Properties

Label 2550.2.a.bh.1.1
Level $2550$
Weight $2$
Character 2550.1
Self dual yes
Analytic conductor $20.362$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2550,2,Mod(1,2550)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2550, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2550.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2550 = 2 \cdot 3 \cdot 5^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2550.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(20.3618525154\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{10})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 510)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(1.61803\) of defining polynomial
Character \(\chi\) \(=\) 2550.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{2} +1.00000 q^{3} +1.00000 q^{4} -1.00000 q^{6} -3.23607 q^{7} -1.00000 q^{8} +1.00000 q^{9} +2.00000 q^{11} +1.00000 q^{12} -0.763932 q^{13} +3.23607 q^{14} +1.00000 q^{16} -1.00000 q^{17} -1.00000 q^{18} +2.47214 q^{19} -3.23607 q^{21} -2.00000 q^{22} -4.00000 q^{23} -1.00000 q^{24} +0.763932 q^{26} +1.00000 q^{27} -3.23607 q^{28} -4.00000 q^{29} -6.47214 q^{31} -1.00000 q^{32} +2.00000 q^{33} +1.00000 q^{34} +1.00000 q^{36} -2.00000 q^{37} -2.47214 q^{38} -0.763932 q^{39} +5.70820 q^{41} +3.23607 q^{42} +10.1803 q^{43} +2.00000 q^{44} +4.00000 q^{46} -1.52786 q^{47} +1.00000 q^{48} +3.47214 q^{49} -1.00000 q^{51} -0.763932 q^{52} -6.94427 q^{53} -1.00000 q^{54} +3.23607 q^{56} +2.47214 q^{57} +4.00000 q^{58} -1.70820 q^{59} -4.47214 q^{61} +6.47214 q^{62} -3.23607 q^{63} +1.00000 q^{64} -2.00000 q^{66} -11.7082 q^{67} -1.00000 q^{68} -4.00000 q^{69} +6.76393 q^{71} -1.00000 q^{72} -13.2361 q^{73} +2.00000 q^{74} +2.47214 q^{76} -6.47214 q^{77} +0.763932 q^{78} -16.9443 q^{79} +1.00000 q^{81} -5.70820 q^{82} -1.52786 q^{83} -3.23607 q^{84} -10.1803 q^{86} -4.00000 q^{87} -2.00000 q^{88} +3.52786 q^{89} +2.47214 q^{91} -4.00000 q^{92} -6.47214 q^{93} +1.52786 q^{94} -1.00000 q^{96} -11.7082 q^{97} -3.47214 q^{98} +2.00000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{2} + 2 q^{3} + 2 q^{4} - 2 q^{6} - 2 q^{7} - 2 q^{8} + 2 q^{9} + 4 q^{11} + 2 q^{12} - 6 q^{13} + 2 q^{14} + 2 q^{16} - 2 q^{17} - 2 q^{18} - 4 q^{19} - 2 q^{21} - 4 q^{22} - 8 q^{23} - 2 q^{24}+ \cdots + 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.707107
\(3\) 1.00000 0.577350
\(4\) 1.00000 0.500000
\(5\) 0 0
\(6\) −1.00000 −0.408248
\(7\) −3.23607 −1.22312 −0.611559 0.791199i \(-0.709457\pi\)
−0.611559 + 0.791199i \(0.709457\pi\)
\(8\) −1.00000 −0.353553
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) 2.00000 0.603023 0.301511 0.953463i \(-0.402509\pi\)
0.301511 + 0.953463i \(0.402509\pi\)
\(12\) 1.00000 0.288675
\(13\) −0.763932 −0.211877 −0.105938 0.994373i \(-0.533785\pi\)
−0.105938 + 0.994373i \(0.533785\pi\)
\(14\) 3.23607 0.864876
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) −1.00000 −0.242536
\(18\) −1.00000 −0.235702
\(19\) 2.47214 0.567147 0.283573 0.958951i \(-0.408480\pi\)
0.283573 + 0.958951i \(0.408480\pi\)
\(20\) 0 0
\(21\) −3.23607 −0.706168
\(22\) −2.00000 −0.426401
\(23\) −4.00000 −0.834058 −0.417029 0.908893i \(-0.636929\pi\)
−0.417029 + 0.908893i \(0.636929\pi\)
\(24\) −1.00000 −0.204124
\(25\) 0 0
\(26\) 0.763932 0.149819
\(27\) 1.00000 0.192450
\(28\) −3.23607 −0.611559
\(29\) −4.00000 −0.742781 −0.371391 0.928477i \(-0.621119\pi\)
−0.371391 + 0.928477i \(0.621119\pi\)
\(30\) 0 0
\(31\) −6.47214 −1.16243 −0.581215 0.813750i \(-0.697422\pi\)
−0.581215 + 0.813750i \(0.697422\pi\)
\(32\) −1.00000 −0.176777
\(33\) 2.00000 0.348155
\(34\) 1.00000 0.171499
\(35\) 0 0
\(36\) 1.00000 0.166667
\(37\) −2.00000 −0.328798 −0.164399 0.986394i \(-0.552568\pi\)
−0.164399 + 0.986394i \(0.552568\pi\)
\(38\) −2.47214 −0.401033
\(39\) −0.763932 −0.122327
\(40\) 0 0
\(41\) 5.70820 0.891472 0.445736 0.895165i \(-0.352942\pi\)
0.445736 + 0.895165i \(0.352942\pi\)
\(42\) 3.23607 0.499336
\(43\) 10.1803 1.55249 0.776244 0.630433i \(-0.217123\pi\)
0.776244 + 0.630433i \(0.217123\pi\)
\(44\) 2.00000 0.301511
\(45\) 0 0
\(46\) 4.00000 0.589768
\(47\) −1.52786 −0.222862 −0.111431 0.993772i \(-0.535543\pi\)
−0.111431 + 0.993772i \(0.535543\pi\)
\(48\) 1.00000 0.144338
\(49\) 3.47214 0.496019
\(50\) 0 0
\(51\) −1.00000 −0.140028
\(52\) −0.763932 −0.105938
\(53\) −6.94427 −0.953869 −0.476935 0.878939i \(-0.658252\pi\)
−0.476935 + 0.878939i \(0.658252\pi\)
\(54\) −1.00000 −0.136083
\(55\) 0 0
\(56\) 3.23607 0.432438
\(57\) 2.47214 0.327442
\(58\) 4.00000 0.525226
\(59\) −1.70820 −0.222389 −0.111195 0.993799i \(-0.535468\pi\)
−0.111195 + 0.993799i \(0.535468\pi\)
\(60\) 0 0
\(61\) −4.47214 −0.572598 −0.286299 0.958140i \(-0.592425\pi\)
−0.286299 + 0.958140i \(0.592425\pi\)
\(62\) 6.47214 0.821962
\(63\) −3.23607 −0.407706
\(64\) 1.00000 0.125000
\(65\) 0 0
\(66\) −2.00000 −0.246183
\(67\) −11.7082 −1.43038 −0.715192 0.698928i \(-0.753661\pi\)
−0.715192 + 0.698928i \(0.753661\pi\)
\(68\) −1.00000 −0.121268
\(69\) −4.00000 −0.481543
\(70\) 0 0
\(71\) 6.76393 0.802731 0.401366 0.915918i \(-0.368536\pi\)
0.401366 + 0.915918i \(0.368536\pi\)
\(72\) −1.00000 −0.117851
\(73\) −13.2361 −1.54916 −0.774582 0.632473i \(-0.782040\pi\)
−0.774582 + 0.632473i \(0.782040\pi\)
\(74\) 2.00000 0.232495
\(75\) 0 0
\(76\) 2.47214 0.283573
\(77\) −6.47214 −0.737568
\(78\) 0.763932 0.0864983
\(79\) −16.9443 −1.90638 −0.953190 0.302373i \(-0.902221\pi\)
−0.953190 + 0.302373i \(0.902221\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) −5.70820 −0.630366
\(83\) −1.52786 −0.167705 −0.0838524 0.996478i \(-0.526722\pi\)
−0.0838524 + 0.996478i \(0.526722\pi\)
\(84\) −3.23607 −0.353084
\(85\) 0 0
\(86\) −10.1803 −1.09777
\(87\) −4.00000 −0.428845
\(88\) −2.00000 −0.213201
\(89\) 3.52786 0.373953 0.186976 0.982364i \(-0.440131\pi\)
0.186976 + 0.982364i \(0.440131\pi\)
\(90\) 0 0
\(91\) 2.47214 0.259150
\(92\) −4.00000 −0.417029
\(93\) −6.47214 −0.671129
\(94\) 1.52786 0.157587
\(95\) 0 0
\(96\) −1.00000 −0.102062
\(97\) −11.7082 −1.18879 −0.594394 0.804174i \(-0.702608\pi\)
−0.594394 + 0.804174i \(0.702608\pi\)
\(98\) −3.47214 −0.350739
\(99\) 2.00000 0.201008
\(100\) 0 0
\(101\) 11.7082 1.16501 0.582505 0.812827i \(-0.302073\pi\)
0.582505 + 0.812827i \(0.302073\pi\)
\(102\) 1.00000 0.0990148
\(103\) 6.94427 0.684239 0.342120 0.939656i \(-0.388855\pi\)
0.342120 + 0.939656i \(0.388855\pi\)
\(104\) 0.763932 0.0749097
\(105\) 0 0
\(106\) 6.94427 0.674487
\(107\) −8.00000 −0.773389 −0.386695 0.922208i \(-0.626383\pi\)
−0.386695 + 0.922208i \(0.626383\pi\)
\(108\) 1.00000 0.0962250
\(109\) −16.4721 −1.57774 −0.788872 0.614557i \(-0.789335\pi\)
−0.788872 + 0.614557i \(0.789335\pi\)
\(110\) 0 0
\(111\) −2.00000 −0.189832
\(112\) −3.23607 −0.305780
\(113\) 10.0000 0.940721 0.470360 0.882474i \(-0.344124\pi\)
0.470360 + 0.882474i \(0.344124\pi\)
\(114\) −2.47214 −0.231537
\(115\) 0 0
\(116\) −4.00000 −0.371391
\(117\) −0.763932 −0.0706255
\(118\) 1.70820 0.157253
\(119\) 3.23607 0.296650
\(120\) 0 0
\(121\) −7.00000 −0.636364
\(122\) 4.47214 0.404888
\(123\) 5.70820 0.514691
\(124\) −6.47214 −0.581215
\(125\) 0 0
\(126\) 3.23607 0.288292
\(127\) −14.0000 −1.24230 −0.621150 0.783692i \(-0.713334\pi\)
−0.621150 + 0.783692i \(0.713334\pi\)
\(128\) −1.00000 −0.0883883
\(129\) 10.1803 0.896329
\(130\) 0 0
\(131\) 3.52786 0.308231 0.154115 0.988053i \(-0.450747\pi\)
0.154115 + 0.988053i \(0.450747\pi\)
\(132\) 2.00000 0.174078
\(133\) −8.00000 −0.693688
\(134\) 11.7082 1.01143
\(135\) 0 0
\(136\) 1.00000 0.0857493
\(137\) 2.00000 0.170872 0.0854358 0.996344i \(-0.472772\pi\)
0.0854358 + 0.996344i \(0.472772\pi\)
\(138\) 4.00000 0.340503
\(139\) 10.4721 0.888235 0.444117 0.895969i \(-0.353517\pi\)
0.444117 + 0.895969i \(0.353517\pi\)
\(140\) 0 0
\(141\) −1.52786 −0.128669
\(142\) −6.76393 −0.567617
\(143\) −1.52786 −0.127766
\(144\) 1.00000 0.0833333
\(145\) 0 0
\(146\) 13.2361 1.09542
\(147\) 3.47214 0.286377
\(148\) −2.00000 −0.164399
\(149\) −10.1803 −0.834006 −0.417003 0.908905i \(-0.636920\pi\)
−0.417003 + 0.908905i \(0.636920\pi\)
\(150\) 0 0
\(151\) −4.00000 −0.325515 −0.162758 0.986666i \(-0.552039\pi\)
−0.162758 + 0.986666i \(0.552039\pi\)
\(152\) −2.47214 −0.200517
\(153\) −1.00000 −0.0808452
\(154\) 6.47214 0.521540
\(155\) 0 0
\(156\) −0.763932 −0.0611635
\(157\) 12.1803 0.972097 0.486048 0.873932i \(-0.338438\pi\)
0.486048 + 0.873932i \(0.338438\pi\)
\(158\) 16.9443 1.34801
\(159\) −6.94427 −0.550717
\(160\) 0 0
\(161\) 12.9443 1.02015
\(162\) −1.00000 −0.0785674
\(163\) 13.5279 1.05958 0.529792 0.848128i \(-0.322270\pi\)
0.529792 + 0.848128i \(0.322270\pi\)
\(164\) 5.70820 0.445736
\(165\) 0 0
\(166\) 1.52786 0.118585
\(167\) −21.8885 −1.69379 −0.846893 0.531763i \(-0.821530\pi\)
−0.846893 + 0.531763i \(0.821530\pi\)
\(168\) 3.23607 0.249668
\(169\) −12.4164 −0.955108
\(170\) 0 0
\(171\) 2.47214 0.189049
\(172\) 10.1803 0.776244
\(173\) −19.8885 −1.51210 −0.756049 0.654515i \(-0.772873\pi\)
−0.756049 + 0.654515i \(0.772873\pi\)
\(174\) 4.00000 0.303239
\(175\) 0 0
\(176\) 2.00000 0.150756
\(177\) −1.70820 −0.128396
\(178\) −3.52786 −0.264425
\(179\) 5.70820 0.426651 0.213326 0.976981i \(-0.431570\pi\)
0.213326 + 0.976981i \(0.431570\pi\)
\(180\) 0 0
\(181\) −8.47214 −0.629729 −0.314864 0.949137i \(-0.601959\pi\)
−0.314864 + 0.949137i \(0.601959\pi\)
\(182\) −2.47214 −0.183247
\(183\) −4.47214 −0.330590
\(184\) 4.00000 0.294884
\(185\) 0 0
\(186\) 6.47214 0.474560
\(187\) −2.00000 −0.146254
\(188\) −1.52786 −0.111431
\(189\) −3.23607 −0.235389
\(190\) 0 0
\(191\) 14.4721 1.04717 0.523584 0.851974i \(-0.324595\pi\)
0.523584 + 0.851974i \(0.324595\pi\)
\(192\) 1.00000 0.0721688
\(193\) −25.5967 −1.84249 −0.921247 0.388978i \(-0.872828\pi\)
−0.921247 + 0.388978i \(0.872828\pi\)
\(194\) 11.7082 0.840600
\(195\) 0 0
\(196\) 3.47214 0.248010
\(197\) 19.8885 1.41700 0.708500 0.705711i \(-0.249372\pi\)
0.708500 + 0.705711i \(0.249372\pi\)
\(198\) −2.00000 −0.142134
\(199\) 8.94427 0.634043 0.317021 0.948418i \(-0.397317\pi\)
0.317021 + 0.948418i \(0.397317\pi\)
\(200\) 0 0
\(201\) −11.7082 −0.825833
\(202\) −11.7082 −0.823786
\(203\) 12.9443 0.908510
\(204\) −1.00000 −0.0700140
\(205\) 0 0
\(206\) −6.94427 −0.483830
\(207\) −4.00000 −0.278019
\(208\) −0.763932 −0.0529692
\(209\) 4.94427 0.342002
\(210\) 0 0
\(211\) −7.05573 −0.485736 −0.242868 0.970059i \(-0.578088\pi\)
−0.242868 + 0.970059i \(0.578088\pi\)
\(212\) −6.94427 −0.476935
\(213\) 6.76393 0.463457
\(214\) 8.00000 0.546869
\(215\) 0 0
\(216\) −1.00000 −0.0680414
\(217\) 20.9443 1.42179
\(218\) 16.4721 1.11563
\(219\) −13.2361 −0.894411
\(220\) 0 0
\(221\) 0.763932 0.0513876
\(222\) 2.00000 0.134231
\(223\) −26.9443 −1.80432 −0.902161 0.431400i \(-0.858020\pi\)
−0.902161 + 0.431400i \(0.858020\pi\)
\(224\) 3.23607 0.216219
\(225\) 0 0
\(226\) −10.0000 −0.665190
\(227\) 25.8885 1.71828 0.859142 0.511738i \(-0.170998\pi\)
0.859142 + 0.511738i \(0.170998\pi\)
\(228\) 2.47214 0.163721
\(229\) 5.41641 0.357926 0.178963 0.983856i \(-0.442726\pi\)
0.178963 + 0.983856i \(0.442726\pi\)
\(230\) 0 0
\(231\) −6.47214 −0.425835
\(232\) 4.00000 0.262613
\(233\) 21.4164 1.40304 0.701518 0.712652i \(-0.252506\pi\)
0.701518 + 0.712652i \(0.252506\pi\)
\(234\) 0.763932 0.0499398
\(235\) 0 0
\(236\) −1.70820 −0.111195
\(237\) −16.9443 −1.10065
\(238\) −3.23607 −0.209763
\(239\) 13.8885 0.898375 0.449188 0.893437i \(-0.351713\pi\)
0.449188 + 0.893437i \(0.351713\pi\)
\(240\) 0 0
\(241\) −17.4164 −1.12189 −0.560945 0.827853i \(-0.689562\pi\)
−0.560945 + 0.827853i \(0.689562\pi\)
\(242\) 7.00000 0.449977
\(243\) 1.00000 0.0641500
\(244\) −4.47214 −0.286299
\(245\) 0 0
\(246\) −5.70820 −0.363942
\(247\) −1.88854 −0.120165
\(248\) 6.47214 0.410981
\(249\) −1.52786 −0.0968244
\(250\) 0 0
\(251\) 12.1803 0.768816 0.384408 0.923163i \(-0.374406\pi\)
0.384408 + 0.923163i \(0.374406\pi\)
\(252\) −3.23607 −0.203853
\(253\) −8.00000 −0.502956
\(254\) 14.0000 0.878438
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) −18.0000 −1.12281 −0.561405 0.827541i \(-0.689739\pi\)
−0.561405 + 0.827541i \(0.689739\pi\)
\(258\) −10.1803 −0.633800
\(259\) 6.47214 0.402159
\(260\) 0 0
\(261\) −4.00000 −0.247594
\(262\) −3.52786 −0.217952
\(263\) 4.00000 0.246651 0.123325 0.992366i \(-0.460644\pi\)
0.123325 + 0.992366i \(0.460644\pi\)
\(264\) −2.00000 −0.123091
\(265\) 0 0
\(266\) 8.00000 0.490511
\(267\) 3.52786 0.215902
\(268\) −11.7082 −0.715192
\(269\) −24.9443 −1.52088 −0.760440 0.649409i \(-0.775016\pi\)
−0.760440 + 0.649409i \(0.775016\pi\)
\(270\) 0 0
\(271\) 4.00000 0.242983 0.121491 0.992592i \(-0.461232\pi\)
0.121491 + 0.992592i \(0.461232\pi\)
\(272\) −1.00000 −0.0606339
\(273\) 2.47214 0.149620
\(274\) −2.00000 −0.120824
\(275\) 0 0
\(276\) −4.00000 −0.240772
\(277\) 18.3607 1.10319 0.551593 0.834113i \(-0.314020\pi\)
0.551593 + 0.834113i \(0.314020\pi\)
\(278\) −10.4721 −0.628077
\(279\) −6.47214 −0.387477
\(280\) 0 0
\(281\) −25.4164 −1.51622 −0.758108 0.652129i \(-0.773876\pi\)
−0.758108 + 0.652129i \(0.773876\pi\)
\(282\) 1.52786 0.0909830
\(283\) −9.88854 −0.587813 −0.293906 0.955834i \(-0.594955\pi\)
−0.293906 + 0.955834i \(0.594955\pi\)
\(284\) 6.76393 0.401366
\(285\) 0 0
\(286\) 1.52786 0.0903445
\(287\) −18.4721 −1.09038
\(288\) −1.00000 −0.0589256
\(289\) 1.00000 0.0588235
\(290\) 0 0
\(291\) −11.7082 −0.686347
\(292\) −13.2361 −0.774582
\(293\) −2.58359 −0.150935 −0.0754675 0.997148i \(-0.524045\pi\)
−0.0754675 + 0.997148i \(0.524045\pi\)
\(294\) −3.47214 −0.202499
\(295\) 0 0
\(296\) 2.00000 0.116248
\(297\) 2.00000 0.116052
\(298\) 10.1803 0.589731
\(299\) 3.05573 0.176717
\(300\) 0 0
\(301\) −32.9443 −1.89888
\(302\) 4.00000 0.230174
\(303\) 11.7082 0.672619
\(304\) 2.47214 0.141787
\(305\) 0 0
\(306\) 1.00000 0.0571662
\(307\) 18.1803 1.03761 0.518803 0.854894i \(-0.326378\pi\)
0.518803 + 0.854894i \(0.326378\pi\)
\(308\) −6.47214 −0.368784
\(309\) 6.94427 0.395046
\(310\) 0 0
\(311\) −29.5967 −1.67828 −0.839139 0.543917i \(-0.816941\pi\)
−0.839139 + 0.543917i \(0.816941\pi\)
\(312\) 0.763932 0.0432491
\(313\) 8.29180 0.468680 0.234340 0.972155i \(-0.424707\pi\)
0.234340 + 0.972155i \(0.424707\pi\)
\(314\) −12.1803 −0.687376
\(315\) 0 0
\(316\) −16.9443 −0.953190
\(317\) 23.8885 1.34171 0.670857 0.741587i \(-0.265926\pi\)
0.670857 + 0.741587i \(0.265926\pi\)
\(318\) 6.94427 0.389415
\(319\) −8.00000 −0.447914
\(320\) 0 0
\(321\) −8.00000 −0.446516
\(322\) −12.9443 −0.721356
\(323\) −2.47214 −0.137553
\(324\) 1.00000 0.0555556
\(325\) 0 0
\(326\) −13.5279 −0.749239
\(327\) −16.4721 −0.910911
\(328\) −5.70820 −0.315183
\(329\) 4.94427 0.272587
\(330\) 0 0
\(331\) 23.4164 1.28708 0.643541 0.765412i \(-0.277465\pi\)
0.643541 + 0.765412i \(0.277465\pi\)
\(332\) −1.52786 −0.0838524
\(333\) −2.00000 −0.109599
\(334\) 21.8885 1.19769
\(335\) 0 0
\(336\) −3.23607 −0.176542
\(337\) −2.18034 −0.118771 −0.0593853 0.998235i \(-0.518914\pi\)
−0.0593853 + 0.998235i \(0.518914\pi\)
\(338\) 12.4164 0.675364
\(339\) 10.0000 0.543125
\(340\) 0 0
\(341\) −12.9443 −0.700972
\(342\) −2.47214 −0.133678
\(343\) 11.4164 0.616428
\(344\) −10.1803 −0.548887
\(345\) 0 0
\(346\) 19.8885 1.06921
\(347\) −30.8328 −1.65519 −0.827596 0.561324i \(-0.810292\pi\)
−0.827596 + 0.561324i \(0.810292\pi\)
\(348\) −4.00000 −0.214423
\(349\) −19.5279 −1.04530 −0.522651 0.852547i \(-0.675057\pi\)
−0.522651 + 0.852547i \(0.675057\pi\)
\(350\) 0 0
\(351\) −0.763932 −0.0407757
\(352\) −2.00000 −0.106600
\(353\) −2.94427 −0.156708 −0.0783539 0.996926i \(-0.524966\pi\)
−0.0783539 + 0.996926i \(0.524966\pi\)
\(354\) 1.70820 0.0907900
\(355\) 0 0
\(356\) 3.52786 0.186976
\(357\) 3.23607 0.171271
\(358\) −5.70820 −0.301688
\(359\) −18.4721 −0.974922 −0.487461 0.873145i \(-0.662077\pi\)
−0.487461 + 0.873145i \(0.662077\pi\)
\(360\) 0 0
\(361\) −12.8885 −0.678344
\(362\) 8.47214 0.445286
\(363\) −7.00000 −0.367405
\(364\) 2.47214 0.129575
\(365\) 0 0
\(366\) 4.47214 0.233762
\(367\) 28.1803 1.47100 0.735501 0.677524i \(-0.236947\pi\)
0.735501 + 0.677524i \(0.236947\pi\)
\(368\) −4.00000 −0.208514
\(369\) 5.70820 0.297157
\(370\) 0 0
\(371\) 22.4721 1.16670
\(372\) −6.47214 −0.335565
\(373\) −3.23607 −0.167557 −0.0837786 0.996484i \(-0.526699\pi\)
−0.0837786 + 0.996484i \(0.526699\pi\)
\(374\) 2.00000 0.103418
\(375\) 0 0
\(376\) 1.52786 0.0787936
\(377\) 3.05573 0.157378
\(378\) 3.23607 0.166445
\(379\) −10.4721 −0.537917 −0.268959 0.963152i \(-0.586680\pi\)
−0.268959 + 0.963152i \(0.586680\pi\)
\(380\) 0 0
\(381\) −14.0000 −0.717242
\(382\) −14.4721 −0.740459
\(383\) 17.8885 0.914062 0.457031 0.889451i \(-0.348913\pi\)
0.457031 + 0.889451i \(0.348913\pi\)
\(384\) −1.00000 −0.0510310
\(385\) 0 0
\(386\) 25.5967 1.30284
\(387\) 10.1803 0.517496
\(388\) −11.7082 −0.594394
\(389\) −2.18034 −0.110548 −0.0552738 0.998471i \(-0.517603\pi\)
−0.0552738 + 0.998471i \(0.517603\pi\)
\(390\) 0 0
\(391\) 4.00000 0.202289
\(392\) −3.47214 −0.175369
\(393\) 3.52786 0.177957
\(394\) −19.8885 −1.00197
\(395\) 0 0
\(396\) 2.00000 0.100504
\(397\) 31.8885 1.60044 0.800220 0.599706i \(-0.204716\pi\)
0.800220 + 0.599706i \(0.204716\pi\)
\(398\) −8.94427 −0.448336
\(399\) −8.00000 −0.400501
\(400\) 0 0
\(401\) 22.0689 1.10207 0.551034 0.834483i \(-0.314234\pi\)
0.551034 + 0.834483i \(0.314234\pi\)
\(402\) 11.7082 0.583952
\(403\) 4.94427 0.246292
\(404\) 11.7082 0.582505
\(405\) 0 0
\(406\) −12.9443 −0.642413
\(407\) −4.00000 −0.198273
\(408\) 1.00000 0.0495074
\(409\) −18.3607 −0.907877 −0.453939 0.891033i \(-0.649981\pi\)
−0.453939 + 0.891033i \(0.649981\pi\)
\(410\) 0 0
\(411\) 2.00000 0.0986527
\(412\) 6.94427 0.342120
\(413\) 5.52786 0.272008
\(414\) 4.00000 0.196589
\(415\) 0 0
\(416\) 0.763932 0.0374548
\(417\) 10.4721 0.512823
\(418\) −4.94427 −0.241832
\(419\) −38.3607 −1.87404 −0.937021 0.349273i \(-0.886429\pi\)
−0.937021 + 0.349273i \(0.886429\pi\)
\(420\) 0 0
\(421\) −10.5836 −0.515813 −0.257906 0.966170i \(-0.583033\pi\)
−0.257906 + 0.966170i \(0.583033\pi\)
\(422\) 7.05573 0.343467
\(423\) −1.52786 −0.0742873
\(424\) 6.94427 0.337244
\(425\) 0 0
\(426\) −6.76393 −0.327714
\(427\) 14.4721 0.700356
\(428\) −8.00000 −0.386695
\(429\) −1.52786 −0.0737660
\(430\) 0 0
\(431\) −17.5967 −0.847606 −0.423803 0.905755i \(-0.639305\pi\)
−0.423803 + 0.905755i \(0.639305\pi\)
\(432\) 1.00000 0.0481125
\(433\) 16.3607 0.786244 0.393122 0.919486i \(-0.371395\pi\)
0.393122 + 0.919486i \(0.371395\pi\)
\(434\) −20.9443 −1.00536
\(435\) 0 0
\(436\) −16.4721 −0.788872
\(437\) −9.88854 −0.473033
\(438\) 13.2361 0.632444
\(439\) 22.4721 1.07254 0.536268 0.844048i \(-0.319834\pi\)
0.536268 + 0.844048i \(0.319834\pi\)
\(440\) 0 0
\(441\) 3.47214 0.165340
\(442\) −0.763932 −0.0363365
\(443\) −4.00000 −0.190046 −0.0950229 0.995475i \(-0.530292\pi\)
−0.0950229 + 0.995475i \(0.530292\pi\)
\(444\) −2.00000 −0.0949158
\(445\) 0 0
\(446\) 26.9443 1.27585
\(447\) −10.1803 −0.481514
\(448\) −3.23607 −0.152890
\(449\) −31.5967 −1.49114 −0.745571 0.666426i \(-0.767823\pi\)
−0.745571 + 0.666426i \(0.767823\pi\)
\(450\) 0 0
\(451\) 11.4164 0.537578
\(452\) 10.0000 0.470360
\(453\) −4.00000 −0.187936
\(454\) −25.8885 −1.21501
\(455\) 0 0
\(456\) −2.47214 −0.115768
\(457\) −28.3607 −1.32666 −0.663328 0.748328i \(-0.730857\pi\)
−0.663328 + 0.748328i \(0.730857\pi\)
\(458\) −5.41641 −0.253092
\(459\) −1.00000 −0.0466760
\(460\) 0 0
\(461\) 28.0689 1.30730 0.653649 0.756798i \(-0.273237\pi\)
0.653649 + 0.756798i \(0.273237\pi\)
\(462\) 6.47214 0.301111
\(463\) 1.05573 0.0490638 0.0245319 0.999699i \(-0.492190\pi\)
0.0245319 + 0.999699i \(0.492190\pi\)
\(464\) −4.00000 −0.185695
\(465\) 0 0
\(466\) −21.4164 −0.992096
\(467\) 16.9443 0.784087 0.392044 0.919947i \(-0.371768\pi\)
0.392044 + 0.919947i \(0.371768\pi\)
\(468\) −0.763932 −0.0353128
\(469\) 37.8885 1.74953
\(470\) 0 0
\(471\) 12.1803 0.561240
\(472\) 1.70820 0.0786265
\(473\) 20.3607 0.936185
\(474\) 16.9443 0.778276
\(475\) 0 0
\(476\) 3.23607 0.148325
\(477\) −6.94427 −0.317956
\(478\) −13.8885 −0.635247
\(479\) 13.5967 0.621251 0.310626 0.950532i \(-0.399461\pi\)
0.310626 + 0.950532i \(0.399461\pi\)
\(480\) 0 0
\(481\) 1.52786 0.0696646
\(482\) 17.4164 0.793296
\(483\) 12.9443 0.588985
\(484\) −7.00000 −0.318182
\(485\) 0 0
\(486\) −1.00000 −0.0453609
\(487\) 29.7082 1.34621 0.673104 0.739548i \(-0.264961\pi\)
0.673104 + 0.739548i \(0.264961\pi\)
\(488\) 4.47214 0.202444
\(489\) 13.5279 0.611751
\(490\) 0 0
\(491\) 25.7082 1.16020 0.580098 0.814547i \(-0.303014\pi\)
0.580098 + 0.814547i \(0.303014\pi\)
\(492\) 5.70820 0.257346
\(493\) 4.00000 0.180151
\(494\) 1.88854 0.0849696
\(495\) 0 0
\(496\) −6.47214 −0.290607
\(497\) −21.8885 −0.981835
\(498\) 1.52786 0.0684652
\(499\) −16.0000 −0.716258 −0.358129 0.933672i \(-0.616585\pi\)
−0.358129 + 0.933672i \(0.616585\pi\)
\(500\) 0 0
\(501\) −21.8885 −0.977908
\(502\) −12.1803 −0.543635
\(503\) 0.583592 0.0260211 0.0130105 0.999915i \(-0.495858\pi\)
0.0130105 + 0.999915i \(0.495858\pi\)
\(504\) 3.23607 0.144146
\(505\) 0 0
\(506\) 8.00000 0.355643
\(507\) −12.4164 −0.551432
\(508\) −14.0000 −0.621150
\(509\) 32.6525 1.44730 0.723648 0.690169i \(-0.242464\pi\)
0.723648 + 0.690169i \(0.242464\pi\)
\(510\) 0 0
\(511\) 42.8328 1.89481
\(512\) −1.00000 −0.0441942
\(513\) 2.47214 0.109147
\(514\) 18.0000 0.793946
\(515\) 0 0
\(516\) 10.1803 0.448164
\(517\) −3.05573 −0.134391
\(518\) −6.47214 −0.284369
\(519\) −19.8885 −0.873010
\(520\) 0 0
\(521\) 28.1803 1.23460 0.617302 0.786727i \(-0.288226\pi\)
0.617302 + 0.786727i \(0.288226\pi\)
\(522\) 4.00000 0.175075
\(523\) 27.7082 1.21160 0.605798 0.795619i \(-0.292854\pi\)
0.605798 + 0.795619i \(0.292854\pi\)
\(524\) 3.52786 0.154115
\(525\) 0 0
\(526\) −4.00000 −0.174408
\(527\) 6.47214 0.281931
\(528\) 2.00000 0.0870388
\(529\) −7.00000 −0.304348
\(530\) 0 0
\(531\) −1.70820 −0.0741297
\(532\) −8.00000 −0.346844
\(533\) −4.36068 −0.188882
\(534\) −3.52786 −0.152666
\(535\) 0 0
\(536\) 11.7082 0.505717
\(537\) 5.70820 0.246327
\(538\) 24.9443 1.07542
\(539\) 6.94427 0.299111
\(540\) 0 0
\(541\) 31.3050 1.34590 0.672952 0.739686i \(-0.265026\pi\)
0.672952 + 0.739686i \(0.265026\pi\)
\(542\) −4.00000 −0.171815
\(543\) −8.47214 −0.363574
\(544\) 1.00000 0.0428746
\(545\) 0 0
\(546\) −2.47214 −0.105798
\(547\) 16.9443 0.724485 0.362242 0.932084i \(-0.382011\pi\)
0.362242 + 0.932084i \(0.382011\pi\)
\(548\) 2.00000 0.0854358
\(549\) −4.47214 −0.190866
\(550\) 0 0
\(551\) −9.88854 −0.421266
\(552\) 4.00000 0.170251
\(553\) 54.8328 2.33173
\(554\) −18.3607 −0.780071
\(555\) 0 0
\(556\) 10.4721 0.444117
\(557\) 42.9443 1.81961 0.909804 0.415039i \(-0.136232\pi\)
0.909804 + 0.415039i \(0.136232\pi\)
\(558\) 6.47214 0.273987
\(559\) −7.77709 −0.328936
\(560\) 0 0
\(561\) −2.00000 −0.0844401
\(562\) 25.4164 1.07213
\(563\) −37.8885 −1.59681 −0.798406 0.602120i \(-0.794323\pi\)
−0.798406 + 0.602120i \(0.794323\pi\)
\(564\) −1.52786 −0.0643347
\(565\) 0 0
\(566\) 9.88854 0.415646
\(567\) −3.23607 −0.135902
\(568\) −6.76393 −0.283808
\(569\) 6.00000 0.251533 0.125767 0.992060i \(-0.459861\pi\)
0.125767 + 0.992060i \(0.459861\pi\)
\(570\) 0 0
\(571\) −8.36068 −0.349884 −0.174942 0.984579i \(-0.555974\pi\)
−0.174942 + 0.984579i \(0.555974\pi\)
\(572\) −1.52786 −0.0638832
\(573\) 14.4721 0.604582
\(574\) 18.4721 0.771012
\(575\) 0 0
\(576\) 1.00000 0.0416667
\(577\) 8.58359 0.357340 0.178670 0.983909i \(-0.442821\pi\)
0.178670 + 0.983909i \(0.442821\pi\)
\(578\) −1.00000 −0.0415945
\(579\) −25.5967 −1.06376
\(580\) 0 0
\(581\) 4.94427 0.205123
\(582\) 11.7082 0.485321
\(583\) −13.8885 −0.575205
\(584\) 13.2361 0.547712
\(585\) 0 0
\(586\) 2.58359 0.106727
\(587\) 14.4721 0.597329 0.298664 0.954358i \(-0.403459\pi\)
0.298664 + 0.954358i \(0.403459\pi\)
\(588\) 3.47214 0.143188
\(589\) −16.0000 −0.659269
\(590\) 0 0
\(591\) 19.8885 0.818105
\(592\) −2.00000 −0.0821995
\(593\) −13.0557 −0.536134 −0.268067 0.963400i \(-0.586385\pi\)
−0.268067 + 0.963400i \(0.586385\pi\)
\(594\) −2.00000 −0.0820610
\(595\) 0 0
\(596\) −10.1803 −0.417003
\(597\) 8.94427 0.366065
\(598\) −3.05573 −0.124958
\(599\) 34.4721 1.40849 0.704247 0.709955i \(-0.251285\pi\)
0.704247 + 0.709955i \(0.251285\pi\)
\(600\) 0 0
\(601\) −19.5279 −0.796558 −0.398279 0.917264i \(-0.630392\pi\)
−0.398279 + 0.917264i \(0.630392\pi\)
\(602\) 32.9443 1.34271
\(603\) −11.7082 −0.476795
\(604\) −4.00000 −0.162758
\(605\) 0 0
\(606\) −11.7082 −0.475613
\(607\) −9.12461 −0.370357 −0.185178 0.982705i \(-0.559286\pi\)
−0.185178 + 0.982705i \(0.559286\pi\)
\(608\) −2.47214 −0.100258
\(609\) 12.9443 0.524528
\(610\) 0 0
\(611\) 1.16718 0.0472192
\(612\) −1.00000 −0.0404226
\(613\) 19.8197 0.800509 0.400254 0.916404i \(-0.368922\pi\)
0.400254 + 0.916404i \(0.368922\pi\)
\(614\) −18.1803 −0.733699
\(615\) 0 0
\(616\) 6.47214 0.260770
\(617\) 11.5279 0.464094 0.232047 0.972705i \(-0.425458\pi\)
0.232047 + 0.972705i \(0.425458\pi\)
\(618\) −6.94427 −0.279340
\(619\) −31.0557 −1.24824 −0.624118 0.781330i \(-0.714541\pi\)
−0.624118 + 0.781330i \(0.714541\pi\)
\(620\) 0 0
\(621\) −4.00000 −0.160514
\(622\) 29.5967 1.18672
\(623\) −11.4164 −0.457389
\(624\) −0.763932 −0.0305818
\(625\) 0 0
\(626\) −8.29180 −0.331407
\(627\) 4.94427 0.197455
\(628\) 12.1803 0.486048
\(629\) 2.00000 0.0797452
\(630\) 0 0
\(631\) 25.8885 1.03061 0.515303 0.857008i \(-0.327679\pi\)
0.515303 + 0.857008i \(0.327679\pi\)
\(632\) 16.9443 0.674007
\(633\) −7.05573 −0.280440
\(634\) −23.8885 −0.948735
\(635\) 0 0
\(636\) −6.94427 −0.275358
\(637\) −2.65248 −0.105095
\(638\) 8.00000 0.316723
\(639\) 6.76393 0.267577
\(640\) 0 0
\(641\) −1.70820 −0.0674700 −0.0337350 0.999431i \(-0.510740\pi\)
−0.0337350 + 0.999431i \(0.510740\pi\)
\(642\) 8.00000 0.315735
\(643\) 0.583592 0.0230146 0.0115073 0.999934i \(-0.496337\pi\)
0.0115073 + 0.999934i \(0.496337\pi\)
\(644\) 12.9443 0.510076
\(645\) 0 0
\(646\) 2.47214 0.0972649
\(647\) 3.05573 0.120133 0.0600665 0.998194i \(-0.480869\pi\)
0.0600665 + 0.998194i \(0.480869\pi\)
\(648\) −1.00000 −0.0392837
\(649\) −3.41641 −0.134106
\(650\) 0 0
\(651\) 20.9443 0.820871
\(652\) 13.5279 0.529792
\(653\) 12.4721 0.488072 0.244036 0.969766i \(-0.421528\pi\)
0.244036 + 0.969766i \(0.421528\pi\)
\(654\) 16.4721 0.644111
\(655\) 0 0
\(656\) 5.70820 0.222868
\(657\) −13.2361 −0.516388
\(658\) −4.94427 −0.192748
\(659\) 41.7082 1.62472 0.812360 0.583156i \(-0.198182\pi\)
0.812360 + 0.583156i \(0.198182\pi\)
\(660\) 0 0
\(661\) −13.4164 −0.521838 −0.260919 0.965361i \(-0.584026\pi\)
−0.260919 + 0.965361i \(0.584026\pi\)
\(662\) −23.4164 −0.910105
\(663\) 0.763932 0.0296687
\(664\) 1.52786 0.0592926
\(665\) 0 0
\(666\) 2.00000 0.0774984
\(667\) 16.0000 0.619522
\(668\) −21.8885 −0.846893
\(669\) −26.9443 −1.04173
\(670\) 0 0
\(671\) −8.94427 −0.345290
\(672\) 3.23607 0.124834
\(673\) 18.1803 0.700801 0.350400 0.936600i \(-0.386046\pi\)
0.350400 + 0.936600i \(0.386046\pi\)
\(674\) 2.18034 0.0839836
\(675\) 0 0
\(676\) −12.4164 −0.477554
\(677\) 26.9443 1.03555 0.517776 0.855516i \(-0.326760\pi\)
0.517776 + 0.855516i \(0.326760\pi\)
\(678\) −10.0000 −0.384048
\(679\) 37.8885 1.45403
\(680\) 0 0
\(681\) 25.8885 0.992051
\(682\) 12.9443 0.495662
\(683\) 15.0557 0.576091 0.288046 0.957617i \(-0.406994\pi\)
0.288046 + 0.957617i \(0.406994\pi\)
\(684\) 2.47214 0.0945245
\(685\) 0 0
\(686\) −11.4164 −0.435880
\(687\) 5.41641 0.206649
\(688\) 10.1803 0.388122
\(689\) 5.30495 0.202103
\(690\) 0 0
\(691\) 12.9443 0.492423 0.246212 0.969216i \(-0.420814\pi\)
0.246212 + 0.969216i \(0.420814\pi\)
\(692\) −19.8885 −0.756049
\(693\) −6.47214 −0.245856
\(694\) 30.8328 1.17040
\(695\) 0 0
\(696\) 4.00000 0.151620
\(697\) −5.70820 −0.216214
\(698\) 19.5279 0.739141
\(699\) 21.4164 0.810043
\(700\) 0 0
\(701\) −37.5967 −1.42001 −0.710005 0.704197i \(-0.751307\pi\)
−0.710005 + 0.704197i \(0.751307\pi\)
\(702\) 0.763932 0.0288328
\(703\) −4.94427 −0.186477
\(704\) 2.00000 0.0753778
\(705\) 0 0
\(706\) 2.94427 0.110809
\(707\) −37.8885 −1.42495
\(708\) −1.70820 −0.0641982
\(709\) −48.4721 −1.82041 −0.910205 0.414159i \(-0.864076\pi\)
−0.910205 + 0.414159i \(0.864076\pi\)
\(710\) 0 0
\(711\) −16.9443 −0.635460
\(712\) −3.52786 −0.132212
\(713\) 25.8885 0.969534
\(714\) −3.23607 −0.121107
\(715\) 0 0
\(716\) 5.70820 0.213326
\(717\) 13.8885 0.518677
\(718\) 18.4721 0.689374
\(719\) 30.5410 1.13899 0.569494 0.821996i \(-0.307139\pi\)
0.569494 + 0.821996i \(0.307139\pi\)
\(720\) 0 0
\(721\) −22.4721 −0.836906
\(722\) 12.8885 0.479662
\(723\) −17.4164 −0.647723
\(724\) −8.47214 −0.314864
\(725\) 0 0
\(726\) 7.00000 0.259794
\(727\) −11.8885 −0.440922 −0.220461 0.975396i \(-0.570756\pi\)
−0.220461 + 0.975396i \(0.570756\pi\)
\(728\) −2.47214 −0.0916235
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) −10.1803 −0.376533
\(732\) −4.47214 −0.165295
\(733\) 28.5410 1.05419 0.527093 0.849807i \(-0.323282\pi\)
0.527093 + 0.849807i \(0.323282\pi\)
\(734\) −28.1803 −1.04016
\(735\) 0 0
\(736\) 4.00000 0.147442
\(737\) −23.4164 −0.862554
\(738\) −5.70820 −0.210122
\(739\) 42.4721 1.56236 0.781181 0.624304i \(-0.214617\pi\)
0.781181 + 0.624304i \(0.214617\pi\)
\(740\) 0 0
\(741\) −1.88854 −0.0693774
\(742\) −22.4721 −0.824978
\(743\) −42.4721 −1.55815 −0.779076 0.626930i \(-0.784311\pi\)
−0.779076 + 0.626930i \(0.784311\pi\)
\(744\) 6.47214 0.237280
\(745\) 0 0
\(746\) 3.23607 0.118481
\(747\) −1.52786 −0.0559016
\(748\) −2.00000 −0.0731272
\(749\) 25.8885 0.945947
\(750\) 0 0
\(751\) −5.88854 −0.214876 −0.107438 0.994212i \(-0.534265\pi\)
−0.107438 + 0.994212i \(0.534265\pi\)
\(752\) −1.52786 −0.0557155
\(753\) 12.1803 0.443876
\(754\) −3.05573 −0.111283
\(755\) 0 0
\(756\) −3.23607 −0.117695
\(757\) −11.5967 −0.421491 −0.210745 0.977541i \(-0.567589\pi\)
−0.210745 + 0.977541i \(0.567589\pi\)
\(758\) 10.4721 0.380365
\(759\) −8.00000 −0.290382
\(760\) 0 0
\(761\) −0.832816 −0.0301895 −0.0150948 0.999886i \(-0.504805\pi\)
−0.0150948 + 0.999886i \(0.504805\pi\)
\(762\) 14.0000 0.507166
\(763\) 53.3050 1.92977
\(764\) 14.4721 0.523584
\(765\) 0 0
\(766\) −17.8885 −0.646339
\(767\) 1.30495 0.0471191
\(768\) 1.00000 0.0360844
\(769\) 10.3607 0.373616 0.186808 0.982396i \(-0.440186\pi\)
0.186808 + 0.982396i \(0.440186\pi\)
\(770\) 0 0
\(771\) −18.0000 −0.648254
\(772\) −25.5967 −0.921247
\(773\) −6.58359 −0.236795 −0.118398 0.992966i \(-0.537776\pi\)
−0.118398 + 0.992966i \(0.537776\pi\)
\(774\) −10.1803 −0.365925
\(775\) 0 0
\(776\) 11.7082 0.420300
\(777\) 6.47214 0.232187
\(778\) 2.18034 0.0781690
\(779\) 14.1115 0.505595
\(780\) 0 0
\(781\) 13.5279 0.484065
\(782\) −4.00000 −0.143040
\(783\) −4.00000 −0.142948
\(784\) 3.47214 0.124005
\(785\) 0 0
\(786\) −3.52786 −0.125835
\(787\) −37.5279 −1.33772 −0.668862 0.743387i \(-0.733218\pi\)
−0.668862 + 0.743387i \(0.733218\pi\)
\(788\) 19.8885 0.708500
\(789\) 4.00000 0.142404
\(790\) 0 0
\(791\) −32.3607 −1.15061
\(792\) −2.00000 −0.0710669
\(793\) 3.41641 0.121320
\(794\) −31.8885 −1.13168
\(795\) 0 0
\(796\) 8.94427 0.317021
\(797\) −46.0000 −1.62940 −0.814702 0.579880i \(-0.803099\pi\)
−0.814702 + 0.579880i \(0.803099\pi\)
\(798\) 8.00000 0.283197
\(799\) 1.52786 0.0540519
\(800\) 0 0
\(801\) 3.52786 0.124651
\(802\) −22.0689 −0.779279
\(803\) −26.4721 −0.934181
\(804\) −11.7082 −0.412917
\(805\) 0 0
\(806\) −4.94427 −0.174155
\(807\) −24.9443 −0.878080
\(808\) −11.7082 −0.411893
\(809\) 6.87539 0.241726 0.120863 0.992669i \(-0.461434\pi\)
0.120863 + 0.992669i \(0.461434\pi\)
\(810\) 0 0
\(811\) −38.2492 −1.34311 −0.671556 0.740954i \(-0.734374\pi\)
−0.671556 + 0.740954i \(0.734374\pi\)
\(812\) 12.9443 0.454255
\(813\) 4.00000 0.140286
\(814\) 4.00000 0.140200
\(815\) 0 0
\(816\) −1.00000 −0.0350070
\(817\) 25.1672 0.880488
\(818\) 18.3607 0.641966
\(819\) 2.47214 0.0863834
\(820\) 0 0
\(821\) −11.4164 −0.398435 −0.199218 0.979955i \(-0.563840\pi\)
−0.199218 + 0.979955i \(0.563840\pi\)
\(822\) −2.00000 −0.0697580
\(823\) −15.8197 −0.551439 −0.275719 0.961238i \(-0.588916\pi\)
−0.275719 + 0.961238i \(0.588916\pi\)
\(824\) −6.94427 −0.241915
\(825\) 0 0
\(826\) −5.52786 −0.192339
\(827\) 40.9443 1.42377 0.711886 0.702295i \(-0.247841\pi\)
0.711886 + 0.702295i \(0.247841\pi\)
\(828\) −4.00000 −0.139010
\(829\) 34.0000 1.18087 0.590434 0.807086i \(-0.298956\pi\)
0.590434 + 0.807086i \(0.298956\pi\)
\(830\) 0 0
\(831\) 18.3607 0.636925
\(832\) −0.763932 −0.0264846
\(833\) −3.47214 −0.120302
\(834\) −10.4721 −0.362620
\(835\) 0 0
\(836\) 4.94427 0.171001
\(837\) −6.47214 −0.223710
\(838\) 38.3607 1.32515
\(839\) 36.0689 1.24524 0.622618 0.782526i \(-0.286069\pi\)
0.622618 + 0.782526i \(0.286069\pi\)
\(840\) 0 0
\(841\) −13.0000 −0.448276
\(842\) 10.5836 0.364735
\(843\) −25.4164 −0.875388
\(844\) −7.05573 −0.242868
\(845\) 0 0
\(846\) 1.52786 0.0525290
\(847\) 22.6525 0.778348
\(848\) −6.94427 −0.238467
\(849\) −9.88854 −0.339374
\(850\) 0 0
\(851\) 8.00000 0.274236
\(852\) 6.76393 0.231728
\(853\) −38.3607 −1.31344 −0.656722 0.754132i \(-0.728058\pi\)
−0.656722 + 0.754132i \(0.728058\pi\)
\(854\) −14.4721 −0.495226
\(855\) 0 0
\(856\) 8.00000 0.273434
\(857\) −5.63932 −0.192636 −0.0963178 0.995351i \(-0.530706\pi\)
−0.0963178 + 0.995351i \(0.530706\pi\)
\(858\) 1.52786 0.0521604
\(859\) 24.9443 0.851088 0.425544 0.904938i \(-0.360083\pi\)
0.425544 + 0.904938i \(0.360083\pi\)
\(860\) 0 0
\(861\) −18.4721 −0.629529
\(862\) 17.5967 0.599348
\(863\) −41.3050 −1.40604 −0.703018 0.711172i \(-0.748165\pi\)
−0.703018 + 0.711172i \(0.748165\pi\)
\(864\) −1.00000 −0.0340207
\(865\) 0 0
\(866\) −16.3607 −0.555959
\(867\) 1.00000 0.0339618
\(868\) 20.9443 0.710895
\(869\) −33.8885 −1.14959
\(870\) 0 0
\(871\) 8.94427 0.303065
\(872\) 16.4721 0.557817
\(873\) −11.7082 −0.396263
\(874\) 9.88854 0.334485
\(875\) 0 0
\(876\) −13.2361 −0.447205
\(877\) 31.5279 1.06462 0.532310 0.846549i \(-0.321324\pi\)
0.532310 + 0.846549i \(0.321324\pi\)
\(878\) −22.4721 −0.758398
\(879\) −2.58359 −0.0871424
\(880\) 0 0
\(881\) 33.1246 1.11600 0.557998 0.829842i \(-0.311570\pi\)
0.557998 + 0.829842i \(0.311570\pi\)
\(882\) −3.47214 −0.116913
\(883\) 22.7639 0.766067 0.383034 0.923734i \(-0.374879\pi\)
0.383034 + 0.923734i \(0.374879\pi\)
\(884\) 0.763932 0.0256938
\(885\) 0 0
\(886\) 4.00000 0.134383
\(887\) 8.94427 0.300319 0.150160 0.988662i \(-0.452021\pi\)
0.150160 + 0.988662i \(0.452021\pi\)
\(888\) 2.00000 0.0671156
\(889\) 45.3050 1.51948
\(890\) 0 0
\(891\) 2.00000 0.0670025
\(892\) −26.9443 −0.902161
\(893\) −3.77709 −0.126395
\(894\) 10.1803 0.340481
\(895\) 0 0
\(896\) 3.23607 0.108109
\(897\) 3.05573 0.102028
\(898\) 31.5967 1.05440
\(899\) 25.8885 0.863431
\(900\) 0 0
\(901\) 6.94427 0.231347
\(902\) −11.4164 −0.380125
\(903\) −32.9443 −1.09632
\(904\) −10.0000 −0.332595
\(905\) 0 0
\(906\) 4.00000 0.132891
\(907\) 40.3607 1.34015 0.670077 0.742291i \(-0.266261\pi\)
0.670077 + 0.742291i \(0.266261\pi\)
\(908\) 25.8885 0.859142
\(909\) 11.7082 0.388337
\(910\) 0 0
\(911\) 54.5410 1.80702 0.903512 0.428562i \(-0.140980\pi\)
0.903512 + 0.428562i \(0.140980\pi\)
\(912\) 2.47214 0.0818606
\(913\) −3.05573 −0.101130
\(914\) 28.3607 0.938088
\(915\) 0 0
\(916\) 5.41641 0.178963
\(917\) −11.4164 −0.377003
\(918\) 1.00000 0.0330049
\(919\) −36.7214 −1.21133 −0.605663 0.795721i \(-0.707092\pi\)
−0.605663 + 0.795721i \(0.707092\pi\)
\(920\) 0 0
\(921\) 18.1803 0.599063
\(922\) −28.0689 −0.924399
\(923\) −5.16718 −0.170080
\(924\) −6.47214 −0.212918
\(925\) 0 0
\(926\) −1.05573 −0.0346934
\(927\) 6.94427 0.228080
\(928\) 4.00000 0.131306
\(929\) −34.0689 −1.11776 −0.558882 0.829247i \(-0.688769\pi\)
−0.558882 + 0.829247i \(0.688769\pi\)
\(930\) 0 0
\(931\) 8.58359 0.281316
\(932\) 21.4164 0.701518
\(933\) −29.5967 −0.968954
\(934\) −16.9443 −0.554434
\(935\) 0 0
\(936\) 0.763932 0.0249699
\(937\) −26.4721 −0.864807 −0.432403 0.901680i \(-0.642334\pi\)
−0.432403 + 0.901680i \(0.642334\pi\)
\(938\) −37.8885 −1.23710
\(939\) 8.29180 0.270593
\(940\) 0 0
\(941\) −49.3050 −1.60730 −0.803648 0.595105i \(-0.797110\pi\)
−0.803648 + 0.595105i \(0.797110\pi\)
\(942\) −12.1803 −0.396857
\(943\) −22.8328 −0.743539
\(944\) −1.70820 −0.0555973
\(945\) 0 0
\(946\) −20.3607 −0.661983
\(947\) 40.7214 1.32327 0.661633 0.749828i \(-0.269864\pi\)
0.661633 + 0.749828i \(0.269864\pi\)
\(948\) −16.9443 −0.550324
\(949\) 10.1115 0.328232
\(950\) 0 0
\(951\) 23.8885 0.774639
\(952\) −3.23607 −0.104882
\(953\) −9.05573 −0.293344 −0.146672 0.989185i \(-0.546856\pi\)
−0.146672 + 0.989185i \(0.546856\pi\)
\(954\) 6.94427 0.224829
\(955\) 0 0
\(956\) 13.8885 0.449188
\(957\) −8.00000 −0.258603
\(958\) −13.5967 −0.439291
\(959\) −6.47214 −0.208996
\(960\) 0 0
\(961\) 10.8885 0.351243
\(962\) −1.52786 −0.0492603
\(963\) −8.00000 −0.257796
\(964\) −17.4164 −0.560945
\(965\) 0 0
\(966\) −12.9443 −0.416475
\(967\) −8.47214 −0.272446 −0.136223 0.990678i \(-0.543496\pi\)
−0.136223 + 0.990678i \(0.543496\pi\)
\(968\) 7.00000 0.224989
\(969\) −2.47214 −0.0794164
\(970\) 0 0
\(971\) −27.2361 −0.874047 −0.437024 0.899450i \(-0.643967\pi\)
−0.437024 + 0.899450i \(0.643967\pi\)
\(972\) 1.00000 0.0320750
\(973\) −33.8885 −1.08642
\(974\) −29.7082 −0.951912
\(975\) 0 0
\(976\) −4.47214 −0.143150
\(977\) −9.05573 −0.289718 −0.144859 0.989452i \(-0.546273\pi\)
−0.144859 + 0.989452i \(0.546273\pi\)
\(978\) −13.5279 −0.432573
\(979\) 7.05573 0.225502
\(980\) 0 0
\(981\) −16.4721 −0.525915
\(982\) −25.7082 −0.820382
\(983\) 15.4164 0.491707 0.245854 0.969307i \(-0.420932\pi\)
0.245854 + 0.969307i \(0.420932\pi\)
\(984\) −5.70820 −0.181971
\(985\) 0 0
\(986\) −4.00000 −0.127386
\(987\) 4.94427 0.157378
\(988\) −1.88854 −0.0600826
\(989\) −40.7214 −1.29486
\(990\) 0 0
\(991\) 42.8328 1.36063 0.680315 0.732920i \(-0.261843\pi\)
0.680315 + 0.732920i \(0.261843\pi\)
\(992\) 6.47214 0.205491
\(993\) 23.4164 0.743097
\(994\) 21.8885 0.694262
\(995\) 0 0
\(996\) −1.52786 −0.0484122
\(997\) −58.9443 −1.86678 −0.933392 0.358859i \(-0.883166\pi\)
−0.933392 + 0.358859i \(0.883166\pi\)
\(998\) 16.0000 0.506471
\(999\) −2.00000 −0.0632772
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2550.2.a.bh.1.1 2
3.2 odd 2 7650.2.a.da.1.1 2
5.2 odd 4 510.2.d.b.409.1 4
5.3 odd 4 510.2.d.b.409.4 yes 4
5.4 even 2 2550.2.a.bk.1.2 2
15.2 even 4 1530.2.d.f.919.4 4
15.8 even 4 1530.2.d.f.919.1 4
15.14 odd 2 7650.2.a.cx.1.2 2
20.3 even 4 4080.2.m.m.2449.2 4
20.7 even 4 4080.2.m.m.2449.3 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
510.2.d.b.409.1 4 5.2 odd 4
510.2.d.b.409.4 yes 4 5.3 odd 4
1530.2.d.f.919.1 4 15.8 even 4
1530.2.d.f.919.4 4 15.2 even 4
2550.2.a.bh.1.1 2 1.1 even 1 trivial
2550.2.a.bk.1.2 2 5.4 even 2
4080.2.m.m.2449.2 4 20.3 even 4
4080.2.m.m.2449.3 4 20.7 even 4
7650.2.a.cx.1.2 2 15.14 odd 2
7650.2.a.da.1.1 2 3.2 odd 2