Properties

Label 1530.2.d.h
Level 15301530
Weight 22
Character orbit 1530.d
Analytic conductor 12.21712.217
Analytic rank 00
Dimension 66
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1530,2,Mod(919,1530)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1530, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1530.919");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 1530=232517 1530 = 2 \cdot 3^{2} \cdot 5 \cdot 17
Weight: k k == 2 2
Character orbit: [χ][\chi] == 1530.d (of order 22, degree 11, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 12.217111509312.2171115093
Analytic rank: 00
Dimension: 66
Coefficient field: 6.0.350464.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x62x5+2x4+2x3+4x24x+2 x^{6} - 2x^{5} + 2x^{4} + 2x^{3} + 4x^{2} - 4x + 2 Copy content Toggle raw display
Coefficient ring: Z[a1,,a7]\Z[a_1, \ldots, a_{7}]
Coefficient ring index: 23 2^{3}
Twist minimal: yes
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β51,\beta_1,\ldots,\beta_{5} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == qβ1q2q4β2q5+(β5β2)q7+β1q8+β4q10+4q11+(β5+β4++β2)q13+(β4+β3)q14++(2β52β4++5β1)q98+O(q100) q - \beta_1 q^{2} - q^{4} - \beta_{2} q^{5} + ( - \beta_{5} - \beta_{2}) q^{7} + \beta_1 q^{8} + \beta_{4} q^{10} + 4 q^{11} + (\beta_{5} + \beta_{4} + \cdots + \beta_{2}) q^{13} + (\beta_{4} + \beta_{3}) q^{14}+ \cdots + ( - 2 \beta_{5} - 2 \beta_{4} + \cdots + 5 \beta_1) q^{98}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 6q6q42q5+24q11+6q168q19+2q202q25+4q26+4q29+12q316q3432q35+4q4124q44+12q4622q498q508q55++56q95+O(q100) 6 q - 6 q^{4} - 2 q^{5} + 24 q^{11} + 6 q^{16} - 8 q^{19} + 2 q^{20} - 2 q^{25} + 4 q^{26} + 4 q^{29} + 12 q^{31} - 6 q^{34} - 32 q^{35} + 4 q^{41} - 24 q^{44} + 12 q^{46} - 22 q^{49} - 8 q^{50} - 8 q^{55}+ \cdots + 56 q^{95}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x62x5+2x4+2x3+4x24x+2 x^{6} - 2x^{5} + 2x^{4} + 2x^{3} + 4x^{2} - 4x + 2 : Copy content Toggle raw display

β1\beta_{1}== (7ν5+10ν45ν330ν232ν+13)/23 ( -7\nu^{5} + 10\nu^{4} - 5\nu^{3} - 30\nu^{2} - 32\nu + 13 ) / 23 Copy content Toggle raw display
β2\beta_{2}== (9ν5+3ν4+10ν332ν274ν3)/23 ( -9\nu^{5} + 3\nu^{4} + 10\nu^{3} - 32\nu^{2} - 74\nu - 3 ) / 23 Copy content Toggle raw display
β3\beta_{3}== (10ν5+11ν417ν310ν272ν11)/23 ( -10\nu^{5} + 11\nu^{4} - 17\nu^{3} - 10\nu^{2} - 72\nu - 11 ) / 23 Copy content Toggle raw display
β4\beta_{4}== (12ν527ν4+25ν3+12ν2+68ν65)/23 ( 12\nu^{5} - 27\nu^{4} + 25\nu^{3} + 12\nu^{2} + 68\nu - 65 ) / 23 Copy content Toggle raw display
β5\beta_{5}== (19ν5+37ν430ν342ν254ν+55)/23 ( -19\nu^{5} + 37\nu^{4} - 30\nu^{3} - 42\nu^{2} - 54\nu + 55 ) / 23 Copy content Toggle raw display
ν\nu== (β5+β4β1+1)/2 ( \beta_{5} + \beta_{4} - \beta _1 + 1 ) / 2 Copy content Toggle raw display
ν2\nu^{2}== (β5+β24β1)/2 ( \beta_{5} + \beta_{2} - 4\beta_1 ) / 2 Copy content Toggle raw display
ν3\nu^{3}== (β5β43β3+3β24β14)/2 ( \beta_{5} - \beta_{4} - 3\beta_{3} + 3\beta_{2} - 4\beta _1 - 4 ) / 2 Copy content Toggle raw display
ν4\nu^{4}== (β55β45β3+β214)/2 ( -\beta_{5} - 5\beta_{4} - 5\beta_{3} + \beta_{2} - 14 ) / 2 Copy content Toggle raw display
ν5\nu^{5}== (11β511β45β35β2+18β118)/2 ( -11\beta_{5} - 11\beta_{4} - 5\beta_{3} - 5\beta_{2} + 18\beta _1 - 18 ) / 2 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/1530Z)×\left(\mathbb{Z}/1530\mathbb{Z}\right)^\times.

nn 307307 12611261 13611361
χ(n)\chi(n) 1-1 11 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
919.1
−0.854638 + 0.854638i
1.45161 1.45161i
0.403032 0.403032i
−0.854638 0.854638i
1.45161 + 1.45161i
0.403032 + 0.403032i
1.00000i 0 −1.00000 −2.17009 0.539189i 0 1.07838i 1.00000i 0 −0.539189 + 2.17009i
919.2 1.00000i 0 −1.00000 −0.311108 + 2.21432i 0 4.42864i 1.00000i 0 2.21432 + 0.311108i
919.3 1.00000i 0 −1.00000 1.48119 1.67513i 0 3.35026i 1.00000i 0 −1.67513 1.48119i
919.4 1.00000i 0 −1.00000 −2.17009 + 0.539189i 0 1.07838i 1.00000i 0 −0.539189 2.17009i
919.5 1.00000i 0 −1.00000 −0.311108 2.21432i 0 4.42864i 1.00000i 0 2.21432 0.311108i
919.6 1.00000i 0 −1.00000 1.48119 + 1.67513i 0 3.35026i 1.00000i 0 −1.67513 + 1.48119i
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 919.6
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1530.2.d.h 6
3.b odd 2 1 1530.2.d.j yes 6
5.b even 2 1 inner 1530.2.d.h 6
5.c odd 4 1 7650.2.a.dk 3
5.c odd 4 1 7650.2.a.dp 3
15.d odd 2 1 1530.2.d.j yes 6
15.e even 4 1 7650.2.a.di 3
15.e even 4 1 7650.2.a.dn 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1530.2.d.h 6 1.a even 1 1 trivial
1530.2.d.h 6 5.b even 2 1 inner
1530.2.d.j yes 6 3.b odd 2 1
1530.2.d.j yes 6 15.d odd 2 1
7650.2.a.di 3 15.e even 4 1
7650.2.a.dk 3 5.c odd 4 1
7650.2.a.dn 3 15.e even 4 1
7650.2.a.dp 3 5.c odd 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(1530,[χ])S_{2}^{\mathrm{new}}(1530, [\chi]):

T76+32T74+256T72+256 T_{7}^{6} + 32T_{7}^{4} + 256T_{7}^{2} + 256 Copy content Toggle raw display
T114 T_{11} - 4 Copy content Toggle raw display
T2932T29212T29+8 T_{29}^{3} - 2T_{29}^{2} - 12T_{29} + 8 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 (T2+1)3 (T^{2} + 1)^{3} Copy content Toggle raw display
33 T6 T^{6} Copy content Toggle raw display
55 T6+2T5++125 T^{6} + 2 T^{5} + \cdots + 125 Copy content Toggle raw display
77 T6+32T4++256 T^{6} + 32 T^{4} + \cdots + 256 Copy content Toggle raw display
1111 (T4)6 (T - 4)^{6} Copy content Toggle raw display
1313 T6+44T4++64 T^{6} + 44 T^{4} + \cdots + 64 Copy content Toggle raw display
1717 (T2+1)3 (T^{2} + 1)^{3} Copy content Toggle raw display
1919 (T3+4T248T64)2 (T^{3} + 4 T^{2} - 48 T - 64)^{2} Copy content Toggle raw display
2323 T6+44T4++64 T^{6} + 44 T^{4} + \cdots + 64 Copy content Toggle raw display
2929 (T32T212T+8)2 (T^{3} - 2 T^{2} - 12 T + 8)^{2} Copy content Toggle raw display
3131 (T36T24T+40)2 (T^{3} - 6 T^{2} - 4 T + 40)^{2} Copy content Toggle raw display
3737 T6+92T4++1600 T^{6} + 92 T^{4} + \cdots + 1600 Copy content Toggle raw display
4141 (T32T2++104)2 (T^{3} - 2 T^{2} + \cdots + 104)^{2} Copy content Toggle raw display
4343 T6+108T4++64 T^{6} + 108 T^{4} + \cdots + 64 Copy content Toggle raw display
4747 T6+128T4++16384 T^{6} + 128 T^{4} + \cdots + 16384 Copy content Toggle raw display
5353 T6+460T4++3474496 T^{6} + 460 T^{4} + \cdots + 3474496 Copy content Toggle raw display
5959 (T3+6T2+632)2 (T^{3} + 6 T^{2} + \cdots - 632)^{2} Copy content Toggle raw display
6161 (T312T2++944)2 (T^{3} - 12 T^{2} + \cdots + 944)^{2} Copy content Toggle raw display
6767 T6+204T4++53824 T^{6} + 204 T^{4} + \cdots + 53824 Copy content Toggle raw display
7171 (T3+8T264T+80)2 (T^{3} + 8 T^{2} - 64 T + 80)^{2} Copy content Toggle raw display
7373 T6+428T4++1459264 T^{6} + 428 T^{4} + \cdots + 1459264 Copy content Toggle raw display
7979 (T3+10T2+1432)2 (T^{3} + 10 T^{2} + \cdots - 1432)^{2} Copy content Toggle raw display
8383 T6+112T4++4096 T^{6} + 112 T^{4} + \cdots + 4096 Copy content Toggle raw display
8989 (T312T2++320)2 (T^{3} - 12 T^{2} + \cdots + 320)^{2} Copy content Toggle raw display
9797 T6+524T4++287296 T^{6} + 524 T^{4} + \cdots + 287296 Copy content Toggle raw display
show more
show less