L(s) = 1 | − i·2-s − 4-s + (−2.17 − 0.539i)5-s − 1.07i·7-s + i·8-s + (−0.539 + 2.17i)10-s + 4·11-s + 5.41i·13-s − 1.07·14-s + 16-s − i·17-s − 8.68·19-s + (2.17 + 0.539i)20-s − 4i·22-s + 0.921i·23-s + ⋯ |
L(s) = 1 | − 0.707i·2-s − 0.5·4-s + (−0.970 − 0.241i)5-s − 0.407i·7-s + 0.353i·8-s + (−0.170 + 0.686i)10-s + 1.20·11-s + 1.50i·13-s − 0.288·14-s + 0.250·16-s − 0.242i·17-s − 1.99·19-s + (0.485 + 0.120i)20-s − 0.852i·22-s + 0.192i·23-s + ⋯ |
Λ(s)=(=(1530s/2ΓC(s)L(s)(0.970+0.241i)Λ(2−s)
Λ(s)=(=(1530s/2ΓC(s+1/2)L(s)(0.970+0.241i)Λ(1−s)
Degree: |
2 |
Conductor: |
1530
= 2⋅32⋅5⋅17
|
Sign: |
0.970+0.241i
|
Analytic conductor: |
12.2171 |
Root analytic conductor: |
3.49529 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1530(919,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1530, ( :1/2), 0.970+0.241i)
|
Particular Values
L(1) |
≈ |
1.202790864 |
L(21) |
≈ |
1.202790864 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+iT |
| 3 | 1 |
| 5 | 1+(2.17+0.539i)T |
| 17 | 1+iT |
good | 7 | 1+1.07iT−7T2 |
| 11 | 1−4T+11T2 |
| 13 | 1−5.41iT−13T2 |
| 19 | 1+8.68T+19T2 |
| 23 | 1−0.921iT−23T2 |
| 29 | 1−4.34T+29T2 |
| 31 | 1−3.07T+31T2 |
| 37 | 1−8.34iT−37T2 |
| 41 | 1−3.26T+41T2 |
| 43 | 1−9.41iT−43T2 |
| 47 | 1+2.15iT−47T2 |
| 53 | 1+13.5iT−53T2 |
| 59 | 1−10.0T+59T2 |
| 61 | 1−7.23T+61T2 |
| 67 | 1−2.58iT−67T2 |
| 71 | 1−3.60T+71T2 |
| 73 | 1+6.58iT−73T2 |
| 79 | 1−12.4T+79T2 |
| 83 | 1−8.68iT−83T2 |
| 89 | 1−6.15T+89T2 |
| 97 | 1−2.09iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.414744734026101829189217356741, −8.668727354208290471065811233927, −8.126533496391975444265344838231, −6.82625080765641625841973916194, −6.48233341241629766129742070061, −4.78856400403204038713692570245, −4.23535049240230229610147720438, −3.62025878215266395683639910820, −2.20865440168209913951849714082, −0.992457550403183386729955728712,
0.62756135226311544364931957310, 2.52565330898502292967516854365, 3.77911569648131940269469090822, 4.34082753961749190299647259119, 5.52724213919738405375905769996, 6.34356887320025891768554116049, 7.02990092557533848016824623314, 7.974921935509109493391655900837, 8.531515600231598253713721216823, 9.152358907486455803077493215189