 19\)
Sign: $-0.750 - 0.661i$
Analytic conductor: \(12.1372\)
Root analytic conductor: \(3.48385\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{1520} (911, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1520,\ (\ :1/2),\ -0.750 - 0.661i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.8675246008\)
\(L(\frac12)\) \(\approx\) \(0.8675246008\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 - T \)
19 \( 1 + (-3.26 - 2.88i)T \)
good3 \( 1 + 3.26T + 3T^{2} \)
7 \( 1 - 4.40iT - 7T^{2} \)
11 \( 1 - 4.40iT - 11T^{2} \)
13 \( 1 - 4.96iT - 13T^{2} \)
17 \( 1 + 17T^{2} \)
23 \( 1 + 7.44iT - 23T^{2} \)
29 \( 1 - 29T^{2} \)
31 \( 1 - 8.79T + 31T^{2} \)
37 \( 1 - 9.42iT - 37T^{2} \)
41 \( 1 + 4.45iT - 41T^{2} \)
43 \( 1 - 1.36iT - 43T^{2} \)
47 \( 1 - 4.40iT - 47T^{2} \)
53 \( 1 + 0.512iT - 53T^{2} \)
59 \( 1 - 2.25T + 59T^{2} \)
61 \( 1 - 4.69T + 61T^{2} \)
67 \( 1 + 1.01T + 67T^{2} \)
71 \( 1 + 2.25T + 71T^{2} \)
73 \( 1 - 11.3T + 73T^{2} \)
79 \( 1 + 8.79T + 79T^{2} \)
83 \( 1 + 10.4iT - 83T^{2} \)
89 \( 1 - 8.91iT - 89T^{2} \)
97 \( 1 + 0.512iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.841332047661720666678592251327, −9.296821898848611669316983045834, −8.169712406176187627235320545365, −6.83707970997238168398743899000, −6.48752984080856161698725641080, −5.70134555275968570368057657875, −4.90993322302946339793870455465, −4.38751115318705136735496936768, −2.43204726924672524398763234086, −1.46803868187257182966546521988, 0.55497552670202221319241987952, 1.11827037669532715648079265461, 3.28371731527008943708717974531, 4.24518443307198200314755380592, 5.32624949602905324124668426120, 5.69063249424357353069715878951, 6.64735209527542732338517987422, 7.30536788475463473555326082793, 8.093080825092200665445580583080, 9.620178570415436406155989515029

Graph of the $Z$-function along the critical line