Properties

Label 1520.2.j.e
Level $1520$
Weight $2$
Character orbit 1520.j
Analytic conductor $12.137$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1520,2,Mod(911,1520)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1520, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1520.911");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1520 = 2^{4} \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1520.j (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(12.1372611072\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.433300527120384.59
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 4x^{6} - 10x^{4} + 676x^{2} + 28561 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_{6} q^{3} + q^{5} - \beta_1 q^{7} + (\beta_{4} + 3) q^{9} - \beta_1 q^{11} + \beta_{3} q^{13} - \beta_{6} q^{15} + (\beta_{6} + \beta_{5} - \beta_1) q^{19} + ( - 2 \beta_{3} + \beta_{2}) q^{21}+ \cdots + ( - 2 \beta_{5} - 7 \beta_1) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 8 q^{5} + 24 q^{9} + 8 q^{25} + 24 q^{45} - 24 q^{49} - 48 q^{57} + 16 q^{73} - 80 q^{77} + 104 q^{81} - 80 q^{93}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{8} + 4x^{6} - 10x^{4} + 676x^{2} + 28561 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( \nu^{7} + 173\nu^{5} + 2863\nu^{3} + 9971\nu ) / 52728 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( -5\nu^{6} + 149\nu^{4} - 119\nu^{2} - 4225 ) / 4056 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( -\nu^{6} - 4\nu^{4} - 159\nu^{2} - 676 ) / 676 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( -\nu^{6} - 4\nu^{4} + 179\nu^{2} - 338 ) / 676 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( \nu^{7} + 4\nu^{5} - 10\nu^{3} + 2873\nu ) / 4394 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( -\nu^{7} - 4\nu^{5} + 10\nu^{3} + 1521\nu ) / 4394 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( -5\nu^{7} + 149\nu^{5} - 1471\nu^{3} - 2873\nu ) / 17576 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_{6} + \beta_{5} \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( 2\beta_{4} - 2\beta_{3} - 1 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( -4\beta_{7} + \beta_{6} - 5\beta_{5} + 12\beta_1 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( -8\beta_{4} - 12\beta_{3} + 24\beta_{2} + 9 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( 68\beta_{7} - 59\beta_{6} + 17\beta_{5} + 108\beta_1 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( -286\beta_{4} - 310\beta_{3} - 96\beta_{2} - 553 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( -312\beta_{7} - 2627\beta_{6} + 1403\beta_{5} - 312\beta_1 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1520\mathbb{Z}\right)^\times\).

\(n\) \(191\) \(401\) \(1141\) \(1217\)
\(\chi(n)\) \(-1\) \(-1\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
911.1
3.26962 + 1.51973i
3.26962 1.51973i
1.14437 3.41912i
1.14437 + 3.41912i
−1.14437 3.41912i
−1.14437 + 3.41912i
−3.26962 + 1.51973i
−3.26962 1.51973i
0 −3.26962 0 1.00000 0 4.40237i 0 7.69042 0
911.2 0 −3.26962 0 1.00000 0 4.40237i 0 7.69042 0
911.3 0 −1.14437 0 1.00000 0 0.786873i 0 −1.69042 0
911.4 0 −1.14437 0 1.00000 0 0.786873i 0 −1.69042 0
911.5 0 1.14437 0 1.00000 0 0.786873i 0 −1.69042 0
911.6 0 1.14437 0 1.00000 0 0.786873i 0 −1.69042 0
911.7 0 3.26962 0 1.00000 0 4.40237i 0 7.69042 0
911.8 0 3.26962 0 1.00000 0 4.40237i 0 7.69042 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 911.8
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
4.b odd 2 1 inner
19.b odd 2 1 inner
76.d even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1520.2.j.e 8
4.b odd 2 1 inner 1520.2.j.e 8
19.b odd 2 1 inner 1520.2.j.e 8
76.d even 2 1 inner 1520.2.j.e 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1520.2.j.e 8 1.a even 1 1 trivial
1520.2.j.e 8 4.b odd 2 1 inner
1520.2.j.e 8 19.b odd 2 1 inner
1520.2.j.e 8 76.d even 2 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{4} - 12T_{3}^{2} + 14 \) acting on \(S_{2}^{\mathrm{new}}(1520, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{8} \) Copy content Toggle raw display
$3$ \( (T^{4} - 12 T^{2} + 14)^{2} \) Copy content Toggle raw display
$5$ \( (T - 1)^{8} \) Copy content Toggle raw display
$7$ \( (T^{4} + 20 T^{2} + 12)^{2} \) Copy content Toggle raw display
$11$ \( (T^{4} + 20 T^{2} + 12)^{2} \) Copy content Toggle raw display
$13$ \( (T^{4} + 40 T^{2} + 378)^{2} \) Copy content Toggle raw display
$17$ \( T^{8} \) Copy content Toggle raw display
$19$ \( T^{8} + 28 T^{6} + \cdots + 130321 \) Copy content Toggle raw display
$23$ \( (T^{4} + 92 T^{2} + 2028)^{2} \) Copy content Toggle raw display
$29$ \( T^{8} \) Copy content Toggle raw display
$31$ \( (T^{4} - 136 T^{2} + 4536)^{2} \) Copy content Toggle raw display
$37$ \( (T^{4} + 112 T^{2} + 2058)^{2} \) Copy content Toggle raw display
$41$ \( (T^{4} + 96 T^{2} + 1512)^{2} \) Copy content Toggle raw display
$43$ \( (T^{4} + 60 T^{2} + 108)^{2} \) Copy content Toggle raw display
$47$ \( (T^{4} + 20 T^{2} + 12)^{2} \) Copy content Toggle raw display
$53$ \( (T^{4} + 160 T^{2} + 42)^{2} \) Copy content Toggle raw display
$59$ \( (T^{4} - 104 T^{2} + 504)^{2} \) Copy content Toggle raw display
$61$ \( (T^{2} - 22)^{4} \) Copy content Toggle raw display
$67$ \( (T^{4} - 124 T^{2} + 126)^{2} \) Copy content Toggle raw display
$71$ \( (T^{4} - 104 T^{2} + 504)^{2} \) Copy content Toggle raw display
$73$ \( (T^{2} - 4 T - 84)^{4} \) Copy content Toggle raw display
$79$ \( (T^{4} - 136 T^{2} + 4536)^{2} \) Copy content Toggle raw display
$83$ \( (T^{4} + 276 T^{2} + 18252)^{2} \) Copy content Toggle raw display
$89$ \( (T^{4} + 384 T^{2} + 24192)^{2} \) Copy content Toggle raw display
$97$ \( (T^{4} + 160 T^{2} + 42)^{2} \) Copy content Toggle raw display
show more
show less