Properties

Label 1530.2.d.f.919.4
Level $1530$
Weight $2$
Character 1530.919
Analytic conductor $12.217$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1530,2,Mod(919,1530)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1530, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1530.919");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1530 = 2 \cdot 3^{2} \cdot 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1530.d (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(12.2171115093\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{5})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 3x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 510)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 919.4
Root \(-1.61803i\) of defining polynomial
Character \(\chi\) \(=\) 1530.919
Dual form 1530.2.d.f.919.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000i q^{2} -1.00000 q^{4} +2.23607i q^{5} -3.23607i q^{7} -1.00000i q^{8} -2.23607 q^{10} -2.00000 q^{11} +0.763932i q^{13} +3.23607 q^{14} +1.00000 q^{16} +1.00000i q^{17} -2.47214 q^{19} -2.23607i q^{20} -2.00000i q^{22} -4.00000i q^{23} -5.00000 q^{25} -0.763932 q^{26} +3.23607i q^{28} -4.00000 q^{29} -6.47214 q^{31} +1.00000i q^{32} -1.00000 q^{34} +7.23607 q^{35} -2.00000i q^{37} -2.47214i q^{38} +2.23607 q^{40} -5.70820 q^{41} -10.1803i q^{43} +2.00000 q^{44} +4.00000 q^{46} +1.52786i q^{47} -3.47214 q^{49} -5.00000i q^{50} -0.763932i q^{52} -6.94427i q^{53} -4.47214i q^{55} -3.23607 q^{56} -4.00000i q^{58} -1.70820 q^{59} -4.47214 q^{61} -6.47214i q^{62} -1.00000 q^{64} -1.70820 q^{65} -11.7082i q^{67} -1.00000i q^{68} +7.23607i q^{70} -6.76393 q^{71} +13.2361i q^{73} +2.00000 q^{74} +2.47214 q^{76} +6.47214i q^{77} +16.9443 q^{79} +2.23607i q^{80} -5.70820i q^{82} -1.52786i q^{83} -2.23607 q^{85} +10.1803 q^{86} +2.00000i q^{88} +3.52786 q^{89} +2.47214 q^{91} +4.00000i q^{92} -1.52786 q^{94} -5.52786i q^{95} -11.7082i q^{97} -3.47214i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{4} - 8 q^{11} + 4 q^{14} + 4 q^{16} + 8 q^{19} - 20 q^{25} - 12 q^{26} - 16 q^{29} - 8 q^{31} - 4 q^{34} + 20 q^{35} + 4 q^{41} + 8 q^{44} + 16 q^{46} + 4 q^{49} - 4 q^{56} + 20 q^{59} - 4 q^{64}+ \cdots - 24 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1530\mathbb{Z}\right)^\times\).

\(n\) \(307\) \(1261\) \(1361\)
\(\chi(n)\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000i 0.707107i
\(3\) 0 0
\(4\) −1.00000 −0.500000
\(5\) 2.23607i 1.00000i
\(6\) 0 0
\(7\) − 3.23607i − 1.22312i −0.791199 0.611559i \(-0.790543\pi\)
0.791199 0.611559i \(-0.209457\pi\)
\(8\) − 1.00000i − 0.353553i
\(9\) 0 0
\(10\) −2.23607 −0.707107
\(11\) −2.00000 −0.603023 −0.301511 0.953463i \(-0.597491\pi\)
−0.301511 + 0.953463i \(0.597491\pi\)
\(12\) 0 0
\(13\) 0.763932i 0.211877i 0.994373 + 0.105938i \(0.0337846\pi\)
−0.994373 + 0.105938i \(0.966215\pi\)
\(14\) 3.23607 0.864876
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) 1.00000i 0.242536i
\(18\) 0 0
\(19\) −2.47214 −0.567147 −0.283573 0.958951i \(-0.591520\pi\)
−0.283573 + 0.958951i \(0.591520\pi\)
\(20\) − 2.23607i − 0.500000i
\(21\) 0 0
\(22\) − 2.00000i − 0.426401i
\(23\) − 4.00000i − 0.834058i −0.908893 0.417029i \(-0.863071\pi\)
0.908893 0.417029i \(-0.136929\pi\)
\(24\) 0 0
\(25\) −5.00000 −1.00000
\(26\) −0.763932 −0.149819
\(27\) 0 0
\(28\) 3.23607i 0.611559i
\(29\) −4.00000 −0.742781 −0.371391 0.928477i \(-0.621119\pi\)
−0.371391 + 0.928477i \(0.621119\pi\)
\(30\) 0 0
\(31\) −6.47214 −1.16243 −0.581215 0.813750i \(-0.697422\pi\)
−0.581215 + 0.813750i \(0.697422\pi\)
\(32\) 1.00000i 0.176777i
\(33\) 0 0
\(34\) −1.00000 −0.171499
\(35\) 7.23607 1.22312
\(36\) 0 0
\(37\) − 2.00000i − 0.328798i −0.986394 0.164399i \(-0.947432\pi\)
0.986394 0.164399i \(-0.0525685\pi\)
\(38\) − 2.47214i − 0.401033i
\(39\) 0 0
\(40\) 2.23607 0.353553
\(41\) −5.70820 −0.891472 −0.445736 0.895165i \(-0.647058\pi\)
−0.445736 + 0.895165i \(0.647058\pi\)
\(42\) 0 0
\(43\) − 10.1803i − 1.55249i −0.630433 0.776244i \(-0.717123\pi\)
0.630433 0.776244i \(-0.282877\pi\)
\(44\) 2.00000 0.301511
\(45\) 0 0
\(46\) 4.00000 0.589768
\(47\) 1.52786i 0.222862i 0.993772 + 0.111431i \(0.0355434\pi\)
−0.993772 + 0.111431i \(0.964457\pi\)
\(48\) 0 0
\(49\) −3.47214 −0.496019
\(50\) − 5.00000i − 0.707107i
\(51\) 0 0
\(52\) − 0.763932i − 0.105938i
\(53\) − 6.94427i − 0.953869i −0.878939 0.476935i \(-0.841748\pi\)
0.878939 0.476935i \(-0.158252\pi\)
\(54\) 0 0
\(55\) − 4.47214i − 0.603023i
\(56\) −3.23607 −0.432438
\(57\) 0 0
\(58\) − 4.00000i − 0.525226i
\(59\) −1.70820 −0.222389 −0.111195 0.993799i \(-0.535468\pi\)
−0.111195 + 0.993799i \(0.535468\pi\)
\(60\) 0 0
\(61\) −4.47214 −0.572598 −0.286299 0.958140i \(-0.592425\pi\)
−0.286299 + 0.958140i \(0.592425\pi\)
\(62\) − 6.47214i − 0.821962i
\(63\) 0 0
\(64\) −1.00000 −0.125000
\(65\) −1.70820 −0.211877
\(66\) 0 0
\(67\) − 11.7082i − 1.43038i −0.698928 0.715192i \(-0.746339\pi\)
0.698928 0.715192i \(-0.253661\pi\)
\(68\) − 1.00000i − 0.121268i
\(69\) 0 0
\(70\) 7.23607i 0.864876i
\(71\) −6.76393 −0.802731 −0.401366 0.915918i \(-0.631464\pi\)
−0.401366 + 0.915918i \(0.631464\pi\)
\(72\) 0 0
\(73\) 13.2361i 1.54916i 0.632473 + 0.774582i \(0.282040\pi\)
−0.632473 + 0.774582i \(0.717960\pi\)
\(74\) 2.00000 0.232495
\(75\) 0 0
\(76\) 2.47214 0.283573
\(77\) 6.47214i 0.737568i
\(78\) 0 0
\(79\) 16.9443 1.90638 0.953190 0.302373i \(-0.0977787\pi\)
0.953190 + 0.302373i \(0.0977787\pi\)
\(80\) 2.23607i 0.250000i
\(81\) 0 0
\(82\) − 5.70820i − 0.630366i
\(83\) − 1.52786i − 0.167705i −0.996478 0.0838524i \(-0.973278\pi\)
0.996478 0.0838524i \(-0.0267224\pi\)
\(84\) 0 0
\(85\) −2.23607 −0.242536
\(86\) 10.1803 1.09777
\(87\) 0 0
\(88\) 2.00000i 0.213201i
\(89\) 3.52786 0.373953 0.186976 0.982364i \(-0.440131\pi\)
0.186976 + 0.982364i \(0.440131\pi\)
\(90\) 0 0
\(91\) 2.47214 0.259150
\(92\) 4.00000i 0.417029i
\(93\) 0 0
\(94\) −1.52786 −0.157587
\(95\) − 5.52786i − 0.567147i
\(96\) 0 0
\(97\) − 11.7082i − 1.18879i −0.804174 0.594394i \(-0.797392\pi\)
0.804174 0.594394i \(-0.202608\pi\)
\(98\) − 3.47214i − 0.350739i
\(99\) 0 0
\(100\) 5.00000 0.500000
\(101\) −11.7082 −1.16501 −0.582505 0.812827i \(-0.697927\pi\)
−0.582505 + 0.812827i \(0.697927\pi\)
\(102\) 0 0
\(103\) − 6.94427i − 0.684239i −0.939656 0.342120i \(-0.888855\pi\)
0.939656 0.342120i \(-0.111145\pi\)
\(104\) 0.763932 0.0749097
\(105\) 0 0
\(106\) 6.94427 0.674487
\(107\) 8.00000i 0.773389i 0.922208 + 0.386695i \(0.126383\pi\)
−0.922208 + 0.386695i \(0.873617\pi\)
\(108\) 0 0
\(109\) 16.4721 1.57774 0.788872 0.614557i \(-0.210665\pi\)
0.788872 + 0.614557i \(0.210665\pi\)
\(110\) 4.47214 0.426401
\(111\) 0 0
\(112\) − 3.23607i − 0.305780i
\(113\) 10.0000i 0.940721i 0.882474 + 0.470360i \(0.155876\pi\)
−0.882474 + 0.470360i \(0.844124\pi\)
\(114\) 0 0
\(115\) 8.94427 0.834058
\(116\) 4.00000 0.371391
\(117\) 0 0
\(118\) − 1.70820i − 0.157253i
\(119\) 3.23607 0.296650
\(120\) 0 0
\(121\) −7.00000 −0.636364
\(122\) − 4.47214i − 0.404888i
\(123\) 0 0
\(124\) 6.47214 0.581215
\(125\) − 11.1803i − 1.00000i
\(126\) 0 0
\(127\) − 14.0000i − 1.24230i −0.783692 0.621150i \(-0.786666\pi\)
0.783692 0.621150i \(-0.213334\pi\)
\(128\) − 1.00000i − 0.0883883i
\(129\) 0 0
\(130\) − 1.70820i − 0.149819i
\(131\) −3.52786 −0.308231 −0.154115 0.988053i \(-0.549253\pi\)
−0.154115 + 0.988053i \(0.549253\pi\)
\(132\) 0 0
\(133\) 8.00000i 0.693688i
\(134\) 11.7082 1.01143
\(135\) 0 0
\(136\) 1.00000 0.0857493
\(137\) − 2.00000i − 0.170872i −0.996344 0.0854358i \(-0.972772\pi\)
0.996344 0.0854358i \(-0.0272282\pi\)
\(138\) 0 0
\(139\) −10.4721 −0.888235 −0.444117 0.895969i \(-0.646483\pi\)
−0.444117 + 0.895969i \(0.646483\pi\)
\(140\) −7.23607 −0.611559
\(141\) 0 0
\(142\) − 6.76393i − 0.567617i
\(143\) − 1.52786i − 0.127766i
\(144\) 0 0
\(145\) − 8.94427i − 0.742781i
\(146\) −13.2361 −1.09542
\(147\) 0 0
\(148\) 2.00000i 0.164399i
\(149\) −10.1803 −0.834006 −0.417003 0.908905i \(-0.636920\pi\)
−0.417003 + 0.908905i \(0.636920\pi\)
\(150\) 0 0
\(151\) −4.00000 −0.325515 −0.162758 0.986666i \(-0.552039\pi\)
−0.162758 + 0.986666i \(0.552039\pi\)
\(152\) 2.47214i 0.200517i
\(153\) 0 0
\(154\) −6.47214 −0.521540
\(155\) − 14.4721i − 1.16243i
\(156\) 0 0
\(157\) 12.1803i 0.972097i 0.873932 + 0.486048i \(0.161562\pi\)
−0.873932 + 0.486048i \(0.838438\pi\)
\(158\) 16.9443i 1.34801i
\(159\) 0 0
\(160\) −2.23607 −0.176777
\(161\) −12.9443 −1.02015
\(162\) 0 0
\(163\) − 13.5279i − 1.05958i −0.848128 0.529792i \(-0.822270\pi\)
0.848128 0.529792i \(-0.177730\pi\)
\(164\) 5.70820 0.445736
\(165\) 0 0
\(166\) 1.52786 0.118585
\(167\) 21.8885i 1.69379i 0.531763 + 0.846893i \(0.321530\pi\)
−0.531763 + 0.846893i \(0.678470\pi\)
\(168\) 0 0
\(169\) 12.4164 0.955108
\(170\) − 2.23607i − 0.171499i
\(171\) 0 0
\(172\) 10.1803i 0.776244i
\(173\) − 19.8885i − 1.51210i −0.654515 0.756049i \(-0.727127\pi\)
0.654515 0.756049i \(-0.272873\pi\)
\(174\) 0 0
\(175\) 16.1803i 1.22312i
\(176\) −2.00000 −0.150756
\(177\) 0 0
\(178\) 3.52786i 0.264425i
\(179\) 5.70820 0.426651 0.213326 0.976981i \(-0.431570\pi\)
0.213326 + 0.976981i \(0.431570\pi\)
\(180\) 0 0
\(181\) −8.47214 −0.629729 −0.314864 0.949137i \(-0.601959\pi\)
−0.314864 + 0.949137i \(0.601959\pi\)
\(182\) 2.47214i 0.183247i
\(183\) 0 0
\(184\) −4.00000 −0.294884
\(185\) 4.47214 0.328798
\(186\) 0 0
\(187\) − 2.00000i − 0.146254i
\(188\) − 1.52786i − 0.111431i
\(189\) 0 0
\(190\) 5.52786 0.401033
\(191\) −14.4721 −1.04717 −0.523584 0.851974i \(-0.675405\pi\)
−0.523584 + 0.851974i \(0.675405\pi\)
\(192\) 0 0
\(193\) 25.5967i 1.84249i 0.388978 + 0.921247i \(0.372828\pi\)
−0.388978 + 0.921247i \(0.627172\pi\)
\(194\) 11.7082 0.840600
\(195\) 0 0
\(196\) 3.47214 0.248010
\(197\) − 19.8885i − 1.41700i −0.705711 0.708500i \(-0.749372\pi\)
0.705711 0.708500i \(-0.250628\pi\)
\(198\) 0 0
\(199\) −8.94427 −0.634043 −0.317021 0.948418i \(-0.602683\pi\)
−0.317021 + 0.948418i \(0.602683\pi\)
\(200\) 5.00000i 0.353553i
\(201\) 0 0
\(202\) − 11.7082i − 0.823786i
\(203\) 12.9443i 0.908510i
\(204\) 0 0
\(205\) − 12.7639i − 0.891472i
\(206\) 6.94427 0.483830
\(207\) 0 0
\(208\) 0.763932i 0.0529692i
\(209\) 4.94427 0.342002
\(210\) 0 0
\(211\) −7.05573 −0.485736 −0.242868 0.970059i \(-0.578088\pi\)
−0.242868 + 0.970059i \(0.578088\pi\)
\(212\) 6.94427i 0.476935i
\(213\) 0 0
\(214\) −8.00000 −0.546869
\(215\) 22.7639 1.55249
\(216\) 0 0
\(217\) 20.9443i 1.42179i
\(218\) 16.4721i 1.11563i
\(219\) 0 0
\(220\) 4.47214i 0.301511i
\(221\) −0.763932 −0.0513876
\(222\) 0 0
\(223\) 26.9443i 1.80432i 0.431400 + 0.902161i \(0.358020\pi\)
−0.431400 + 0.902161i \(0.641980\pi\)
\(224\) 3.23607 0.216219
\(225\) 0 0
\(226\) −10.0000 −0.665190
\(227\) − 25.8885i − 1.71828i −0.511738 0.859142i \(-0.670998\pi\)
0.511738 0.859142i \(-0.329002\pi\)
\(228\) 0 0
\(229\) −5.41641 −0.357926 −0.178963 0.983856i \(-0.557274\pi\)
−0.178963 + 0.983856i \(0.557274\pi\)
\(230\) 8.94427i 0.589768i
\(231\) 0 0
\(232\) 4.00000i 0.262613i
\(233\) 21.4164i 1.40304i 0.712652 + 0.701518i \(0.247494\pi\)
−0.712652 + 0.701518i \(0.752506\pi\)
\(234\) 0 0
\(235\) −3.41641 −0.222862
\(236\) 1.70820 0.111195
\(237\) 0 0
\(238\) 3.23607i 0.209763i
\(239\) 13.8885 0.898375 0.449188 0.893437i \(-0.351713\pi\)
0.449188 + 0.893437i \(0.351713\pi\)
\(240\) 0 0
\(241\) −17.4164 −1.12189 −0.560945 0.827853i \(-0.689562\pi\)
−0.560945 + 0.827853i \(0.689562\pi\)
\(242\) − 7.00000i − 0.449977i
\(243\) 0 0
\(244\) 4.47214 0.286299
\(245\) − 7.76393i − 0.496019i
\(246\) 0 0
\(247\) − 1.88854i − 0.120165i
\(248\) 6.47214i 0.410981i
\(249\) 0 0
\(250\) 11.1803 0.707107
\(251\) −12.1803 −0.768816 −0.384408 0.923163i \(-0.625594\pi\)
−0.384408 + 0.923163i \(0.625594\pi\)
\(252\) 0 0
\(253\) 8.00000i 0.502956i
\(254\) 14.0000 0.878438
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) 18.0000i 1.12281i 0.827541 + 0.561405i \(0.189739\pi\)
−0.827541 + 0.561405i \(0.810261\pi\)
\(258\) 0 0
\(259\) −6.47214 −0.402159
\(260\) 1.70820 0.105938
\(261\) 0 0
\(262\) − 3.52786i − 0.217952i
\(263\) 4.00000i 0.246651i 0.992366 + 0.123325i \(0.0393559\pi\)
−0.992366 + 0.123325i \(0.960644\pi\)
\(264\) 0 0
\(265\) 15.5279 0.953869
\(266\) −8.00000 −0.490511
\(267\) 0 0
\(268\) 11.7082i 0.715192i
\(269\) −24.9443 −1.52088 −0.760440 0.649409i \(-0.775016\pi\)
−0.760440 + 0.649409i \(0.775016\pi\)
\(270\) 0 0
\(271\) 4.00000 0.242983 0.121491 0.992592i \(-0.461232\pi\)
0.121491 + 0.992592i \(0.461232\pi\)
\(272\) 1.00000i 0.0606339i
\(273\) 0 0
\(274\) 2.00000 0.120824
\(275\) 10.0000 0.603023
\(276\) 0 0
\(277\) 18.3607i 1.10319i 0.834113 + 0.551593i \(0.185980\pi\)
−0.834113 + 0.551593i \(0.814020\pi\)
\(278\) − 10.4721i − 0.628077i
\(279\) 0 0
\(280\) − 7.23607i − 0.432438i
\(281\) 25.4164 1.51622 0.758108 0.652129i \(-0.226124\pi\)
0.758108 + 0.652129i \(0.226124\pi\)
\(282\) 0 0
\(283\) 9.88854i 0.587813i 0.955834 + 0.293906i \(0.0949554\pi\)
−0.955834 + 0.293906i \(0.905045\pi\)
\(284\) 6.76393 0.401366
\(285\) 0 0
\(286\) 1.52786 0.0903445
\(287\) 18.4721i 1.09038i
\(288\) 0 0
\(289\) −1.00000 −0.0588235
\(290\) 8.94427 0.525226
\(291\) 0 0
\(292\) − 13.2361i − 0.774582i
\(293\) − 2.58359i − 0.150935i −0.997148 0.0754675i \(-0.975955\pi\)
0.997148 0.0754675i \(-0.0240449\pi\)
\(294\) 0 0
\(295\) − 3.81966i − 0.222389i
\(296\) −2.00000 −0.116248
\(297\) 0 0
\(298\) − 10.1803i − 0.589731i
\(299\) 3.05573 0.176717
\(300\) 0 0
\(301\) −32.9443 −1.89888
\(302\) − 4.00000i − 0.230174i
\(303\) 0 0
\(304\) −2.47214 −0.141787
\(305\) − 10.0000i − 0.572598i
\(306\) 0 0
\(307\) 18.1803i 1.03761i 0.854894 + 0.518803i \(0.173622\pi\)
−0.854894 + 0.518803i \(0.826378\pi\)
\(308\) − 6.47214i − 0.368784i
\(309\) 0 0
\(310\) 14.4721 0.821962
\(311\) 29.5967 1.67828 0.839139 0.543917i \(-0.183059\pi\)
0.839139 + 0.543917i \(0.183059\pi\)
\(312\) 0 0
\(313\) − 8.29180i − 0.468680i −0.972155 0.234340i \(-0.924707\pi\)
0.972155 0.234340i \(-0.0752929\pi\)
\(314\) −12.1803 −0.687376
\(315\) 0 0
\(316\) −16.9443 −0.953190
\(317\) − 23.8885i − 1.34171i −0.741587 0.670857i \(-0.765926\pi\)
0.741587 0.670857i \(-0.234074\pi\)
\(318\) 0 0
\(319\) 8.00000 0.447914
\(320\) − 2.23607i − 0.125000i
\(321\) 0 0
\(322\) − 12.9443i − 0.721356i
\(323\) − 2.47214i − 0.137553i
\(324\) 0 0
\(325\) − 3.81966i − 0.211877i
\(326\) 13.5279 0.749239
\(327\) 0 0
\(328\) 5.70820i 0.315183i
\(329\) 4.94427 0.272587
\(330\) 0 0
\(331\) 23.4164 1.28708 0.643541 0.765412i \(-0.277465\pi\)
0.643541 + 0.765412i \(0.277465\pi\)
\(332\) 1.52786i 0.0838524i
\(333\) 0 0
\(334\) −21.8885 −1.19769
\(335\) 26.1803 1.43038
\(336\) 0 0
\(337\) − 2.18034i − 0.118771i −0.998235 0.0593853i \(-0.981086\pi\)
0.998235 0.0593853i \(-0.0189141\pi\)
\(338\) 12.4164i 0.675364i
\(339\) 0 0
\(340\) 2.23607 0.121268
\(341\) 12.9443 0.700972
\(342\) 0 0
\(343\) − 11.4164i − 0.616428i
\(344\) −10.1803 −0.548887
\(345\) 0 0
\(346\) 19.8885 1.06921
\(347\) 30.8328i 1.65519i 0.561324 + 0.827596i \(0.310292\pi\)
−0.561324 + 0.827596i \(0.689708\pi\)
\(348\) 0 0
\(349\) 19.5279 1.04530 0.522651 0.852547i \(-0.324943\pi\)
0.522651 + 0.852547i \(0.324943\pi\)
\(350\) −16.1803 −0.864876
\(351\) 0 0
\(352\) − 2.00000i − 0.106600i
\(353\) − 2.94427i − 0.156708i −0.996926 0.0783539i \(-0.975034\pi\)
0.996926 0.0783539i \(-0.0249664\pi\)
\(354\) 0 0
\(355\) − 15.1246i − 0.802731i
\(356\) −3.52786 −0.186976
\(357\) 0 0
\(358\) 5.70820i 0.301688i
\(359\) −18.4721 −0.974922 −0.487461 0.873145i \(-0.662077\pi\)
−0.487461 + 0.873145i \(0.662077\pi\)
\(360\) 0 0
\(361\) −12.8885 −0.678344
\(362\) − 8.47214i − 0.445286i
\(363\) 0 0
\(364\) −2.47214 −0.129575
\(365\) −29.5967 −1.54916
\(366\) 0 0
\(367\) 28.1803i 1.47100i 0.677524 + 0.735501i \(0.263053\pi\)
−0.677524 + 0.735501i \(0.736947\pi\)
\(368\) − 4.00000i − 0.208514i
\(369\) 0 0
\(370\) 4.47214i 0.232495i
\(371\) −22.4721 −1.16670
\(372\) 0 0
\(373\) 3.23607i 0.167557i 0.996484 + 0.0837786i \(0.0266989\pi\)
−0.996484 + 0.0837786i \(0.973301\pi\)
\(374\) 2.00000 0.103418
\(375\) 0 0
\(376\) 1.52786 0.0787936
\(377\) − 3.05573i − 0.157378i
\(378\) 0 0
\(379\) 10.4721 0.537917 0.268959 0.963152i \(-0.413320\pi\)
0.268959 + 0.963152i \(0.413320\pi\)
\(380\) 5.52786i 0.283573i
\(381\) 0 0
\(382\) − 14.4721i − 0.740459i
\(383\) 17.8885i 0.914062i 0.889451 + 0.457031i \(0.151087\pi\)
−0.889451 + 0.457031i \(0.848913\pi\)
\(384\) 0 0
\(385\) −14.4721 −0.737568
\(386\) −25.5967 −1.30284
\(387\) 0 0
\(388\) 11.7082i 0.594394i
\(389\) −2.18034 −0.110548 −0.0552738 0.998471i \(-0.517603\pi\)
−0.0552738 + 0.998471i \(0.517603\pi\)
\(390\) 0 0
\(391\) 4.00000 0.202289
\(392\) 3.47214i 0.175369i
\(393\) 0 0
\(394\) 19.8885 1.00197
\(395\) 37.8885i 1.90638i
\(396\) 0 0
\(397\) 31.8885i 1.60044i 0.599706 + 0.800220i \(0.295284\pi\)
−0.599706 + 0.800220i \(0.704716\pi\)
\(398\) − 8.94427i − 0.448336i
\(399\) 0 0
\(400\) −5.00000 −0.250000
\(401\) −22.0689 −1.10207 −0.551034 0.834483i \(-0.685766\pi\)
−0.551034 + 0.834483i \(0.685766\pi\)
\(402\) 0 0
\(403\) − 4.94427i − 0.246292i
\(404\) 11.7082 0.582505
\(405\) 0 0
\(406\) −12.9443 −0.642413
\(407\) 4.00000i 0.198273i
\(408\) 0 0
\(409\) 18.3607 0.907877 0.453939 0.891033i \(-0.350019\pi\)
0.453939 + 0.891033i \(0.350019\pi\)
\(410\) 12.7639 0.630366
\(411\) 0 0
\(412\) 6.94427i 0.342120i
\(413\) 5.52786i 0.272008i
\(414\) 0 0
\(415\) 3.41641 0.167705
\(416\) −0.763932 −0.0374548
\(417\) 0 0
\(418\) 4.94427i 0.241832i
\(419\) −38.3607 −1.87404 −0.937021 0.349273i \(-0.886429\pi\)
−0.937021 + 0.349273i \(0.886429\pi\)
\(420\) 0 0
\(421\) −10.5836 −0.515813 −0.257906 0.966170i \(-0.583033\pi\)
−0.257906 + 0.966170i \(0.583033\pi\)
\(422\) − 7.05573i − 0.343467i
\(423\) 0 0
\(424\) −6.94427 −0.337244
\(425\) − 5.00000i − 0.242536i
\(426\) 0 0
\(427\) 14.4721i 0.700356i
\(428\) − 8.00000i − 0.386695i
\(429\) 0 0
\(430\) 22.7639i 1.09777i
\(431\) 17.5967 0.847606 0.423803 0.905755i \(-0.360695\pi\)
0.423803 + 0.905755i \(0.360695\pi\)
\(432\) 0 0
\(433\) − 16.3607i − 0.786244i −0.919486 0.393122i \(-0.871395\pi\)
0.919486 0.393122i \(-0.128605\pi\)
\(434\) −20.9443 −1.00536
\(435\) 0 0
\(436\) −16.4721 −0.788872
\(437\) 9.88854i 0.473033i
\(438\) 0 0
\(439\) −22.4721 −1.07254 −0.536268 0.844048i \(-0.680166\pi\)
−0.536268 + 0.844048i \(0.680166\pi\)
\(440\) −4.47214 −0.213201
\(441\) 0 0
\(442\) − 0.763932i − 0.0363365i
\(443\) − 4.00000i − 0.190046i −0.995475 0.0950229i \(-0.969708\pi\)
0.995475 0.0950229i \(-0.0302924\pi\)
\(444\) 0 0
\(445\) 7.88854i 0.373953i
\(446\) −26.9443 −1.27585
\(447\) 0 0
\(448\) 3.23607i 0.152890i
\(449\) −31.5967 −1.49114 −0.745571 0.666426i \(-0.767823\pi\)
−0.745571 + 0.666426i \(0.767823\pi\)
\(450\) 0 0
\(451\) 11.4164 0.537578
\(452\) − 10.0000i − 0.470360i
\(453\) 0 0
\(454\) 25.8885 1.21501
\(455\) 5.52786i 0.259150i
\(456\) 0 0
\(457\) − 28.3607i − 1.32666i −0.748328 0.663328i \(-0.769143\pi\)
0.748328 0.663328i \(-0.230857\pi\)
\(458\) − 5.41641i − 0.253092i
\(459\) 0 0
\(460\) −8.94427 −0.417029
\(461\) −28.0689 −1.30730 −0.653649 0.756798i \(-0.726763\pi\)
−0.653649 + 0.756798i \(0.726763\pi\)
\(462\) 0 0
\(463\) − 1.05573i − 0.0490638i −0.999699 0.0245319i \(-0.992190\pi\)
0.999699 0.0245319i \(-0.00780954\pi\)
\(464\) −4.00000 −0.185695
\(465\) 0 0
\(466\) −21.4164 −0.992096
\(467\) − 16.9443i − 0.784087i −0.919947 0.392044i \(-0.871768\pi\)
0.919947 0.392044i \(-0.128232\pi\)
\(468\) 0 0
\(469\) −37.8885 −1.74953
\(470\) − 3.41641i − 0.157587i
\(471\) 0 0
\(472\) 1.70820i 0.0786265i
\(473\) 20.3607i 0.936185i
\(474\) 0 0
\(475\) 12.3607 0.567147
\(476\) −3.23607 −0.148325
\(477\) 0 0
\(478\) 13.8885i 0.635247i
\(479\) 13.5967 0.621251 0.310626 0.950532i \(-0.399461\pi\)
0.310626 + 0.950532i \(0.399461\pi\)
\(480\) 0 0
\(481\) 1.52786 0.0696646
\(482\) − 17.4164i − 0.793296i
\(483\) 0 0
\(484\) 7.00000 0.318182
\(485\) 26.1803 1.18879
\(486\) 0 0
\(487\) 29.7082i 1.34621i 0.739548 + 0.673104i \(0.235039\pi\)
−0.739548 + 0.673104i \(0.764961\pi\)
\(488\) 4.47214i 0.202444i
\(489\) 0 0
\(490\) 7.76393 0.350739
\(491\) −25.7082 −1.16020 −0.580098 0.814547i \(-0.696986\pi\)
−0.580098 + 0.814547i \(0.696986\pi\)
\(492\) 0 0
\(493\) − 4.00000i − 0.180151i
\(494\) 1.88854 0.0849696
\(495\) 0 0
\(496\) −6.47214 −0.290607
\(497\) 21.8885i 0.981835i
\(498\) 0 0
\(499\) 16.0000 0.716258 0.358129 0.933672i \(-0.383415\pi\)
0.358129 + 0.933672i \(0.383415\pi\)
\(500\) 11.1803i 0.500000i
\(501\) 0 0
\(502\) − 12.1803i − 0.543635i
\(503\) 0.583592i 0.0260211i 0.999915 + 0.0130105i \(0.00414150\pi\)
−0.999915 + 0.0130105i \(0.995858\pi\)
\(504\) 0 0
\(505\) − 26.1803i − 1.16501i
\(506\) −8.00000 −0.355643
\(507\) 0 0
\(508\) 14.0000i 0.621150i
\(509\) 32.6525 1.44730 0.723648 0.690169i \(-0.242464\pi\)
0.723648 + 0.690169i \(0.242464\pi\)
\(510\) 0 0
\(511\) 42.8328 1.89481
\(512\) 1.00000i 0.0441942i
\(513\) 0 0
\(514\) −18.0000 −0.793946
\(515\) 15.5279 0.684239
\(516\) 0 0
\(517\) − 3.05573i − 0.134391i
\(518\) − 6.47214i − 0.284369i
\(519\) 0 0
\(520\) 1.70820i 0.0749097i
\(521\) −28.1803 −1.23460 −0.617302 0.786727i \(-0.711774\pi\)
−0.617302 + 0.786727i \(0.711774\pi\)
\(522\) 0 0
\(523\) − 27.7082i − 1.21160i −0.795619 0.605798i \(-0.792854\pi\)
0.795619 0.605798i \(-0.207146\pi\)
\(524\) 3.52786 0.154115
\(525\) 0 0
\(526\) −4.00000 −0.174408
\(527\) − 6.47214i − 0.281931i
\(528\) 0 0
\(529\) 7.00000 0.304348
\(530\) 15.5279i 0.674487i
\(531\) 0 0
\(532\) − 8.00000i − 0.346844i
\(533\) − 4.36068i − 0.188882i
\(534\) 0 0
\(535\) −17.8885 −0.773389
\(536\) −11.7082 −0.505717
\(537\) 0 0
\(538\) − 24.9443i − 1.07542i
\(539\) 6.94427 0.299111
\(540\) 0 0
\(541\) 31.3050 1.34590 0.672952 0.739686i \(-0.265026\pi\)
0.672952 + 0.739686i \(0.265026\pi\)
\(542\) 4.00000i 0.171815i
\(543\) 0 0
\(544\) −1.00000 −0.0428746
\(545\) 36.8328i 1.57774i
\(546\) 0 0
\(547\) 16.9443i 0.724485i 0.932084 + 0.362242i \(0.117989\pi\)
−0.932084 + 0.362242i \(0.882011\pi\)
\(548\) 2.00000i 0.0854358i
\(549\) 0 0
\(550\) 10.0000i 0.426401i
\(551\) 9.88854 0.421266
\(552\) 0 0
\(553\) − 54.8328i − 2.33173i
\(554\) −18.3607 −0.780071
\(555\) 0 0
\(556\) 10.4721 0.444117
\(557\) − 42.9443i − 1.81961i −0.415039 0.909804i \(-0.636232\pi\)
0.415039 0.909804i \(-0.363768\pi\)
\(558\) 0 0
\(559\) 7.77709 0.328936
\(560\) 7.23607 0.305780
\(561\) 0 0
\(562\) 25.4164i 1.07213i
\(563\) − 37.8885i − 1.59681i −0.602120 0.798406i \(-0.705677\pi\)
0.602120 0.798406i \(-0.294323\pi\)
\(564\) 0 0
\(565\) −22.3607 −0.940721
\(566\) −9.88854 −0.415646
\(567\) 0 0
\(568\) 6.76393i 0.283808i
\(569\) 6.00000 0.251533 0.125767 0.992060i \(-0.459861\pi\)
0.125767 + 0.992060i \(0.459861\pi\)
\(570\) 0 0
\(571\) −8.36068 −0.349884 −0.174942 0.984579i \(-0.555974\pi\)
−0.174942 + 0.984579i \(0.555974\pi\)
\(572\) 1.52786i 0.0638832i
\(573\) 0 0
\(574\) −18.4721 −0.771012
\(575\) 20.0000i 0.834058i
\(576\) 0 0
\(577\) 8.58359i 0.357340i 0.983909 + 0.178670i \(0.0571794\pi\)
−0.983909 + 0.178670i \(0.942821\pi\)
\(578\) − 1.00000i − 0.0415945i
\(579\) 0 0
\(580\) 8.94427i 0.371391i
\(581\) −4.94427 −0.205123
\(582\) 0 0
\(583\) 13.8885i 0.575205i
\(584\) 13.2361 0.547712
\(585\) 0 0
\(586\) 2.58359 0.106727
\(587\) − 14.4721i − 0.597329i −0.954358 0.298664i \(-0.903459\pi\)
0.954358 0.298664i \(-0.0965411\pi\)
\(588\) 0 0
\(589\) 16.0000 0.659269
\(590\) 3.81966 0.157253
\(591\) 0 0
\(592\) − 2.00000i − 0.0821995i
\(593\) − 13.0557i − 0.536134i −0.963400 0.268067i \(-0.913615\pi\)
0.963400 0.268067i \(-0.0863849\pi\)
\(594\) 0 0
\(595\) 7.23607i 0.296650i
\(596\) 10.1803 0.417003
\(597\) 0 0
\(598\) 3.05573i 0.124958i
\(599\) 34.4721 1.40849 0.704247 0.709955i \(-0.251285\pi\)
0.704247 + 0.709955i \(0.251285\pi\)
\(600\) 0 0
\(601\) −19.5279 −0.796558 −0.398279 0.917264i \(-0.630392\pi\)
−0.398279 + 0.917264i \(0.630392\pi\)
\(602\) − 32.9443i − 1.34271i
\(603\) 0 0
\(604\) 4.00000 0.162758
\(605\) − 15.6525i − 0.636364i
\(606\) 0 0
\(607\) − 9.12461i − 0.370357i −0.982705 0.185178i \(-0.940714\pi\)
0.982705 0.185178i \(-0.0592863\pi\)
\(608\) − 2.47214i − 0.100258i
\(609\) 0 0
\(610\) 10.0000 0.404888
\(611\) −1.16718 −0.0472192
\(612\) 0 0
\(613\) − 19.8197i − 0.800509i −0.916404 0.400254i \(-0.868922\pi\)
0.916404 0.400254i \(-0.131078\pi\)
\(614\) −18.1803 −0.733699
\(615\) 0 0
\(616\) 6.47214 0.260770
\(617\) − 11.5279i − 0.464094i −0.972705 0.232047i \(-0.925458\pi\)
0.972705 0.232047i \(-0.0745424\pi\)
\(618\) 0 0
\(619\) 31.0557 1.24824 0.624118 0.781330i \(-0.285459\pi\)
0.624118 + 0.781330i \(0.285459\pi\)
\(620\) 14.4721i 0.581215i
\(621\) 0 0
\(622\) 29.5967i 1.18672i
\(623\) − 11.4164i − 0.457389i
\(624\) 0 0
\(625\) 25.0000 1.00000
\(626\) 8.29180 0.331407
\(627\) 0 0
\(628\) − 12.1803i − 0.486048i
\(629\) 2.00000 0.0797452
\(630\) 0 0
\(631\) 25.8885 1.03061 0.515303 0.857008i \(-0.327679\pi\)
0.515303 + 0.857008i \(0.327679\pi\)
\(632\) − 16.9443i − 0.674007i
\(633\) 0 0
\(634\) 23.8885 0.948735
\(635\) 31.3050 1.24230
\(636\) 0 0
\(637\) − 2.65248i − 0.105095i
\(638\) 8.00000i 0.316723i
\(639\) 0 0
\(640\) 2.23607 0.0883883
\(641\) 1.70820 0.0674700 0.0337350 0.999431i \(-0.489260\pi\)
0.0337350 + 0.999431i \(0.489260\pi\)
\(642\) 0 0
\(643\) − 0.583592i − 0.0230146i −0.999934 0.0115073i \(-0.996337\pi\)
0.999934 0.0115073i \(-0.00366297\pi\)
\(644\) 12.9443 0.510076
\(645\) 0 0
\(646\) 2.47214 0.0972649
\(647\) − 3.05573i − 0.120133i −0.998194 0.0600665i \(-0.980869\pi\)
0.998194 0.0600665i \(-0.0191313\pi\)
\(648\) 0 0
\(649\) 3.41641 0.134106
\(650\) 3.81966 0.149819
\(651\) 0 0
\(652\) 13.5279i 0.529792i
\(653\) 12.4721i 0.488072i 0.969766 + 0.244036i \(0.0784716\pi\)
−0.969766 + 0.244036i \(0.921528\pi\)
\(654\) 0 0
\(655\) − 7.88854i − 0.308231i
\(656\) −5.70820 −0.222868
\(657\) 0 0
\(658\) 4.94427i 0.192748i
\(659\) 41.7082 1.62472 0.812360 0.583156i \(-0.198182\pi\)
0.812360 + 0.583156i \(0.198182\pi\)
\(660\) 0 0
\(661\) −13.4164 −0.521838 −0.260919 0.965361i \(-0.584026\pi\)
−0.260919 + 0.965361i \(0.584026\pi\)
\(662\) 23.4164i 0.910105i
\(663\) 0 0
\(664\) −1.52786 −0.0592926
\(665\) −17.8885 −0.693688
\(666\) 0 0
\(667\) 16.0000i 0.619522i
\(668\) − 21.8885i − 0.846893i
\(669\) 0 0
\(670\) 26.1803i 1.01143i
\(671\) 8.94427 0.345290
\(672\) 0 0
\(673\) − 18.1803i − 0.700801i −0.936600 0.350400i \(-0.886046\pi\)
0.936600 0.350400i \(-0.113954\pi\)
\(674\) 2.18034 0.0839836
\(675\) 0 0
\(676\) −12.4164 −0.477554
\(677\) − 26.9443i − 1.03555i −0.855516 0.517776i \(-0.826760\pi\)
0.855516 0.517776i \(-0.173240\pi\)
\(678\) 0 0
\(679\) −37.8885 −1.45403
\(680\) 2.23607i 0.0857493i
\(681\) 0 0
\(682\) 12.9443i 0.495662i
\(683\) 15.0557i 0.576091i 0.957617 + 0.288046i \(0.0930055\pi\)
−0.957617 + 0.288046i \(0.906994\pi\)
\(684\) 0 0
\(685\) 4.47214 0.170872
\(686\) 11.4164 0.435880
\(687\) 0 0
\(688\) − 10.1803i − 0.388122i
\(689\) 5.30495 0.202103
\(690\) 0 0
\(691\) 12.9443 0.492423 0.246212 0.969216i \(-0.420814\pi\)
0.246212 + 0.969216i \(0.420814\pi\)
\(692\) 19.8885i 0.756049i
\(693\) 0 0
\(694\) −30.8328 −1.17040
\(695\) − 23.4164i − 0.888235i
\(696\) 0 0
\(697\) − 5.70820i − 0.216214i
\(698\) 19.5279i 0.739141i
\(699\) 0 0
\(700\) − 16.1803i − 0.611559i
\(701\) 37.5967 1.42001 0.710005 0.704197i \(-0.248693\pi\)
0.710005 + 0.704197i \(0.248693\pi\)
\(702\) 0 0
\(703\) 4.94427i 0.186477i
\(704\) 2.00000 0.0753778
\(705\) 0 0
\(706\) 2.94427 0.110809
\(707\) 37.8885i 1.42495i
\(708\) 0 0
\(709\) 48.4721 1.82041 0.910205 0.414159i \(-0.135924\pi\)
0.910205 + 0.414159i \(0.135924\pi\)
\(710\) 15.1246 0.567617
\(711\) 0 0
\(712\) − 3.52786i − 0.132212i
\(713\) 25.8885i 0.969534i
\(714\) 0 0
\(715\) 3.41641 0.127766
\(716\) −5.70820 −0.213326
\(717\) 0 0
\(718\) − 18.4721i − 0.689374i
\(719\) 30.5410 1.13899 0.569494 0.821996i \(-0.307139\pi\)
0.569494 + 0.821996i \(0.307139\pi\)
\(720\) 0 0
\(721\) −22.4721 −0.836906
\(722\) − 12.8885i − 0.479662i
\(723\) 0 0
\(724\) 8.47214 0.314864
\(725\) 20.0000 0.742781
\(726\) 0 0
\(727\) − 11.8885i − 0.440922i −0.975396 0.220461i \(-0.929244\pi\)
0.975396 0.220461i \(-0.0707561\pi\)
\(728\) − 2.47214i − 0.0916235i
\(729\) 0 0
\(730\) − 29.5967i − 1.09542i
\(731\) 10.1803 0.376533
\(732\) 0 0
\(733\) − 28.5410i − 1.05419i −0.849807 0.527093i \(-0.823282\pi\)
0.849807 0.527093i \(-0.176718\pi\)
\(734\) −28.1803 −1.04016
\(735\) 0 0
\(736\) 4.00000 0.147442
\(737\) 23.4164i 0.862554i
\(738\) 0 0
\(739\) −42.4721 −1.56236 −0.781181 0.624304i \(-0.785383\pi\)
−0.781181 + 0.624304i \(0.785383\pi\)
\(740\) −4.47214 −0.164399
\(741\) 0 0
\(742\) − 22.4721i − 0.824978i
\(743\) − 42.4721i − 1.55815i −0.626930 0.779076i \(-0.715689\pi\)
0.626930 0.779076i \(-0.284311\pi\)
\(744\) 0 0
\(745\) − 22.7639i − 0.834006i
\(746\) −3.23607 −0.118481
\(747\) 0 0
\(748\) 2.00000i 0.0731272i
\(749\) 25.8885 0.945947
\(750\) 0 0
\(751\) −5.88854 −0.214876 −0.107438 0.994212i \(-0.534265\pi\)
−0.107438 + 0.994212i \(0.534265\pi\)
\(752\) 1.52786i 0.0557155i
\(753\) 0 0
\(754\) 3.05573 0.111283
\(755\) − 8.94427i − 0.325515i
\(756\) 0 0
\(757\) − 11.5967i − 0.421491i −0.977541 0.210745i \(-0.932411\pi\)
0.977541 0.210745i \(-0.0675891\pi\)
\(758\) 10.4721i 0.380365i
\(759\) 0 0
\(760\) −5.52786 −0.200517
\(761\) 0.832816 0.0301895 0.0150948 0.999886i \(-0.495195\pi\)
0.0150948 + 0.999886i \(0.495195\pi\)
\(762\) 0 0
\(763\) − 53.3050i − 1.92977i
\(764\) 14.4721 0.523584
\(765\) 0 0
\(766\) −17.8885 −0.646339
\(767\) − 1.30495i − 0.0471191i
\(768\) 0 0
\(769\) −10.3607 −0.373616 −0.186808 0.982396i \(-0.559814\pi\)
−0.186808 + 0.982396i \(0.559814\pi\)
\(770\) − 14.4721i − 0.521540i
\(771\) 0 0
\(772\) − 25.5967i − 0.921247i
\(773\) − 6.58359i − 0.236795i −0.992966 0.118398i \(-0.962224\pi\)
0.992966 0.118398i \(-0.0377758\pi\)
\(774\) 0 0
\(775\) 32.3607 1.16243
\(776\) −11.7082 −0.420300
\(777\) 0 0
\(778\) − 2.18034i − 0.0781690i
\(779\) 14.1115 0.505595
\(780\) 0 0
\(781\) 13.5279 0.484065
\(782\) 4.00000i 0.143040i
\(783\) 0 0
\(784\) −3.47214 −0.124005
\(785\) −27.2361 −0.972097
\(786\) 0 0
\(787\) − 37.5279i − 1.33772i −0.743387 0.668862i \(-0.766782\pi\)
0.743387 0.668862i \(-0.233218\pi\)
\(788\) 19.8885i 0.708500i
\(789\) 0 0
\(790\) −37.8885 −1.34801
\(791\) 32.3607 1.15061
\(792\) 0 0
\(793\) − 3.41641i − 0.121320i
\(794\) −31.8885 −1.13168
\(795\) 0 0
\(796\) 8.94427 0.317021
\(797\) 46.0000i 1.62940i 0.579880 + 0.814702i \(0.303099\pi\)
−0.579880 + 0.814702i \(0.696901\pi\)
\(798\) 0 0
\(799\) −1.52786 −0.0540519
\(800\) − 5.00000i − 0.176777i
\(801\) 0 0
\(802\) − 22.0689i − 0.779279i
\(803\) − 26.4721i − 0.934181i
\(804\) 0 0
\(805\) − 28.9443i − 1.02015i
\(806\) 4.94427 0.174155
\(807\) 0 0
\(808\) 11.7082i 0.411893i
\(809\) 6.87539 0.241726 0.120863 0.992669i \(-0.461434\pi\)
0.120863 + 0.992669i \(0.461434\pi\)
\(810\) 0 0
\(811\) −38.2492 −1.34311 −0.671556 0.740954i \(-0.734374\pi\)
−0.671556 + 0.740954i \(0.734374\pi\)
\(812\) − 12.9443i − 0.454255i
\(813\) 0 0
\(814\) −4.00000 −0.140200
\(815\) 30.2492 1.05958
\(816\) 0 0
\(817\) 25.1672i 0.880488i
\(818\) 18.3607i 0.641966i
\(819\) 0 0
\(820\) 12.7639i 0.445736i
\(821\) 11.4164 0.398435 0.199218 0.979955i \(-0.436160\pi\)
0.199218 + 0.979955i \(0.436160\pi\)
\(822\) 0 0
\(823\) 15.8197i 0.551439i 0.961238 + 0.275719i \(0.0889160\pi\)
−0.961238 + 0.275719i \(0.911084\pi\)
\(824\) −6.94427 −0.241915
\(825\) 0 0
\(826\) −5.52786 −0.192339
\(827\) − 40.9443i − 1.42377i −0.702295 0.711886i \(-0.747841\pi\)
0.702295 0.711886i \(-0.252159\pi\)
\(828\) 0 0
\(829\) −34.0000 −1.18087 −0.590434 0.807086i \(-0.701044\pi\)
−0.590434 + 0.807086i \(0.701044\pi\)
\(830\) 3.41641i 0.118585i
\(831\) 0 0
\(832\) − 0.763932i − 0.0264846i
\(833\) − 3.47214i − 0.120302i
\(834\) 0 0
\(835\) −48.9443 −1.69379
\(836\) −4.94427 −0.171001
\(837\) 0 0
\(838\) − 38.3607i − 1.32515i
\(839\) 36.0689 1.24524 0.622618 0.782526i \(-0.286069\pi\)
0.622618 + 0.782526i \(0.286069\pi\)
\(840\) 0 0
\(841\) −13.0000 −0.448276
\(842\) − 10.5836i − 0.364735i
\(843\) 0 0
\(844\) 7.05573 0.242868
\(845\) 27.7639i 0.955108i
\(846\) 0 0
\(847\) 22.6525i 0.778348i
\(848\) − 6.94427i − 0.238467i
\(849\) 0 0
\(850\) 5.00000 0.171499
\(851\) −8.00000 −0.274236
\(852\) 0 0
\(853\) 38.3607i 1.31344i 0.754132 + 0.656722i \(0.228058\pi\)
−0.754132 + 0.656722i \(0.771942\pi\)
\(854\) −14.4721 −0.495226
\(855\) 0 0
\(856\) 8.00000 0.273434
\(857\) 5.63932i 0.192636i 0.995351 + 0.0963178i \(0.0307065\pi\)
−0.995351 + 0.0963178i \(0.969294\pi\)
\(858\) 0 0
\(859\) −24.9443 −0.851088 −0.425544 0.904938i \(-0.639917\pi\)
−0.425544 + 0.904938i \(0.639917\pi\)
\(860\) −22.7639 −0.776244
\(861\) 0 0
\(862\) 17.5967i 0.599348i
\(863\) − 41.3050i − 1.40604i −0.711172 0.703018i \(-0.751835\pi\)
0.711172 0.703018i \(-0.248165\pi\)
\(864\) 0 0
\(865\) 44.4721 1.51210
\(866\) 16.3607 0.555959
\(867\) 0 0
\(868\) − 20.9443i − 0.710895i
\(869\) −33.8885 −1.14959
\(870\) 0 0
\(871\) 8.94427 0.303065
\(872\) − 16.4721i − 0.557817i
\(873\) 0 0
\(874\) −9.88854 −0.334485
\(875\) −36.1803 −1.22312
\(876\) 0 0
\(877\) 31.5279i 1.06462i 0.846549 + 0.532310i \(0.178676\pi\)
−0.846549 + 0.532310i \(0.821324\pi\)
\(878\) − 22.4721i − 0.758398i
\(879\) 0 0
\(880\) − 4.47214i − 0.150756i
\(881\) −33.1246 −1.11600 −0.557998 0.829842i \(-0.688430\pi\)
−0.557998 + 0.829842i \(0.688430\pi\)
\(882\) 0 0
\(883\) − 22.7639i − 0.766067i −0.923734 0.383034i \(-0.874879\pi\)
0.923734 0.383034i \(-0.125121\pi\)
\(884\) 0.763932 0.0256938
\(885\) 0 0
\(886\) 4.00000 0.134383
\(887\) − 8.94427i − 0.300319i −0.988662 0.150160i \(-0.952021\pi\)
0.988662 0.150160i \(-0.0479788\pi\)
\(888\) 0 0
\(889\) −45.3050 −1.51948
\(890\) −7.88854 −0.264425
\(891\) 0 0
\(892\) − 26.9443i − 0.902161i
\(893\) − 3.77709i − 0.126395i
\(894\) 0 0
\(895\) 12.7639i 0.426651i
\(896\) −3.23607 −0.108109
\(897\) 0 0
\(898\) − 31.5967i − 1.05440i
\(899\) 25.8885 0.863431
\(900\) 0 0
\(901\) 6.94427 0.231347
\(902\) 11.4164i 0.380125i
\(903\) 0 0
\(904\) 10.0000 0.332595
\(905\) − 18.9443i − 0.629729i
\(906\) 0 0
\(907\) 40.3607i 1.34015i 0.742291 + 0.670077i \(0.233739\pi\)
−0.742291 + 0.670077i \(0.766261\pi\)
\(908\) 25.8885i 0.859142i
\(909\) 0 0
\(910\) −5.52786 −0.183247
\(911\) −54.5410 −1.80702 −0.903512 0.428562i \(-0.859020\pi\)
−0.903512 + 0.428562i \(0.859020\pi\)
\(912\) 0 0
\(913\) 3.05573i 0.101130i
\(914\) 28.3607 0.938088
\(915\) 0 0
\(916\) 5.41641 0.178963
\(917\) 11.4164i 0.377003i
\(918\) 0 0
\(919\) 36.7214 1.21133 0.605663 0.795721i \(-0.292908\pi\)
0.605663 + 0.795721i \(0.292908\pi\)
\(920\) − 8.94427i − 0.294884i
\(921\) 0 0
\(922\) − 28.0689i − 0.924399i
\(923\) − 5.16718i − 0.170080i
\(924\) 0 0
\(925\) 10.0000i 0.328798i
\(926\) 1.05573 0.0346934
\(927\) 0 0
\(928\) − 4.00000i − 0.131306i
\(929\) −34.0689 −1.11776 −0.558882 0.829247i \(-0.688769\pi\)
−0.558882 + 0.829247i \(0.688769\pi\)
\(930\) 0 0
\(931\) 8.58359 0.281316
\(932\) − 21.4164i − 0.701518i
\(933\) 0 0
\(934\) 16.9443 0.554434
\(935\) 4.47214 0.146254
\(936\) 0 0
\(937\) − 26.4721i − 0.864807i −0.901680 0.432403i \(-0.857666\pi\)
0.901680 0.432403i \(-0.142334\pi\)
\(938\) − 37.8885i − 1.23710i
\(939\) 0 0
\(940\) 3.41641 0.111431
\(941\) 49.3050 1.60730 0.803648 0.595105i \(-0.202890\pi\)
0.803648 + 0.595105i \(0.202890\pi\)
\(942\) 0 0
\(943\) 22.8328i 0.743539i
\(944\) −1.70820 −0.0555973
\(945\) 0 0
\(946\) −20.3607 −0.661983
\(947\) − 40.7214i − 1.32327i −0.749828 0.661633i \(-0.769864\pi\)
0.749828 0.661633i \(-0.230136\pi\)
\(948\) 0 0
\(949\) −10.1115 −0.328232
\(950\) 12.3607i 0.401033i
\(951\) 0 0
\(952\) − 3.23607i − 0.104882i
\(953\) − 9.05573i − 0.293344i −0.989185 0.146672i \(-0.953144\pi\)
0.989185 0.146672i \(-0.0468562\pi\)
\(954\) 0 0
\(955\) − 32.3607i − 1.04717i
\(956\) −13.8885 −0.449188
\(957\) 0 0
\(958\) 13.5967i 0.439291i
\(959\) −6.47214 −0.208996
\(960\) 0 0
\(961\) 10.8885 0.351243
\(962\) 1.52786i 0.0492603i
\(963\) 0 0
\(964\) 17.4164 0.560945
\(965\) −57.2361 −1.84249
\(966\) 0 0
\(967\) − 8.47214i − 0.272446i −0.990678 0.136223i \(-0.956504\pi\)
0.990678 0.136223i \(-0.0434963\pi\)
\(968\) 7.00000i 0.224989i
\(969\) 0 0
\(970\) 26.1803i 0.840600i
\(971\) 27.2361 0.874047 0.437024 0.899450i \(-0.356033\pi\)
0.437024 + 0.899450i \(0.356033\pi\)
\(972\) 0 0
\(973\) 33.8885i 1.08642i
\(974\) −29.7082 −0.951912
\(975\) 0 0
\(976\) −4.47214 −0.143150
\(977\) 9.05573i 0.289718i 0.989452 + 0.144859i \(0.0462729\pi\)
−0.989452 + 0.144859i \(0.953727\pi\)
\(978\) 0 0
\(979\) −7.05573 −0.225502
\(980\) 7.76393i 0.248010i
\(981\) 0 0
\(982\) − 25.7082i − 0.820382i
\(983\) 15.4164i 0.491707i 0.969307 + 0.245854i \(0.0790682\pi\)
−0.969307 + 0.245854i \(0.920932\pi\)
\(984\) 0 0
\(985\) 44.4721 1.41700
\(986\) 4.00000 0.127386
\(987\) 0 0
\(988\) 1.88854i 0.0600826i
\(989\) −40.7214 −1.29486
\(990\) 0 0
\(991\) 42.8328 1.36063 0.680315 0.732920i \(-0.261843\pi\)
0.680315 + 0.732920i \(0.261843\pi\)
\(992\) − 6.47214i − 0.205491i
\(993\) 0 0
\(994\) −21.8885 −0.694262
\(995\) − 20.0000i − 0.634043i
\(996\) 0 0
\(997\) − 58.9443i − 1.86678i −0.358859 0.933392i \(-0.616834\pi\)
0.358859 0.933392i \(-0.383166\pi\)
\(998\) 16.0000i 0.506471i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1530.2.d.f.919.4 4
3.2 odd 2 510.2.d.b.409.1 4
5.2 odd 4 7650.2.a.cx.1.2 2
5.3 odd 4 7650.2.a.da.1.1 2
5.4 even 2 inner 1530.2.d.f.919.1 4
12.11 even 2 4080.2.m.m.2449.3 4
15.2 even 4 2550.2.a.bk.1.2 2
15.8 even 4 2550.2.a.bh.1.1 2
15.14 odd 2 510.2.d.b.409.4 yes 4
60.59 even 2 4080.2.m.m.2449.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
510.2.d.b.409.1 4 3.2 odd 2
510.2.d.b.409.4 yes 4 15.14 odd 2
1530.2.d.f.919.1 4 5.4 even 2 inner
1530.2.d.f.919.4 4 1.1 even 1 trivial
2550.2.a.bh.1.1 2 15.8 even 4
2550.2.a.bk.1.2 2 15.2 even 4
4080.2.m.m.2449.2 4 60.59 even 2
4080.2.m.m.2449.3 4 12.11 even 2
7650.2.a.cx.1.2 2 5.2 odd 4
7650.2.a.da.1.1 2 5.3 odd 4