Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [1530,2,Mod(919,1530)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1530, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 1, 0]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("1530.919");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | |||
Weight: | |||
Character orbit: | 1530.d (of order , degree , minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Coefficient field: | 6.0.350464.1 |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
|
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | yes |
Sato-Tate group: |
-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the -expansion are expressed in terms of a basis for the coefficient ring described below. We also show the integral -expansion of the trace form.
Basis of coefficient ring in terms of a root of
:
Character values
We give the values of on generators for .
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | ||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
919.1 |
|
− | 1.00000i | 0 | −1.00000 | −2.17009 | − | 0.539189i | 0 | − | 1.07838i | 1.00000i | 0 | −0.539189 | + | 2.17009i | ||||||||||||||||||||||||||||||
919.2 | − | 1.00000i | 0 | −1.00000 | −0.311108 | + | 2.21432i | 0 | 4.42864i | 1.00000i | 0 | 2.21432 | + | 0.311108i | ||||||||||||||||||||||||||||||||
919.3 | − | 1.00000i | 0 | −1.00000 | 1.48119 | − | 1.67513i | 0 | − | 3.35026i | 1.00000i | 0 | −1.67513 | − | 1.48119i | |||||||||||||||||||||||||||||||
919.4 | 1.00000i | 0 | −1.00000 | −2.17009 | + | 0.539189i | 0 | 1.07838i | − | 1.00000i | 0 | −0.539189 | − | 2.17009i | ||||||||||||||||||||||||||||||||
919.5 | 1.00000i | 0 | −1.00000 | −0.311108 | − | 2.21432i | 0 | − | 4.42864i | − | 1.00000i | 0 | 2.21432 | − | 0.311108i | |||||||||||||||||||||||||||||||
919.6 | 1.00000i | 0 | −1.00000 | 1.48119 | + | 1.67513i | 0 | 3.35026i | − | 1.00000i | 0 | −1.67513 | + | 1.48119i | ||||||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
5.b | even | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 1530.2.d.h | ✓ | 6 |
3.b | odd | 2 | 1 | 1530.2.d.j | yes | 6 | |
5.b | even | 2 | 1 | inner | 1530.2.d.h | ✓ | 6 |
5.c | odd | 4 | 1 | 7650.2.a.dk | 3 | ||
5.c | odd | 4 | 1 | 7650.2.a.dp | 3 | ||
15.d | odd | 2 | 1 | 1530.2.d.j | yes | 6 | |
15.e | even | 4 | 1 | 7650.2.a.di | 3 | ||
15.e | even | 4 | 1 | 7650.2.a.dn | 3 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
1530.2.d.h | ✓ | 6 | 1.a | even | 1 | 1 | trivial |
1530.2.d.h | ✓ | 6 | 5.b | even | 2 | 1 | inner |
1530.2.d.j | yes | 6 | 3.b | odd | 2 | 1 | |
1530.2.d.j | yes | 6 | 15.d | odd | 2 | 1 | |
7650.2.a.di | 3 | 15.e | even | 4 | 1 | ||
7650.2.a.dk | 3 | 5.c | odd | 4 | 1 | ||
7650.2.a.dn | 3 | 15.e | even | 4 | 1 | ||
7650.2.a.dp | 3 | 5.c | odd | 4 | 1 |
Hecke kernels
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on :
|
|
|