L(s) = 1 | + i·2-s − 4-s + 2.23i·5-s − 3.23i·7-s − i·8-s − 2.23·10-s − 2·11-s + 0.763i·13-s + 3.23·14-s + 16-s + i·17-s − 2.47·19-s − 2.23i·20-s − 2i·22-s − 4i·23-s + ⋯ |
L(s) = 1 | + 0.707i·2-s − 0.5·4-s + 0.999i·5-s − 1.22i·7-s − 0.353i·8-s − 0.707·10-s − 0.603·11-s + 0.211i·13-s + 0.864·14-s + 0.250·16-s + 0.242i·17-s − 0.567·19-s − 0.499i·20-s − 0.426i·22-s − 0.834i·23-s + ⋯ |
Λ(s)=(=(1530s/2ΓC(s)L(s)iΛ(2−s)
Λ(s)=(=(1530s/2ΓC(s+1/2)L(s)iΛ(1−s)
Degree: |
2 |
Conductor: |
1530
= 2⋅32⋅5⋅17
|
Sign: |
i
|
Analytic conductor: |
12.2171 |
Root analytic conductor: |
3.49529 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1530(919,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1530, ( :1/2), i)
|
Particular Values
L(1) |
≈ |
0.3992252965 |
L(21) |
≈ |
0.3992252965 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1−iT |
| 3 | 1 |
| 5 | 1−2.23iT |
| 17 | 1−iT |
good | 7 | 1+3.23iT−7T2 |
| 11 | 1+2T+11T2 |
| 13 | 1−0.763iT−13T2 |
| 19 | 1+2.47T+19T2 |
| 23 | 1+4iT−23T2 |
| 29 | 1+4T+29T2 |
| 31 | 1+6.47T+31T2 |
| 37 | 1+2iT−37T2 |
| 41 | 1+5.70T+41T2 |
| 43 | 1+10.1iT−43T2 |
| 47 | 1−1.52iT−47T2 |
| 53 | 1+6.94iT−53T2 |
| 59 | 1+1.70T+59T2 |
| 61 | 1+4.47T+61T2 |
| 67 | 1+11.7iT−67T2 |
| 71 | 1+6.76T+71T2 |
| 73 | 1−13.2iT−73T2 |
| 79 | 1−16.9T+79T2 |
| 83 | 1+1.52iT−83T2 |
| 89 | 1−3.52T+89T2 |
| 97 | 1+11.7iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.210854202503868203551152554487, −8.233093154233786589490847563469, −7.45256697054074903015477362962, −6.95612248995389147347192175370, −6.20874856829200788660934405213, −5.20865955361717963550896491072, −4.12332053070412539081218670458, −3.44729324900800156391099060520, −2.05322668054936673380114053844, −0.15128576267795183587833397861,
1.53227414844028222275862722486, 2.49479410890826440591981969838, 3.57879529500617047421428488749, 4.73657189795930188027600953159, 5.38553090601852159792908910602, 6.07082410406131634535431622837, 7.55452545554919402999044052426, 8.274554493553103265466153121494, 9.073191396631734250917509722633, 9.444485548926707973619445412577