Properties

Label 2-1530-5.4-c1-0-32
Degree $2$
Conductor $1530$
Sign $i$
Analytic cond. $12.2171$
Root an. cond. $3.49529$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + i·2-s − 4-s + 2.23i·5-s − 3.23i·7-s i·8-s − 2.23·10-s − 2·11-s + 0.763i·13-s + 3.23·14-s + 16-s + i·17-s − 2.47·19-s − 2.23i·20-s − 2i·22-s − 4i·23-s + ⋯
L(s)  = 1  + 0.707i·2-s − 0.5·4-s + 0.999i·5-s − 1.22i·7-s − 0.353i·8-s − 0.707·10-s − 0.603·11-s + 0.211i·13-s + 0.864·14-s + 0.250·16-s + 0.242i·17-s − 0.567·19-s − 0.499i·20-s − 0.426i·22-s − 0.834i·23-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1530 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & i\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1530 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & i\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1530\)    =    \(2 \cdot 3^{2} \cdot 5 \cdot 17\)
Sign: $i$
Analytic conductor: \(12.2171\)
Root analytic conductor: \(3.49529\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{1530} (919, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1530,\ (\ :1/2),\ i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.3992252965\)
\(L(\frac12)\) \(\approx\) \(0.3992252965\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - iT \)
3 \( 1 \)
5 \( 1 - 2.23iT \)
17 \( 1 - iT \)
good7 \( 1 + 3.23iT - 7T^{2} \)
11 \( 1 + 2T + 11T^{2} \)
13 \( 1 - 0.763iT - 13T^{2} \)
19 \( 1 + 2.47T + 19T^{2} \)
23 \( 1 + 4iT - 23T^{2} \)
29 \( 1 + 4T + 29T^{2} \)
31 \( 1 + 6.47T + 31T^{2} \)
37 \( 1 + 2iT - 37T^{2} \)
41 \( 1 + 5.70T + 41T^{2} \)
43 \( 1 + 10.1iT - 43T^{2} \)
47 \( 1 - 1.52iT - 47T^{2} \)
53 \( 1 + 6.94iT - 53T^{2} \)
59 \( 1 + 1.70T + 59T^{2} \)
61 \( 1 + 4.47T + 61T^{2} \)
67 \( 1 + 11.7iT - 67T^{2} \)
71 \( 1 + 6.76T + 71T^{2} \)
73 \( 1 - 13.2iT - 73T^{2} \)
79 \( 1 - 16.9T + 79T^{2} \)
83 \( 1 + 1.52iT - 83T^{2} \)
89 \( 1 - 3.52T + 89T^{2} \)
97 \( 1 + 11.7iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.210854202503868203551152554487, −8.233093154233786589490847563469, −7.45256697054074903015477362962, −6.95612248995389147347192175370, −6.20874856829200788660934405213, −5.20865955361717963550896491072, −4.12332053070412539081218670458, −3.44729324900800156391099060520, −2.05322668054936673380114053844, −0.15128576267795183587833397861, 1.53227414844028222275862722486, 2.49479410890826440591981969838, 3.57879529500617047421428488749, 4.73657189795930188027600953159, 5.38553090601852159792908910602, 6.07082410406131634535431622837, 7.55452545554919402999044052426, 8.274554493553103265466153121494, 9.073191396631734250917509722633, 9.444485548926707973619445412577

Graph of the $Z$-function along the critical line