Properties

Label 510.2.d.b.409.4
Level $510$
Weight $2$
Character 510.409
Analytic conductor $4.072$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [510,2,Mod(409,510)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(510, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("510.409");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 510 = 2 \cdot 3 \cdot 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 510.d (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.07237050309\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{5})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 3x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 409.4
Root \(-1.61803i\) of defining polynomial
Character \(\chi\) \(=\) 510.409
Dual form 510.2.d.b.409.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000i q^{2} +1.00000i q^{3} -1.00000 q^{4} +2.23607i q^{5} -1.00000 q^{6} +3.23607i q^{7} -1.00000i q^{8} -1.00000 q^{9} -2.23607 q^{10} +2.00000 q^{11} -1.00000i q^{12} -0.763932i q^{13} -3.23607 q^{14} -2.23607 q^{15} +1.00000 q^{16} +1.00000i q^{17} -1.00000i q^{18} -2.47214 q^{19} -2.23607i q^{20} -3.23607 q^{21} +2.00000i q^{22} -4.00000i q^{23} +1.00000 q^{24} -5.00000 q^{25} +0.763932 q^{26} -1.00000i q^{27} -3.23607i q^{28} +4.00000 q^{29} -2.23607i q^{30} -6.47214 q^{31} +1.00000i q^{32} +2.00000i q^{33} -1.00000 q^{34} -7.23607 q^{35} +1.00000 q^{36} +2.00000i q^{37} -2.47214i q^{38} +0.763932 q^{39} +2.23607 q^{40} +5.70820 q^{41} -3.23607i q^{42} +10.1803i q^{43} -2.00000 q^{44} -2.23607i q^{45} +4.00000 q^{46} +1.52786i q^{47} +1.00000i q^{48} -3.47214 q^{49} -5.00000i q^{50} -1.00000 q^{51} +0.763932i q^{52} -6.94427i q^{53} +1.00000 q^{54} +4.47214i q^{55} +3.23607 q^{56} -2.47214i q^{57} +4.00000i q^{58} +1.70820 q^{59} +2.23607 q^{60} -4.47214 q^{61} -6.47214i q^{62} -3.23607i q^{63} -1.00000 q^{64} +1.70820 q^{65} -2.00000 q^{66} +11.7082i q^{67} -1.00000i q^{68} +4.00000 q^{69} -7.23607i q^{70} +6.76393 q^{71} +1.00000i q^{72} -13.2361i q^{73} -2.00000 q^{74} -5.00000i q^{75} +2.47214 q^{76} +6.47214i q^{77} +0.763932i q^{78} +16.9443 q^{79} +2.23607i q^{80} +1.00000 q^{81} +5.70820i q^{82} -1.52786i q^{83} +3.23607 q^{84} -2.23607 q^{85} -10.1803 q^{86} +4.00000i q^{87} -2.00000i q^{88} -3.52786 q^{89} +2.23607 q^{90} +2.47214 q^{91} +4.00000i q^{92} -6.47214i q^{93} -1.52786 q^{94} -5.52786i q^{95} -1.00000 q^{96} +11.7082i q^{97} -3.47214i q^{98} -2.00000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{4} - 4 q^{6} - 4 q^{9} + 8 q^{11} - 4 q^{14} + 4 q^{16} + 8 q^{19} - 4 q^{21} + 4 q^{24} - 20 q^{25} + 12 q^{26} + 16 q^{29} - 8 q^{31} - 4 q^{34} - 20 q^{35} + 4 q^{36} + 12 q^{39} - 4 q^{41}+ \cdots - 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/510\mathbb{Z}\right)^\times\).

\(n\) \(241\) \(307\) \(341\)
\(\chi(n)\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000i 0.707107i
\(3\) 1.00000i 0.577350i
\(4\) −1.00000 −0.500000
\(5\) 2.23607i 1.00000i
\(6\) −1.00000 −0.408248
\(7\) 3.23607i 1.22312i 0.791199 + 0.611559i \(0.209457\pi\)
−0.791199 + 0.611559i \(0.790543\pi\)
\(8\) − 1.00000i − 0.353553i
\(9\) −1.00000 −0.333333
\(10\) −2.23607 −0.707107
\(11\) 2.00000 0.603023 0.301511 0.953463i \(-0.402509\pi\)
0.301511 + 0.953463i \(0.402509\pi\)
\(12\) − 1.00000i − 0.288675i
\(13\) − 0.763932i − 0.211877i −0.994373 0.105938i \(-0.966215\pi\)
0.994373 0.105938i \(-0.0337846\pi\)
\(14\) −3.23607 −0.864876
\(15\) −2.23607 −0.577350
\(16\) 1.00000 0.250000
\(17\) 1.00000i 0.242536i
\(18\) − 1.00000i − 0.235702i
\(19\) −2.47214 −0.567147 −0.283573 0.958951i \(-0.591520\pi\)
−0.283573 + 0.958951i \(0.591520\pi\)
\(20\) − 2.23607i − 0.500000i
\(21\) −3.23607 −0.706168
\(22\) 2.00000i 0.426401i
\(23\) − 4.00000i − 0.834058i −0.908893 0.417029i \(-0.863071\pi\)
0.908893 0.417029i \(-0.136929\pi\)
\(24\) 1.00000 0.204124
\(25\) −5.00000 −1.00000
\(26\) 0.763932 0.149819
\(27\) − 1.00000i − 0.192450i
\(28\) − 3.23607i − 0.611559i
\(29\) 4.00000 0.742781 0.371391 0.928477i \(-0.378881\pi\)
0.371391 + 0.928477i \(0.378881\pi\)
\(30\) − 2.23607i − 0.408248i
\(31\) −6.47214 −1.16243 −0.581215 0.813750i \(-0.697422\pi\)
−0.581215 + 0.813750i \(0.697422\pi\)
\(32\) 1.00000i 0.176777i
\(33\) 2.00000i 0.348155i
\(34\) −1.00000 −0.171499
\(35\) −7.23607 −1.22312
\(36\) 1.00000 0.166667
\(37\) 2.00000i 0.328798i 0.986394 + 0.164399i \(0.0525685\pi\)
−0.986394 + 0.164399i \(0.947432\pi\)
\(38\) − 2.47214i − 0.401033i
\(39\) 0.763932 0.122327
\(40\) 2.23607 0.353553
\(41\) 5.70820 0.891472 0.445736 0.895165i \(-0.352942\pi\)
0.445736 + 0.895165i \(0.352942\pi\)
\(42\) − 3.23607i − 0.499336i
\(43\) 10.1803i 1.55249i 0.630433 + 0.776244i \(0.282877\pi\)
−0.630433 + 0.776244i \(0.717123\pi\)
\(44\) −2.00000 −0.301511
\(45\) − 2.23607i − 0.333333i
\(46\) 4.00000 0.589768
\(47\) 1.52786i 0.222862i 0.993772 + 0.111431i \(0.0355434\pi\)
−0.993772 + 0.111431i \(0.964457\pi\)
\(48\) 1.00000i 0.144338i
\(49\) −3.47214 −0.496019
\(50\) − 5.00000i − 0.707107i
\(51\) −1.00000 −0.140028
\(52\) 0.763932i 0.105938i
\(53\) − 6.94427i − 0.953869i −0.878939 0.476935i \(-0.841748\pi\)
0.878939 0.476935i \(-0.158252\pi\)
\(54\) 1.00000 0.136083
\(55\) 4.47214i 0.603023i
\(56\) 3.23607 0.432438
\(57\) − 2.47214i − 0.327442i
\(58\) 4.00000i 0.525226i
\(59\) 1.70820 0.222389 0.111195 0.993799i \(-0.464532\pi\)
0.111195 + 0.993799i \(0.464532\pi\)
\(60\) 2.23607 0.288675
\(61\) −4.47214 −0.572598 −0.286299 0.958140i \(-0.592425\pi\)
−0.286299 + 0.958140i \(0.592425\pi\)
\(62\) − 6.47214i − 0.821962i
\(63\) − 3.23607i − 0.407706i
\(64\) −1.00000 −0.125000
\(65\) 1.70820 0.211877
\(66\) −2.00000 −0.246183
\(67\) 11.7082i 1.43038i 0.698928 + 0.715192i \(0.253661\pi\)
−0.698928 + 0.715192i \(0.746339\pi\)
\(68\) − 1.00000i − 0.121268i
\(69\) 4.00000 0.481543
\(70\) − 7.23607i − 0.864876i
\(71\) 6.76393 0.802731 0.401366 0.915918i \(-0.368536\pi\)
0.401366 + 0.915918i \(0.368536\pi\)
\(72\) 1.00000i 0.117851i
\(73\) − 13.2361i − 1.54916i −0.632473 0.774582i \(-0.717960\pi\)
0.632473 0.774582i \(-0.282040\pi\)
\(74\) −2.00000 −0.232495
\(75\) − 5.00000i − 0.577350i
\(76\) 2.47214 0.283573
\(77\) 6.47214i 0.737568i
\(78\) 0.763932i 0.0864983i
\(79\) 16.9443 1.90638 0.953190 0.302373i \(-0.0977787\pi\)
0.953190 + 0.302373i \(0.0977787\pi\)
\(80\) 2.23607i 0.250000i
\(81\) 1.00000 0.111111
\(82\) 5.70820i 0.630366i
\(83\) − 1.52786i − 0.167705i −0.996478 0.0838524i \(-0.973278\pi\)
0.996478 0.0838524i \(-0.0267224\pi\)
\(84\) 3.23607 0.353084
\(85\) −2.23607 −0.242536
\(86\) −10.1803 −1.09777
\(87\) 4.00000i 0.428845i
\(88\) − 2.00000i − 0.213201i
\(89\) −3.52786 −0.373953 −0.186976 0.982364i \(-0.559869\pi\)
−0.186976 + 0.982364i \(0.559869\pi\)
\(90\) 2.23607 0.235702
\(91\) 2.47214 0.259150
\(92\) 4.00000i 0.417029i
\(93\) − 6.47214i − 0.671129i
\(94\) −1.52786 −0.157587
\(95\) − 5.52786i − 0.567147i
\(96\) −1.00000 −0.102062
\(97\) 11.7082i 1.18879i 0.804174 + 0.594394i \(0.202608\pi\)
−0.804174 + 0.594394i \(0.797392\pi\)
\(98\) − 3.47214i − 0.350739i
\(99\) −2.00000 −0.201008
\(100\) 5.00000 0.500000
\(101\) 11.7082 1.16501 0.582505 0.812827i \(-0.302073\pi\)
0.582505 + 0.812827i \(0.302073\pi\)
\(102\) − 1.00000i − 0.0990148i
\(103\) 6.94427i 0.684239i 0.939656 + 0.342120i \(0.111145\pi\)
−0.939656 + 0.342120i \(0.888855\pi\)
\(104\) −0.763932 −0.0749097
\(105\) − 7.23607i − 0.706168i
\(106\) 6.94427 0.674487
\(107\) 8.00000i 0.773389i 0.922208 + 0.386695i \(0.126383\pi\)
−0.922208 + 0.386695i \(0.873617\pi\)
\(108\) 1.00000i 0.0962250i
\(109\) 16.4721 1.57774 0.788872 0.614557i \(-0.210665\pi\)
0.788872 + 0.614557i \(0.210665\pi\)
\(110\) −4.47214 −0.426401
\(111\) −2.00000 −0.189832
\(112\) 3.23607i 0.305780i
\(113\) 10.0000i 0.940721i 0.882474 + 0.470360i \(0.155876\pi\)
−0.882474 + 0.470360i \(0.844124\pi\)
\(114\) 2.47214 0.231537
\(115\) 8.94427 0.834058
\(116\) −4.00000 −0.371391
\(117\) 0.763932i 0.0706255i
\(118\) 1.70820i 0.157253i
\(119\) −3.23607 −0.296650
\(120\) 2.23607i 0.204124i
\(121\) −7.00000 −0.636364
\(122\) − 4.47214i − 0.404888i
\(123\) 5.70820i 0.514691i
\(124\) 6.47214 0.581215
\(125\) − 11.1803i − 1.00000i
\(126\) 3.23607 0.288292
\(127\) 14.0000i 1.24230i 0.783692 + 0.621150i \(0.213334\pi\)
−0.783692 + 0.621150i \(0.786666\pi\)
\(128\) − 1.00000i − 0.0883883i
\(129\) −10.1803 −0.896329
\(130\) 1.70820i 0.149819i
\(131\) 3.52786 0.308231 0.154115 0.988053i \(-0.450747\pi\)
0.154115 + 0.988053i \(0.450747\pi\)
\(132\) − 2.00000i − 0.174078i
\(133\) − 8.00000i − 0.693688i
\(134\) −11.7082 −1.01143
\(135\) 2.23607 0.192450
\(136\) 1.00000 0.0857493
\(137\) − 2.00000i − 0.170872i −0.996344 0.0854358i \(-0.972772\pi\)
0.996344 0.0854358i \(-0.0272282\pi\)
\(138\) 4.00000i 0.340503i
\(139\) −10.4721 −0.888235 −0.444117 0.895969i \(-0.646483\pi\)
−0.444117 + 0.895969i \(0.646483\pi\)
\(140\) 7.23607 0.611559
\(141\) −1.52786 −0.128669
\(142\) 6.76393i 0.567617i
\(143\) − 1.52786i − 0.127766i
\(144\) −1.00000 −0.0833333
\(145\) 8.94427i 0.742781i
\(146\) 13.2361 1.09542
\(147\) − 3.47214i − 0.286377i
\(148\) − 2.00000i − 0.164399i
\(149\) 10.1803 0.834006 0.417003 0.908905i \(-0.363080\pi\)
0.417003 + 0.908905i \(0.363080\pi\)
\(150\) 5.00000 0.408248
\(151\) −4.00000 −0.325515 −0.162758 0.986666i \(-0.552039\pi\)
−0.162758 + 0.986666i \(0.552039\pi\)
\(152\) 2.47214i 0.200517i
\(153\) − 1.00000i − 0.0808452i
\(154\) −6.47214 −0.521540
\(155\) − 14.4721i − 1.16243i
\(156\) −0.763932 −0.0611635
\(157\) − 12.1803i − 0.972097i −0.873932 0.486048i \(-0.838438\pi\)
0.873932 0.486048i \(-0.161562\pi\)
\(158\) 16.9443i 1.34801i
\(159\) 6.94427 0.550717
\(160\) −2.23607 −0.176777
\(161\) 12.9443 1.02015
\(162\) 1.00000i 0.0785674i
\(163\) 13.5279i 1.05958i 0.848128 + 0.529792i \(0.177730\pi\)
−0.848128 + 0.529792i \(0.822270\pi\)
\(164\) −5.70820 −0.445736
\(165\) −4.47214 −0.348155
\(166\) 1.52786 0.118585
\(167\) 21.8885i 1.69379i 0.531763 + 0.846893i \(0.321530\pi\)
−0.531763 + 0.846893i \(0.678470\pi\)
\(168\) 3.23607i 0.249668i
\(169\) 12.4164 0.955108
\(170\) − 2.23607i − 0.171499i
\(171\) 2.47214 0.189049
\(172\) − 10.1803i − 0.776244i
\(173\) − 19.8885i − 1.51210i −0.654515 0.756049i \(-0.727127\pi\)
0.654515 0.756049i \(-0.272873\pi\)
\(174\) −4.00000 −0.303239
\(175\) − 16.1803i − 1.22312i
\(176\) 2.00000 0.150756
\(177\) 1.70820i 0.128396i
\(178\) − 3.52786i − 0.264425i
\(179\) −5.70820 −0.426651 −0.213326 0.976981i \(-0.568430\pi\)
−0.213326 + 0.976981i \(0.568430\pi\)
\(180\) 2.23607i 0.166667i
\(181\) −8.47214 −0.629729 −0.314864 0.949137i \(-0.601959\pi\)
−0.314864 + 0.949137i \(0.601959\pi\)
\(182\) 2.47214i 0.183247i
\(183\) − 4.47214i − 0.330590i
\(184\) −4.00000 −0.294884
\(185\) −4.47214 −0.328798
\(186\) 6.47214 0.474560
\(187\) 2.00000i 0.146254i
\(188\) − 1.52786i − 0.111431i
\(189\) 3.23607 0.235389
\(190\) 5.52786 0.401033
\(191\) 14.4721 1.04717 0.523584 0.851974i \(-0.324595\pi\)
0.523584 + 0.851974i \(0.324595\pi\)
\(192\) − 1.00000i − 0.0721688i
\(193\) − 25.5967i − 1.84249i −0.388978 0.921247i \(-0.627172\pi\)
0.388978 0.921247i \(-0.372828\pi\)
\(194\) −11.7082 −0.840600
\(195\) 1.70820i 0.122327i
\(196\) 3.47214 0.248010
\(197\) − 19.8885i − 1.41700i −0.705711 0.708500i \(-0.749372\pi\)
0.705711 0.708500i \(-0.250628\pi\)
\(198\) − 2.00000i − 0.142134i
\(199\) −8.94427 −0.634043 −0.317021 0.948418i \(-0.602683\pi\)
−0.317021 + 0.948418i \(0.602683\pi\)
\(200\) 5.00000i 0.353553i
\(201\) −11.7082 −0.825833
\(202\) 11.7082i 0.823786i
\(203\) 12.9443i 0.908510i
\(204\) 1.00000 0.0700140
\(205\) 12.7639i 0.891472i
\(206\) −6.94427 −0.483830
\(207\) 4.00000i 0.278019i
\(208\) − 0.763932i − 0.0529692i
\(209\) −4.94427 −0.342002
\(210\) 7.23607 0.499336
\(211\) −7.05573 −0.485736 −0.242868 0.970059i \(-0.578088\pi\)
−0.242868 + 0.970059i \(0.578088\pi\)
\(212\) 6.94427i 0.476935i
\(213\) 6.76393i 0.463457i
\(214\) −8.00000 −0.546869
\(215\) −22.7639 −1.55249
\(216\) −1.00000 −0.0680414
\(217\) − 20.9443i − 1.42179i
\(218\) 16.4721i 1.11563i
\(219\) 13.2361 0.894411
\(220\) − 4.47214i − 0.301511i
\(221\) 0.763932 0.0513876
\(222\) − 2.00000i − 0.134231i
\(223\) − 26.9443i − 1.80432i −0.431400 0.902161i \(-0.641980\pi\)
0.431400 0.902161i \(-0.358020\pi\)
\(224\) −3.23607 −0.216219
\(225\) 5.00000 0.333333
\(226\) −10.0000 −0.665190
\(227\) − 25.8885i − 1.71828i −0.511738 0.859142i \(-0.670998\pi\)
0.511738 0.859142i \(-0.329002\pi\)
\(228\) 2.47214i 0.163721i
\(229\) −5.41641 −0.357926 −0.178963 0.983856i \(-0.557274\pi\)
−0.178963 + 0.983856i \(0.557274\pi\)
\(230\) 8.94427i 0.589768i
\(231\) −6.47214 −0.425835
\(232\) − 4.00000i − 0.262613i
\(233\) 21.4164i 1.40304i 0.712652 + 0.701518i \(0.247494\pi\)
−0.712652 + 0.701518i \(0.752506\pi\)
\(234\) −0.763932 −0.0499398
\(235\) −3.41641 −0.222862
\(236\) −1.70820 −0.111195
\(237\) 16.9443i 1.10065i
\(238\) − 3.23607i − 0.209763i
\(239\) −13.8885 −0.898375 −0.449188 0.893437i \(-0.648287\pi\)
−0.449188 + 0.893437i \(0.648287\pi\)
\(240\) −2.23607 −0.144338
\(241\) −17.4164 −1.12189 −0.560945 0.827853i \(-0.689562\pi\)
−0.560945 + 0.827853i \(0.689562\pi\)
\(242\) − 7.00000i − 0.449977i
\(243\) 1.00000i 0.0641500i
\(244\) 4.47214 0.286299
\(245\) − 7.76393i − 0.496019i
\(246\) −5.70820 −0.363942
\(247\) 1.88854i 0.120165i
\(248\) 6.47214i 0.410981i
\(249\) 1.52786 0.0968244
\(250\) 11.1803 0.707107
\(251\) 12.1803 0.768816 0.384408 0.923163i \(-0.374406\pi\)
0.384408 + 0.923163i \(0.374406\pi\)
\(252\) 3.23607i 0.203853i
\(253\) − 8.00000i − 0.502956i
\(254\) −14.0000 −0.878438
\(255\) − 2.23607i − 0.140028i
\(256\) 1.00000 0.0625000
\(257\) 18.0000i 1.12281i 0.827541 + 0.561405i \(0.189739\pi\)
−0.827541 + 0.561405i \(0.810261\pi\)
\(258\) − 10.1803i − 0.633800i
\(259\) −6.47214 −0.402159
\(260\) −1.70820 −0.105938
\(261\) −4.00000 −0.247594
\(262\) 3.52786i 0.217952i
\(263\) 4.00000i 0.246651i 0.992366 + 0.123325i \(0.0393559\pi\)
−0.992366 + 0.123325i \(0.960644\pi\)
\(264\) 2.00000 0.123091
\(265\) 15.5279 0.953869
\(266\) 8.00000 0.490511
\(267\) − 3.52786i − 0.215902i
\(268\) − 11.7082i − 0.715192i
\(269\) 24.9443 1.52088 0.760440 0.649409i \(-0.224984\pi\)
0.760440 + 0.649409i \(0.224984\pi\)
\(270\) 2.23607i 0.136083i
\(271\) 4.00000 0.242983 0.121491 0.992592i \(-0.461232\pi\)
0.121491 + 0.992592i \(0.461232\pi\)
\(272\) 1.00000i 0.0606339i
\(273\) 2.47214i 0.149620i
\(274\) 2.00000 0.120824
\(275\) −10.0000 −0.603023
\(276\) −4.00000 −0.240772
\(277\) − 18.3607i − 1.10319i −0.834113 0.551593i \(-0.814020\pi\)
0.834113 0.551593i \(-0.185980\pi\)
\(278\) − 10.4721i − 0.628077i
\(279\) 6.47214 0.387477
\(280\) 7.23607i 0.432438i
\(281\) −25.4164 −1.51622 −0.758108 0.652129i \(-0.773876\pi\)
−0.758108 + 0.652129i \(0.773876\pi\)
\(282\) − 1.52786i − 0.0909830i
\(283\) − 9.88854i − 0.587813i −0.955834 0.293906i \(-0.905045\pi\)
0.955834 0.293906i \(-0.0949554\pi\)
\(284\) −6.76393 −0.401366
\(285\) 5.52786 0.327442
\(286\) 1.52786 0.0903445
\(287\) 18.4721i 1.09038i
\(288\) − 1.00000i − 0.0589256i
\(289\) −1.00000 −0.0588235
\(290\) −8.94427 −0.525226
\(291\) −11.7082 −0.686347
\(292\) 13.2361i 0.774582i
\(293\) − 2.58359i − 0.150935i −0.997148 0.0754675i \(-0.975955\pi\)
0.997148 0.0754675i \(-0.0240449\pi\)
\(294\) 3.47214 0.202499
\(295\) 3.81966i 0.222389i
\(296\) 2.00000 0.116248
\(297\) − 2.00000i − 0.116052i
\(298\) 10.1803i 0.589731i
\(299\) −3.05573 −0.176717
\(300\) 5.00000i 0.288675i
\(301\) −32.9443 −1.89888
\(302\) − 4.00000i − 0.230174i
\(303\) 11.7082i 0.672619i
\(304\) −2.47214 −0.141787
\(305\) − 10.0000i − 0.572598i
\(306\) 1.00000 0.0571662
\(307\) − 18.1803i − 1.03761i −0.854894 0.518803i \(-0.826378\pi\)
0.854894 0.518803i \(-0.173622\pi\)
\(308\) − 6.47214i − 0.368784i
\(309\) −6.94427 −0.395046
\(310\) 14.4721 0.821962
\(311\) −29.5967 −1.67828 −0.839139 0.543917i \(-0.816941\pi\)
−0.839139 + 0.543917i \(0.816941\pi\)
\(312\) − 0.763932i − 0.0432491i
\(313\) 8.29180i 0.468680i 0.972155 + 0.234340i \(0.0752929\pi\)
−0.972155 + 0.234340i \(0.924707\pi\)
\(314\) 12.1803 0.687376
\(315\) 7.23607 0.407706
\(316\) −16.9443 −0.953190
\(317\) − 23.8885i − 1.34171i −0.741587 0.670857i \(-0.765926\pi\)
0.741587 0.670857i \(-0.234074\pi\)
\(318\) 6.94427i 0.389415i
\(319\) 8.00000 0.447914
\(320\) − 2.23607i − 0.125000i
\(321\) −8.00000 −0.446516
\(322\) 12.9443i 0.721356i
\(323\) − 2.47214i − 0.137553i
\(324\) −1.00000 −0.0555556
\(325\) 3.81966i 0.211877i
\(326\) −13.5279 −0.749239
\(327\) 16.4721i 0.910911i
\(328\) − 5.70820i − 0.315183i
\(329\) −4.94427 −0.272587
\(330\) − 4.47214i − 0.246183i
\(331\) 23.4164 1.28708 0.643541 0.765412i \(-0.277465\pi\)
0.643541 + 0.765412i \(0.277465\pi\)
\(332\) 1.52786i 0.0838524i
\(333\) − 2.00000i − 0.109599i
\(334\) −21.8885 −1.19769
\(335\) −26.1803 −1.43038
\(336\) −3.23607 −0.176542
\(337\) 2.18034i 0.118771i 0.998235 + 0.0593853i \(0.0189141\pi\)
−0.998235 + 0.0593853i \(0.981086\pi\)
\(338\) 12.4164i 0.675364i
\(339\) −10.0000 −0.543125
\(340\) 2.23607 0.121268
\(341\) −12.9443 −0.700972
\(342\) 2.47214i 0.133678i
\(343\) 11.4164i 0.616428i
\(344\) 10.1803 0.548887
\(345\) 8.94427i 0.481543i
\(346\) 19.8885 1.06921
\(347\) 30.8328i 1.65519i 0.561324 + 0.827596i \(0.310292\pi\)
−0.561324 + 0.827596i \(0.689708\pi\)
\(348\) − 4.00000i − 0.214423i
\(349\) 19.5279 1.04530 0.522651 0.852547i \(-0.324943\pi\)
0.522651 + 0.852547i \(0.324943\pi\)
\(350\) 16.1803 0.864876
\(351\) −0.763932 −0.0407757
\(352\) 2.00000i 0.106600i
\(353\) − 2.94427i − 0.156708i −0.996926 0.0783539i \(-0.975034\pi\)
0.996926 0.0783539i \(-0.0249664\pi\)
\(354\) −1.70820 −0.0907900
\(355\) 15.1246i 0.802731i
\(356\) 3.52786 0.186976
\(357\) − 3.23607i − 0.171271i
\(358\) − 5.70820i − 0.301688i
\(359\) 18.4721 0.974922 0.487461 0.873145i \(-0.337923\pi\)
0.487461 + 0.873145i \(0.337923\pi\)
\(360\) −2.23607 −0.117851
\(361\) −12.8885 −0.678344
\(362\) − 8.47214i − 0.445286i
\(363\) − 7.00000i − 0.367405i
\(364\) −2.47214 −0.129575
\(365\) 29.5967 1.54916
\(366\) 4.47214 0.233762
\(367\) − 28.1803i − 1.47100i −0.677524 0.735501i \(-0.736947\pi\)
0.677524 0.735501i \(-0.263053\pi\)
\(368\) − 4.00000i − 0.208514i
\(369\) −5.70820 −0.297157
\(370\) − 4.47214i − 0.232495i
\(371\) 22.4721 1.16670
\(372\) 6.47214i 0.335565i
\(373\) − 3.23607i − 0.167557i −0.996484 0.0837786i \(-0.973301\pi\)
0.996484 0.0837786i \(-0.0266989\pi\)
\(374\) −2.00000 −0.103418
\(375\) 11.1803 0.577350
\(376\) 1.52786 0.0787936
\(377\) − 3.05573i − 0.157378i
\(378\) 3.23607i 0.166445i
\(379\) 10.4721 0.537917 0.268959 0.963152i \(-0.413320\pi\)
0.268959 + 0.963152i \(0.413320\pi\)
\(380\) 5.52786i 0.283573i
\(381\) −14.0000 −0.717242
\(382\) 14.4721i 0.740459i
\(383\) 17.8885i 0.914062i 0.889451 + 0.457031i \(0.151087\pi\)
−0.889451 + 0.457031i \(0.848913\pi\)
\(384\) 1.00000 0.0510310
\(385\) −14.4721 −0.737568
\(386\) 25.5967 1.30284
\(387\) − 10.1803i − 0.517496i
\(388\) − 11.7082i − 0.594394i
\(389\) 2.18034 0.110548 0.0552738 0.998471i \(-0.482397\pi\)
0.0552738 + 0.998471i \(0.482397\pi\)
\(390\) −1.70820 −0.0864983
\(391\) 4.00000 0.202289
\(392\) 3.47214i 0.175369i
\(393\) 3.52786i 0.177957i
\(394\) 19.8885 1.00197
\(395\) 37.8885i 1.90638i
\(396\) 2.00000 0.100504
\(397\) − 31.8885i − 1.60044i −0.599706 0.800220i \(-0.704716\pi\)
0.599706 0.800220i \(-0.295284\pi\)
\(398\) − 8.94427i − 0.448336i
\(399\) 8.00000 0.400501
\(400\) −5.00000 −0.250000
\(401\) 22.0689 1.10207 0.551034 0.834483i \(-0.314234\pi\)
0.551034 + 0.834483i \(0.314234\pi\)
\(402\) − 11.7082i − 0.583952i
\(403\) 4.94427i 0.246292i
\(404\) −11.7082 −0.582505
\(405\) 2.23607i 0.111111i
\(406\) −12.9443 −0.642413
\(407\) 4.00000i 0.198273i
\(408\) 1.00000i 0.0495074i
\(409\) 18.3607 0.907877 0.453939 0.891033i \(-0.350019\pi\)
0.453939 + 0.891033i \(0.350019\pi\)
\(410\) −12.7639 −0.630366
\(411\) 2.00000 0.0986527
\(412\) − 6.94427i − 0.342120i
\(413\) 5.52786i 0.272008i
\(414\) −4.00000 −0.196589
\(415\) 3.41641 0.167705
\(416\) 0.763932 0.0374548
\(417\) − 10.4721i − 0.512823i
\(418\) − 4.94427i − 0.241832i
\(419\) 38.3607 1.87404 0.937021 0.349273i \(-0.113571\pi\)
0.937021 + 0.349273i \(0.113571\pi\)
\(420\) 7.23607i 0.353084i
\(421\) −10.5836 −0.515813 −0.257906 0.966170i \(-0.583033\pi\)
−0.257906 + 0.966170i \(0.583033\pi\)
\(422\) − 7.05573i − 0.343467i
\(423\) − 1.52786i − 0.0742873i
\(424\) −6.94427 −0.337244
\(425\) − 5.00000i − 0.242536i
\(426\) −6.76393 −0.327714
\(427\) − 14.4721i − 0.700356i
\(428\) − 8.00000i − 0.386695i
\(429\) 1.52786 0.0737660
\(430\) − 22.7639i − 1.09777i
\(431\) −17.5967 −0.847606 −0.423803 0.905755i \(-0.639305\pi\)
−0.423803 + 0.905755i \(0.639305\pi\)
\(432\) − 1.00000i − 0.0481125i
\(433\) 16.3607i 0.786244i 0.919486 + 0.393122i \(0.128605\pi\)
−0.919486 + 0.393122i \(0.871395\pi\)
\(434\) 20.9443 1.00536
\(435\) −8.94427 −0.428845
\(436\) −16.4721 −0.788872
\(437\) 9.88854i 0.473033i
\(438\) 13.2361i 0.632444i
\(439\) −22.4721 −1.07254 −0.536268 0.844048i \(-0.680166\pi\)
−0.536268 + 0.844048i \(0.680166\pi\)
\(440\) 4.47214 0.213201
\(441\) 3.47214 0.165340
\(442\) 0.763932i 0.0363365i
\(443\) − 4.00000i − 0.190046i −0.995475 0.0950229i \(-0.969708\pi\)
0.995475 0.0950229i \(-0.0302924\pi\)
\(444\) 2.00000 0.0949158
\(445\) − 7.88854i − 0.373953i
\(446\) 26.9443 1.27585
\(447\) 10.1803i 0.481514i
\(448\) − 3.23607i − 0.152890i
\(449\) 31.5967 1.49114 0.745571 0.666426i \(-0.232177\pi\)
0.745571 + 0.666426i \(0.232177\pi\)
\(450\) 5.00000i 0.235702i
\(451\) 11.4164 0.537578
\(452\) − 10.0000i − 0.470360i
\(453\) − 4.00000i − 0.187936i
\(454\) 25.8885 1.21501
\(455\) 5.52786i 0.259150i
\(456\) −2.47214 −0.115768
\(457\) 28.3607i 1.32666i 0.748328 + 0.663328i \(0.230857\pi\)
−0.748328 + 0.663328i \(0.769143\pi\)
\(458\) − 5.41641i − 0.253092i
\(459\) 1.00000 0.0466760
\(460\) −8.94427 −0.417029
\(461\) 28.0689 1.30730 0.653649 0.756798i \(-0.273237\pi\)
0.653649 + 0.756798i \(0.273237\pi\)
\(462\) − 6.47214i − 0.301111i
\(463\) 1.05573i 0.0490638i 0.999699 + 0.0245319i \(0.00780954\pi\)
−0.999699 + 0.0245319i \(0.992190\pi\)
\(464\) 4.00000 0.185695
\(465\) 14.4721 0.671129
\(466\) −21.4164 −0.992096
\(467\) − 16.9443i − 0.784087i −0.919947 0.392044i \(-0.871768\pi\)
0.919947 0.392044i \(-0.128232\pi\)
\(468\) − 0.763932i − 0.0353128i
\(469\) −37.8885 −1.74953
\(470\) − 3.41641i − 0.157587i
\(471\) 12.1803 0.561240
\(472\) − 1.70820i − 0.0786265i
\(473\) 20.3607i 0.936185i
\(474\) −16.9443 −0.778276
\(475\) 12.3607 0.567147
\(476\) 3.23607 0.148325
\(477\) 6.94427i 0.317956i
\(478\) − 13.8885i − 0.635247i
\(479\) −13.5967 −0.621251 −0.310626 0.950532i \(-0.600539\pi\)
−0.310626 + 0.950532i \(0.600539\pi\)
\(480\) − 2.23607i − 0.102062i
\(481\) 1.52786 0.0696646
\(482\) − 17.4164i − 0.793296i
\(483\) 12.9443i 0.588985i
\(484\) 7.00000 0.318182
\(485\) −26.1803 −1.18879
\(486\) −1.00000 −0.0453609
\(487\) − 29.7082i − 1.34621i −0.739548 0.673104i \(-0.764961\pi\)
0.739548 0.673104i \(-0.235039\pi\)
\(488\) 4.47214i 0.202444i
\(489\) −13.5279 −0.611751
\(490\) 7.76393 0.350739
\(491\) 25.7082 1.16020 0.580098 0.814547i \(-0.303014\pi\)
0.580098 + 0.814547i \(0.303014\pi\)
\(492\) − 5.70820i − 0.257346i
\(493\) 4.00000i 0.180151i
\(494\) −1.88854 −0.0849696
\(495\) − 4.47214i − 0.201008i
\(496\) −6.47214 −0.290607
\(497\) 21.8885i 0.981835i
\(498\) 1.52786i 0.0684652i
\(499\) 16.0000 0.716258 0.358129 0.933672i \(-0.383415\pi\)
0.358129 + 0.933672i \(0.383415\pi\)
\(500\) 11.1803i 0.500000i
\(501\) −21.8885 −0.977908
\(502\) 12.1803i 0.543635i
\(503\) 0.583592i 0.0260211i 0.999915 + 0.0130105i \(0.00414150\pi\)
−0.999915 + 0.0130105i \(0.995858\pi\)
\(504\) −3.23607 −0.144146
\(505\) 26.1803i 1.16501i
\(506\) 8.00000 0.355643
\(507\) 12.4164i 0.551432i
\(508\) − 14.0000i − 0.621150i
\(509\) −32.6525 −1.44730 −0.723648 0.690169i \(-0.757536\pi\)
−0.723648 + 0.690169i \(0.757536\pi\)
\(510\) 2.23607 0.0990148
\(511\) 42.8328 1.89481
\(512\) 1.00000i 0.0441942i
\(513\) 2.47214i 0.109147i
\(514\) −18.0000 −0.793946
\(515\) −15.5279 −0.684239
\(516\) 10.1803 0.448164
\(517\) 3.05573i 0.134391i
\(518\) − 6.47214i − 0.284369i
\(519\) 19.8885 0.873010
\(520\) − 1.70820i − 0.0749097i
\(521\) 28.1803 1.23460 0.617302 0.786727i \(-0.288226\pi\)
0.617302 + 0.786727i \(0.288226\pi\)
\(522\) − 4.00000i − 0.175075i
\(523\) 27.7082i 1.21160i 0.795619 + 0.605798i \(0.207146\pi\)
−0.795619 + 0.605798i \(0.792854\pi\)
\(524\) −3.52786 −0.154115
\(525\) 16.1803 0.706168
\(526\) −4.00000 −0.174408
\(527\) − 6.47214i − 0.281931i
\(528\) 2.00000i 0.0870388i
\(529\) 7.00000 0.304348
\(530\) 15.5279i 0.674487i
\(531\) −1.70820 −0.0741297
\(532\) 8.00000i 0.346844i
\(533\) − 4.36068i − 0.188882i
\(534\) 3.52786 0.152666
\(535\) −17.8885 −0.773389
\(536\) 11.7082 0.505717
\(537\) − 5.70820i − 0.246327i
\(538\) 24.9443i 1.07542i
\(539\) −6.94427 −0.299111
\(540\) −2.23607 −0.0962250
\(541\) 31.3050 1.34590 0.672952 0.739686i \(-0.265026\pi\)
0.672952 + 0.739686i \(0.265026\pi\)
\(542\) 4.00000i 0.171815i
\(543\) − 8.47214i − 0.363574i
\(544\) −1.00000 −0.0428746
\(545\) 36.8328i 1.57774i
\(546\) −2.47214 −0.105798
\(547\) − 16.9443i − 0.724485i −0.932084 0.362242i \(-0.882011\pi\)
0.932084 0.362242i \(-0.117989\pi\)
\(548\) 2.00000i 0.0854358i
\(549\) 4.47214 0.190866
\(550\) − 10.0000i − 0.426401i
\(551\) −9.88854 −0.421266
\(552\) − 4.00000i − 0.170251i
\(553\) 54.8328i 2.33173i
\(554\) 18.3607 0.780071
\(555\) − 4.47214i − 0.189832i
\(556\) 10.4721 0.444117
\(557\) − 42.9443i − 1.81961i −0.415039 0.909804i \(-0.636232\pi\)
0.415039 0.909804i \(-0.363768\pi\)
\(558\) 6.47214i 0.273987i
\(559\) 7.77709 0.328936
\(560\) −7.23607 −0.305780
\(561\) −2.00000 −0.0844401
\(562\) − 25.4164i − 1.07213i
\(563\) − 37.8885i − 1.59681i −0.602120 0.798406i \(-0.705677\pi\)
0.602120 0.798406i \(-0.294323\pi\)
\(564\) 1.52786 0.0643347
\(565\) −22.3607 −0.940721
\(566\) 9.88854 0.415646
\(567\) 3.23607i 0.135902i
\(568\) − 6.76393i − 0.283808i
\(569\) −6.00000 −0.251533 −0.125767 0.992060i \(-0.540139\pi\)
−0.125767 + 0.992060i \(0.540139\pi\)
\(570\) 5.52786i 0.231537i
\(571\) −8.36068 −0.349884 −0.174942 0.984579i \(-0.555974\pi\)
−0.174942 + 0.984579i \(0.555974\pi\)
\(572\) 1.52786i 0.0638832i
\(573\) 14.4721i 0.604582i
\(574\) −18.4721 −0.771012
\(575\) 20.0000i 0.834058i
\(576\) 1.00000 0.0416667
\(577\) − 8.58359i − 0.357340i −0.983909 0.178670i \(-0.942821\pi\)
0.983909 0.178670i \(-0.0571794\pi\)
\(578\) − 1.00000i − 0.0415945i
\(579\) 25.5967 1.06376
\(580\) − 8.94427i − 0.371391i
\(581\) 4.94427 0.205123
\(582\) − 11.7082i − 0.485321i
\(583\) − 13.8885i − 0.575205i
\(584\) −13.2361 −0.547712
\(585\) −1.70820 −0.0706255
\(586\) 2.58359 0.106727
\(587\) − 14.4721i − 0.597329i −0.954358 0.298664i \(-0.903459\pi\)
0.954358 0.298664i \(-0.0965411\pi\)
\(588\) 3.47214i 0.143188i
\(589\) 16.0000 0.659269
\(590\) −3.81966 −0.157253
\(591\) 19.8885 0.818105
\(592\) 2.00000i 0.0821995i
\(593\) − 13.0557i − 0.536134i −0.963400 0.268067i \(-0.913615\pi\)
0.963400 0.268067i \(-0.0863849\pi\)
\(594\) 2.00000 0.0820610
\(595\) − 7.23607i − 0.296650i
\(596\) −10.1803 −0.417003
\(597\) − 8.94427i − 0.366065i
\(598\) − 3.05573i − 0.124958i
\(599\) −34.4721 −1.40849 −0.704247 0.709955i \(-0.748715\pi\)
−0.704247 + 0.709955i \(0.748715\pi\)
\(600\) −5.00000 −0.204124
\(601\) −19.5279 −0.796558 −0.398279 0.917264i \(-0.630392\pi\)
−0.398279 + 0.917264i \(0.630392\pi\)
\(602\) − 32.9443i − 1.34271i
\(603\) − 11.7082i − 0.476795i
\(604\) 4.00000 0.162758
\(605\) − 15.6525i − 0.636364i
\(606\) −11.7082 −0.475613
\(607\) 9.12461i 0.370357i 0.982705 + 0.185178i \(0.0592863\pi\)
−0.982705 + 0.185178i \(0.940714\pi\)
\(608\) − 2.47214i − 0.100258i
\(609\) −12.9443 −0.524528
\(610\) 10.0000 0.404888
\(611\) 1.16718 0.0472192
\(612\) 1.00000i 0.0404226i
\(613\) 19.8197i 0.800509i 0.916404 + 0.400254i \(0.131078\pi\)
−0.916404 + 0.400254i \(0.868922\pi\)
\(614\) 18.1803 0.733699
\(615\) −12.7639 −0.514691
\(616\) 6.47214 0.260770
\(617\) − 11.5279i − 0.464094i −0.972705 0.232047i \(-0.925458\pi\)
0.972705 0.232047i \(-0.0745424\pi\)
\(618\) − 6.94427i − 0.279340i
\(619\) 31.0557 1.24824 0.624118 0.781330i \(-0.285459\pi\)
0.624118 + 0.781330i \(0.285459\pi\)
\(620\) 14.4721i 0.581215i
\(621\) −4.00000 −0.160514
\(622\) − 29.5967i − 1.18672i
\(623\) − 11.4164i − 0.457389i
\(624\) 0.763932 0.0305818
\(625\) 25.0000 1.00000
\(626\) −8.29180 −0.331407
\(627\) − 4.94427i − 0.197455i
\(628\) 12.1803i 0.486048i
\(629\) −2.00000 −0.0797452
\(630\) 7.23607i 0.288292i
\(631\) 25.8885 1.03061 0.515303 0.857008i \(-0.327679\pi\)
0.515303 + 0.857008i \(0.327679\pi\)
\(632\) − 16.9443i − 0.674007i
\(633\) − 7.05573i − 0.280440i
\(634\) 23.8885 0.948735
\(635\) −31.3050 −1.24230
\(636\) −6.94427 −0.275358
\(637\) 2.65248i 0.105095i
\(638\) 8.00000i 0.316723i
\(639\) −6.76393 −0.267577
\(640\) 2.23607 0.0883883
\(641\) −1.70820 −0.0674700 −0.0337350 0.999431i \(-0.510740\pi\)
−0.0337350 + 0.999431i \(0.510740\pi\)
\(642\) − 8.00000i − 0.315735i
\(643\) 0.583592i 0.0230146i 0.999934 + 0.0115073i \(0.00366297\pi\)
−0.999934 + 0.0115073i \(0.996337\pi\)
\(644\) −12.9443 −0.510076
\(645\) − 22.7639i − 0.896329i
\(646\) 2.47214 0.0972649
\(647\) − 3.05573i − 0.120133i −0.998194 0.0600665i \(-0.980869\pi\)
0.998194 0.0600665i \(-0.0191313\pi\)
\(648\) − 1.00000i − 0.0392837i
\(649\) 3.41641 0.134106
\(650\) −3.81966 −0.149819
\(651\) 20.9443 0.820871
\(652\) − 13.5279i − 0.529792i
\(653\) 12.4721i 0.488072i 0.969766 + 0.244036i \(0.0784716\pi\)
−0.969766 + 0.244036i \(0.921528\pi\)
\(654\) −16.4721 −0.644111
\(655\) 7.88854i 0.308231i
\(656\) 5.70820 0.222868
\(657\) 13.2361i 0.516388i
\(658\) − 4.94427i − 0.192748i
\(659\) −41.7082 −1.62472 −0.812360 0.583156i \(-0.801818\pi\)
−0.812360 + 0.583156i \(0.801818\pi\)
\(660\) 4.47214 0.174078
\(661\) −13.4164 −0.521838 −0.260919 0.965361i \(-0.584026\pi\)
−0.260919 + 0.965361i \(0.584026\pi\)
\(662\) 23.4164i 0.910105i
\(663\) 0.763932i 0.0296687i
\(664\) −1.52786 −0.0592926
\(665\) 17.8885 0.693688
\(666\) 2.00000 0.0774984
\(667\) − 16.0000i − 0.619522i
\(668\) − 21.8885i − 0.846893i
\(669\) 26.9443 1.04173
\(670\) − 26.1803i − 1.01143i
\(671\) −8.94427 −0.345290
\(672\) − 3.23607i − 0.124834i
\(673\) 18.1803i 0.700801i 0.936600 + 0.350400i \(0.113954\pi\)
−0.936600 + 0.350400i \(0.886046\pi\)
\(674\) −2.18034 −0.0839836
\(675\) 5.00000i 0.192450i
\(676\) −12.4164 −0.477554
\(677\) − 26.9443i − 1.03555i −0.855516 0.517776i \(-0.826760\pi\)
0.855516 0.517776i \(-0.173240\pi\)
\(678\) − 10.0000i − 0.384048i
\(679\) −37.8885 −1.45403
\(680\) 2.23607i 0.0857493i
\(681\) 25.8885 0.992051
\(682\) − 12.9443i − 0.495662i
\(683\) 15.0557i 0.576091i 0.957617 + 0.288046i \(0.0930055\pi\)
−0.957617 + 0.288046i \(0.906994\pi\)
\(684\) −2.47214 −0.0945245
\(685\) 4.47214 0.170872
\(686\) −11.4164 −0.435880
\(687\) − 5.41641i − 0.206649i
\(688\) 10.1803i 0.388122i
\(689\) −5.30495 −0.202103
\(690\) −8.94427 −0.340503
\(691\) 12.9443 0.492423 0.246212 0.969216i \(-0.420814\pi\)
0.246212 + 0.969216i \(0.420814\pi\)
\(692\) 19.8885i 0.756049i
\(693\) − 6.47214i − 0.245856i
\(694\) −30.8328 −1.17040
\(695\) − 23.4164i − 0.888235i
\(696\) 4.00000 0.151620
\(697\) 5.70820i 0.216214i
\(698\) 19.5279i 0.739141i
\(699\) −21.4164 −0.810043
\(700\) 16.1803i 0.611559i
\(701\) −37.5967 −1.42001 −0.710005 0.704197i \(-0.751307\pi\)
−0.710005 + 0.704197i \(0.751307\pi\)
\(702\) − 0.763932i − 0.0288328i
\(703\) − 4.94427i − 0.186477i
\(704\) −2.00000 −0.0753778
\(705\) − 3.41641i − 0.128669i
\(706\) 2.94427 0.110809
\(707\) 37.8885i 1.42495i
\(708\) − 1.70820i − 0.0641982i
\(709\) 48.4721 1.82041 0.910205 0.414159i \(-0.135924\pi\)
0.910205 + 0.414159i \(0.135924\pi\)
\(710\) −15.1246 −0.567617
\(711\) −16.9443 −0.635460
\(712\) 3.52786i 0.132212i
\(713\) 25.8885i 0.969534i
\(714\) 3.23607 0.121107
\(715\) 3.41641 0.127766
\(716\) 5.70820 0.213326
\(717\) − 13.8885i − 0.518677i
\(718\) 18.4721i 0.689374i
\(719\) −30.5410 −1.13899 −0.569494 0.821996i \(-0.692861\pi\)
−0.569494 + 0.821996i \(0.692861\pi\)
\(720\) − 2.23607i − 0.0833333i
\(721\) −22.4721 −0.836906
\(722\) − 12.8885i − 0.479662i
\(723\) − 17.4164i − 0.647723i
\(724\) 8.47214 0.314864
\(725\) −20.0000 −0.742781
\(726\) 7.00000 0.259794
\(727\) 11.8885i 0.440922i 0.975396 + 0.220461i \(0.0707561\pi\)
−0.975396 + 0.220461i \(0.929244\pi\)
\(728\) − 2.47214i − 0.0916235i
\(729\) −1.00000 −0.0370370
\(730\) 29.5967i 1.09542i
\(731\) −10.1803 −0.376533
\(732\) 4.47214i 0.165295i
\(733\) 28.5410i 1.05419i 0.849807 + 0.527093i \(0.176718\pi\)
−0.849807 + 0.527093i \(0.823282\pi\)
\(734\) 28.1803 1.04016
\(735\) 7.76393 0.286377
\(736\) 4.00000 0.147442
\(737\) 23.4164i 0.862554i
\(738\) − 5.70820i − 0.210122i
\(739\) −42.4721 −1.56236 −0.781181 0.624304i \(-0.785383\pi\)
−0.781181 + 0.624304i \(0.785383\pi\)
\(740\) 4.47214 0.164399
\(741\) −1.88854 −0.0693774
\(742\) 22.4721i 0.824978i
\(743\) − 42.4721i − 1.55815i −0.626930 0.779076i \(-0.715689\pi\)
0.626930 0.779076i \(-0.284311\pi\)
\(744\) −6.47214 −0.237280
\(745\) 22.7639i 0.834006i
\(746\) 3.23607 0.118481
\(747\) 1.52786i 0.0559016i
\(748\) − 2.00000i − 0.0731272i
\(749\) −25.8885 −0.945947
\(750\) 11.1803i 0.408248i
\(751\) −5.88854 −0.214876 −0.107438 0.994212i \(-0.534265\pi\)
−0.107438 + 0.994212i \(0.534265\pi\)
\(752\) 1.52786i 0.0557155i
\(753\) 12.1803i 0.443876i
\(754\) 3.05573 0.111283
\(755\) − 8.94427i − 0.325515i
\(756\) −3.23607 −0.117695
\(757\) 11.5967i 0.421491i 0.977541 + 0.210745i \(0.0675891\pi\)
−0.977541 + 0.210745i \(0.932411\pi\)
\(758\) 10.4721i 0.380365i
\(759\) 8.00000 0.290382
\(760\) −5.52786 −0.200517
\(761\) −0.832816 −0.0301895 −0.0150948 0.999886i \(-0.504805\pi\)
−0.0150948 + 0.999886i \(0.504805\pi\)
\(762\) − 14.0000i − 0.507166i
\(763\) 53.3050i 1.92977i
\(764\) −14.4721 −0.523584
\(765\) 2.23607 0.0808452
\(766\) −17.8885 −0.646339
\(767\) − 1.30495i − 0.0471191i
\(768\) 1.00000i 0.0360844i
\(769\) −10.3607 −0.373616 −0.186808 0.982396i \(-0.559814\pi\)
−0.186808 + 0.982396i \(0.559814\pi\)
\(770\) − 14.4721i − 0.521540i
\(771\) −18.0000 −0.648254
\(772\) 25.5967i 0.921247i
\(773\) − 6.58359i − 0.236795i −0.992966 0.118398i \(-0.962224\pi\)
0.992966 0.118398i \(-0.0377758\pi\)
\(774\) 10.1803 0.365925
\(775\) 32.3607 1.16243
\(776\) 11.7082 0.420300
\(777\) − 6.47214i − 0.232187i
\(778\) 2.18034i 0.0781690i
\(779\) −14.1115 −0.505595
\(780\) − 1.70820i − 0.0611635i
\(781\) 13.5279 0.484065
\(782\) 4.00000i 0.143040i
\(783\) − 4.00000i − 0.142948i
\(784\) −3.47214 −0.124005
\(785\) 27.2361 0.972097
\(786\) −3.52786 −0.125835
\(787\) 37.5279i 1.33772i 0.743387 + 0.668862i \(0.233218\pi\)
−0.743387 + 0.668862i \(0.766782\pi\)
\(788\) 19.8885i 0.708500i
\(789\) −4.00000 −0.142404
\(790\) −37.8885 −1.34801
\(791\) −32.3607 −1.15061
\(792\) 2.00000i 0.0710669i
\(793\) 3.41641i 0.121320i
\(794\) 31.8885 1.13168
\(795\) 15.5279i 0.550717i
\(796\) 8.94427 0.317021
\(797\) 46.0000i 1.62940i 0.579880 + 0.814702i \(0.303099\pi\)
−0.579880 + 0.814702i \(0.696901\pi\)
\(798\) 8.00000i 0.283197i
\(799\) −1.52786 −0.0540519
\(800\) − 5.00000i − 0.176777i
\(801\) 3.52786 0.124651
\(802\) 22.0689i 0.779279i
\(803\) − 26.4721i − 0.934181i
\(804\) 11.7082 0.412917
\(805\) 28.9443i 1.02015i
\(806\) −4.94427 −0.174155
\(807\) 24.9443i 0.878080i
\(808\) − 11.7082i − 0.411893i
\(809\) −6.87539 −0.241726 −0.120863 0.992669i \(-0.538566\pi\)
−0.120863 + 0.992669i \(0.538566\pi\)
\(810\) −2.23607 −0.0785674
\(811\) −38.2492 −1.34311 −0.671556 0.740954i \(-0.734374\pi\)
−0.671556 + 0.740954i \(0.734374\pi\)
\(812\) − 12.9443i − 0.454255i
\(813\) 4.00000i 0.140286i
\(814\) −4.00000 −0.140200
\(815\) −30.2492 −1.05958
\(816\) −1.00000 −0.0350070
\(817\) − 25.1672i − 0.880488i
\(818\) 18.3607i 0.641966i
\(819\) −2.47214 −0.0863834
\(820\) − 12.7639i − 0.445736i
\(821\) −11.4164 −0.398435 −0.199218 0.979955i \(-0.563840\pi\)
−0.199218 + 0.979955i \(0.563840\pi\)
\(822\) 2.00000i 0.0697580i
\(823\) − 15.8197i − 0.551439i −0.961238 0.275719i \(-0.911084\pi\)
0.961238 0.275719i \(-0.0889160\pi\)
\(824\) 6.94427 0.241915
\(825\) − 10.0000i − 0.348155i
\(826\) −5.52786 −0.192339
\(827\) − 40.9443i − 1.42377i −0.702295 0.711886i \(-0.747841\pi\)
0.702295 0.711886i \(-0.252159\pi\)
\(828\) − 4.00000i − 0.139010i
\(829\) −34.0000 −1.18087 −0.590434 0.807086i \(-0.701044\pi\)
−0.590434 + 0.807086i \(0.701044\pi\)
\(830\) 3.41641i 0.118585i
\(831\) 18.3607 0.636925
\(832\) 0.763932i 0.0264846i
\(833\) − 3.47214i − 0.120302i
\(834\) 10.4721 0.362620
\(835\) −48.9443 −1.69379
\(836\) 4.94427 0.171001
\(837\) 6.47214i 0.223710i
\(838\) 38.3607i 1.32515i
\(839\) −36.0689 −1.24524 −0.622618 0.782526i \(-0.713931\pi\)
−0.622618 + 0.782526i \(0.713931\pi\)
\(840\) −7.23607 −0.249668
\(841\) −13.0000 −0.448276
\(842\) − 10.5836i − 0.364735i
\(843\) − 25.4164i − 0.875388i
\(844\) 7.05573 0.242868
\(845\) 27.7639i 0.955108i
\(846\) 1.52786 0.0525290
\(847\) − 22.6525i − 0.778348i
\(848\) − 6.94427i − 0.238467i
\(849\) 9.88854 0.339374
\(850\) 5.00000 0.171499
\(851\) 8.00000 0.274236
\(852\) − 6.76393i − 0.231728i
\(853\) − 38.3607i − 1.31344i −0.754132 0.656722i \(-0.771942\pi\)
0.754132 0.656722i \(-0.228058\pi\)
\(854\) 14.4721 0.495226
\(855\) 5.52786i 0.189049i
\(856\) 8.00000 0.273434
\(857\) 5.63932i 0.192636i 0.995351 + 0.0963178i \(0.0307065\pi\)
−0.995351 + 0.0963178i \(0.969294\pi\)
\(858\) 1.52786i 0.0521604i
\(859\) −24.9443 −0.851088 −0.425544 0.904938i \(-0.639917\pi\)
−0.425544 + 0.904938i \(0.639917\pi\)
\(860\) 22.7639 0.776244
\(861\) −18.4721 −0.629529
\(862\) − 17.5967i − 0.599348i
\(863\) − 41.3050i − 1.40604i −0.711172 0.703018i \(-0.751835\pi\)
0.711172 0.703018i \(-0.248165\pi\)
\(864\) 1.00000 0.0340207
\(865\) 44.4721 1.51210
\(866\) −16.3607 −0.555959
\(867\) − 1.00000i − 0.0339618i
\(868\) 20.9443i 0.710895i
\(869\) 33.8885 1.14959
\(870\) − 8.94427i − 0.303239i
\(871\) 8.94427 0.303065
\(872\) − 16.4721i − 0.557817i
\(873\) − 11.7082i − 0.396263i
\(874\) −9.88854 −0.334485
\(875\) 36.1803 1.22312
\(876\) −13.2361 −0.447205
\(877\) − 31.5279i − 1.06462i −0.846549 0.532310i \(-0.821324\pi\)
0.846549 0.532310i \(-0.178676\pi\)
\(878\) − 22.4721i − 0.758398i
\(879\) 2.58359 0.0871424
\(880\) 4.47214i 0.150756i
\(881\) 33.1246 1.11600 0.557998 0.829842i \(-0.311570\pi\)
0.557998 + 0.829842i \(0.311570\pi\)
\(882\) 3.47214i 0.116913i
\(883\) 22.7639i 0.766067i 0.923734 + 0.383034i \(0.125121\pi\)
−0.923734 + 0.383034i \(0.874879\pi\)
\(884\) −0.763932 −0.0256938
\(885\) −3.81966 −0.128396
\(886\) 4.00000 0.134383
\(887\) − 8.94427i − 0.300319i −0.988662 0.150160i \(-0.952021\pi\)
0.988662 0.150160i \(-0.0479788\pi\)
\(888\) 2.00000i 0.0671156i
\(889\) −45.3050 −1.51948
\(890\) 7.88854 0.264425
\(891\) 2.00000 0.0670025
\(892\) 26.9443i 0.902161i
\(893\) − 3.77709i − 0.126395i
\(894\) −10.1803 −0.340481
\(895\) − 12.7639i − 0.426651i
\(896\) 3.23607 0.108109
\(897\) − 3.05573i − 0.102028i
\(898\) 31.5967i 1.05440i
\(899\) −25.8885 −0.863431
\(900\) −5.00000 −0.166667
\(901\) 6.94427 0.231347
\(902\) 11.4164i 0.380125i
\(903\) − 32.9443i − 1.09632i
\(904\) 10.0000 0.332595
\(905\) − 18.9443i − 0.629729i
\(906\) 4.00000 0.132891
\(907\) − 40.3607i − 1.34015i −0.742291 0.670077i \(-0.766261\pi\)
0.742291 0.670077i \(-0.233739\pi\)
\(908\) 25.8885i 0.859142i
\(909\) −11.7082 −0.388337
\(910\) −5.52786 −0.183247
\(911\) 54.5410 1.80702 0.903512 0.428562i \(-0.140980\pi\)
0.903512 + 0.428562i \(0.140980\pi\)
\(912\) − 2.47214i − 0.0818606i
\(913\) − 3.05573i − 0.101130i
\(914\) −28.3607 −0.938088
\(915\) 10.0000 0.330590
\(916\) 5.41641 0.178963
\(917\) 11.4164i 0.377003i
\(918\) 1.00000i 0.0330049i
\(919\) 36.7214 1.21133 0.605663 0.795721i \(-0.292908\pi\)
0.605663 + 0.795721i \(0.292908\pi\)
\(920\) − 8.94427i − 0.294884i
\(921\) 18.1803 0.599063
\(922\) 28.0689i 0.924399i
\(923\) − 5.16718i − 0.170080i
\(924\) 6.47214 0.212918
\(925\) − 10.0000i − 0.328798i
\(926\) −1.05573 −0.0346934
\(927\) − 6.94427i − 0.228080i
\(928\) 4.00000i 0.131306i
\(929\) 34.0689 1.11776 0.558882 0.829247i \(-0.311231\pi\)
0.558882 + 0.829247i \(0.311231\pi\)
\(930\) 14.4721i 0.474560i
\(931\) 8.58359 0.281316
\(932\) − 21.4164i − 0.701518i
\(933\) − 29.5967i − 0.968954i
\(934\) 16.9443 0.554434
\(935\) −4.47214 −0.146254
\(936\) 0.763932 0.0249699
\(937\) 26.4721i 0.864807i 0.901680 + 0.432403i \(0.142334\pi\)
−0.901680 + 0.432403i \(0.857666\pi\)
\(938\) − 37.8885i − 1.23710i
\(939\) −8.29180 −0.270593
\(940\) 3.41641 0.111431
\(941\) −49.3050 −1.60730 −0.803648 0.595105i \(-0.797110\pi\)
−0.803648 + 0.595105i \(0.797110\pi\)
\(942\) 12.1803i 0.396857i
\(943\) − 22.8328i − 0.743539i
\(944\) 1.70820 0.0555973
\(945\) 7.23607i 0.235389i
\(946\) −20.3607 −0.661983
\(947\) − 40.7214i − 1.32327i −0.749828 0.661633i \(-0.769864\pi\)
0.749828 0.661633i \(-0.230136\pi\)
\(948\) − 16.9443i − 0.550324i
\(949\) −10.1115 −0.328232
\(950\) 12.3607i 0.401033i
\(951\) 23.8885 0.774639
\(952\) 3.23607i 0.104882i
\(953\) − 9.05573i − 0.293344i −0.989185 0.146672i \(-0.953144\pi\)
0.989185 0.146672i \(-0.0468562\pi\)
\(954\) −6.94427 −0.224829
\(955\) 32.3607i 1.04717i
\(956\) 13.8885 0.449188
\(957\) 8.00000i 0.258603i
\(958\) − 13.5967i − 0.439291i
\(959\) 6.47214 0.208996
\(960\) 2.23607 0.0721688
\(961\) 10.8885 0.351243
\(962\) 1.52786i 0.0492603i
\(963\) − 8.00000i − 0.257796i
\(964\) 17.4164 0.560945
\(965\) 57.2361 1.84249
\(966\) −12.9443 −0.416475
\(967\) 8.47214i 0.272446i 0.990678 + 0.136223i \(0.0434963\pi\)
−0.990678 + 0.136223i \(0.956504\pi\)
\(968\) 7.00000i 0.224989i
\(969\) 2.47214 0.0794164
\(970\) − 26.1803i − 0.840600i
\(971\) −27.2361 −0.874047 −0.437024 0.899450i \(-0.643967\pi\)
−0.437024 + 0.899450i \(0.643967\pi\)
\(972\) − 1.00000i − 0.0320750i
\(973\) − 33.8885i − 1.08642i
\(974\) 29.7082 0.951912
\(975\) −3.81966 −0.122327
\(976\) −4.47214 −0.143150
\(977\) 9.05573i 0.289718i 0.989452 + 0.144859i \(0.0462729\pi\)
−0.989452 + 0.144859i \(0.953727\pi\)
\(978\) − 13.5279i − 0.432573i
\(979\) −7.05573 −0.225502
\(980\) 7.76393i 0.248010i
\(981\) −16.4721 −0.525915
\(982\) 25.7082i 0.820382i
\(983\) 15.4164i 0.491707i 0.969307 + 0.245854i \(0.0790682\pi\)
−0.969307 + 0.245854i \(0.920932\pi\)
\(984\) 5.70820 0.181971
\(985\) 44.4721 1.41700
\(986\) −4.00000 −0.127386
\(987\) − 4.94427i − 0.157378i
\(988\) − 1.88854i − 0.0600826i
\(989\) 40.7214 1.29486
\(990\) 4.47214 0.142134
\(991\) 42.8328 1.36063 0.680315 0.732920i \(-0.261843\pi\)
0.680315 + 0.732920i \(0.261843\pi\)
\(992\) − 6.47214i − 0.205491i
\(993\) 23.4164i 0.743097i
\(994\) −21.8885 −0.694262
\(995\) − 20.0000i − 0.634043i
\(996\) −1.52786 −0.0484122
\(997\) 58.9443i 1.86678i 0.358859 + 0.933392i \(0.383166\pi\)
−0.358859 + 0.933392i \(0.616834\pi\)
\(998\) 16.0000i 0.506471i
\(999\) 2.00000 0.0632772
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 510.2.d.b.409.4 yes 4
3.2 odd 2 1530.2.d.f.919.1 4
4.3 odd 2 4080.2.m.m.2449.2 4
5.2 odd 4 2550.2.a.bh.1.1 2
5.3 odd 4 2550.2.a.bk.1.2 2
5.4 even 2 inner 510.2.d.b.409.1 4
15.2 even 4 7650.2.a.da.1.1 2
15.8 even 4 7650.2.a.cx.1.2 2
15.14 odd 2 1530.2.d.f.919.4 4
20.19 odd 2 4080.2.m.m.2449.3 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
510.2.d.b.409.1 4 5.4 even 2 inner
510.2.d.b.409.4 yes 4 1.1 even 1 trivial
1530.2.d.f.919.1 4 3.2 odd 2
1530.2.d.f.919.4 4 15.14 odd 2
2550.2.a.bh.1.1 2 5.2 odd 4
2550.2.a.bk.1.2 2 5.3 odd 4
4080.2.m.m.2449.2 4 4.3 odd 2
4080.2.m.m.2449.3 4 20.19 odd 2
7650.2.a.cx.1.2 2 15.8 even 4
7650.2.a.da.1.1 2 15.2 even 4