L(s) = 1 | − i·2-s − 4-s + (−2.17 − 0.539i)5-s − 1.07i·7-s + i·8-s + (−0.539 + 2.17i)10-s + 4·11-s + 5.41i·13-s − 1.07·14-s + 16-s − i·17-s − 8.68·19-s + (2.17 + 0.539i)20-s − 4i·22-s + 0.921i·23-s + ⋯ |
L(s) = 1 | − 0.707i·2-s − 0.5·4-s + (−0.970 − 0.241i)5-s − 0.407i·7-s + 0.353i·8-s + (−0.170 + 0.686i)10-s + 1.20·11-s + 1.50i·13-s − 0.288·14-s + 0.250·16-s − 0.242i·17-s − 1.99·19-s + (0.485 + 0.120i)20-s − 0.852i·22-s + 0.192i·23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1530 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.970 + 0.241i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1530 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.970 + 0.241i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.202790864\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.202790864\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + iT \) |
| 3 | \( 1 \) |
| 5 | \( 1 + (2.17 + 0.539i)T \) |
| 17 | \( 1 + iT \) |
good | 7 | \( 1 + 1.07iT - 7T^{2} \) |
| 11 | \( 1 - 4T + 11T^{2} \) |
| 13 | \( 1 - 5.41iT - 13T^{2} \) |
| 19 | \( 1 + 8.68T + 19T^{2} \) |
| 23 | \( 1 - 0.921iT - 23T^{2} \) |
| 29 | \( 1 - 4.34T + 29T^{2} \) |
| 31 | \( 1 - 3.07T + 31T^{2} \) |
| 37 | \( 1 - 8.34iT - 37T^{2} \) |
| 41 | \( 1 - 3.26T + 41T^{2} \) |
| 43 | \( 1 - 9.41iT - 43T^{2} \) |
| 47 | \( 1 + 2.15iT - 47T^{2} \) |
| 53 | \( 1 + 13.5iT - 53T^{2} \) |
| 59 | \( 1 - 10.0T + 59T^{2} \) |
| 61 | \( 1 - 7.23T + 61T^{2} \) |
| 67 | \( 1 - 2.58iT - 67T^{2} \) |
| 71 | \( 1 - 3.60T + 71T^{2} \) |
| 73 | \( 1 + 6.58iT - 73T^{2} \) |
| 79 | \( 1 - 12.4T + 79T^{2} \) |
| 83 | \( 1 - 8.68iT - 83T^{2} \) |
| 89 | \( 1 - 6.15T + 89T^{2} \) |
| 97 | \( 1 - 2.09iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.414744734026101829189217356741, −8.668727354208290471065811233927, −8.126533496391975444265344838231, −6.82625080765641625841973916194, −6.48233341241629766129742070061, −4.78856400403204038713692570245, −4.23535049240230229610147720438, −3.62025878215266395683639910820, −2.20865440168209913951849714082, −0.992457550403183386729955728712,
0.62756135226311544364931957310, 2.52565330898502292967516854365, 3.77911569648131940269469090822, 4.34082753961749190299647259119, 5.52724213919738405375905769996, 6.34356887320025891768554116049, 7.02990092557533848016824623314, 7.974921935509109493391655900837, 8.531515600231598253713721216823, 9.152358907486455803077493215189