Properties

Label 7650.2.a.dk
Level 76507650
Weight 22
Character orbit 7650.a
Self dual yes
Analytic conductor 61.08661.086
Analytic rank 00
Dimension 33
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [7650,2,Mod(1,7650)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(7650, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("7650.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 7650=2325217 7650 = 2 \cdot 3^{2} \cdot 5^{2} \cdot 17
Weight: k k == 2 2
Character orbit: [χ][\chi] == 7650.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 61.085557546361.0855575463
Analytic rank: 00
Dimension: 33
Coefficient field: 3.3.148.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x3x23x+1 x^{3} - x^{2} - 3x + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a13]\Z[a_1, \ldots, a_{13}]
Coefficient ring index: 22 2^{2}
Twist minimal: no (minimal twist has level 1530)
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,β21,\beta_1,\beta_2 for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == qq2+q4β2q7q8+4q11+(β2β11)q13+β2q14+q16q17+(2β1+2)q194q22+(β22)q23+(β2+β1+1)q26++(2β2+2β13)q98+O(q100) q - q^{2} + q^{4} - \beta_{2} q^{7} - q^{8} + 4 q^{11} + ( - \beta_{2} - \beta_1 - 1) q^{13} + \beta_{2} q^{14} + q^{16} - q^{17} + (2 \beta_1 + 2) q^{19} - 4 q^{22} + (\beta_{2} - 2) q^{23} + (\beta_{2} + \beta_1 + 1) q^{26}+ \cdots + (2 \beta_{2} + 2 \beta_1 - 3) q^{98}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 3q3q2+3q43q8+12q112q13+3q163q17+4q1912q226q23+2q262q29+6q313q32+3q34+14q374q38+2q41+11q98+O(q100) 3 q - 3 q^{2} + 3 q^{4} - 3 q^{8} + 12 q^{11} - 2 q^{13} + 3 q^{16} - 3 q^{17} + 4 q^{19} - 12 q^{22} - 6 q^{23} + 2 q^{26} - 2 q^{29} + 6 q^{31} - 3 q^{32} + 3 q^{34} + 14 q^{37} - 4 q^{38} + 2 q^{41}+ \cdots - 11 q^{98}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x3x23x+1 x^{3} - x^{2} - 3x + 1 : Copy content Toggle raw display

β1\beta_{1}== 2ν1 2\nu - 1 Copy content Toggle raw display
β2\beta_{2}== 2ν22ν4 2\nu^{2} - 2\nu - 4 Copy content Toggle raw display
ν\nu== (β1+1)/2 ( \beta _1 + 1 ) / 2 Copy content Toggle raw display
ν2\nu^{2}== (β2+β1+5)/2 ( \beta_{2} + \beta _1 + 5 ) / 2 Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
−1.48119
2.17009
0.311108
−1.00000 0 1.00000 0 0 −3.35026 −1.00000 0 0
1.2 −1.00000 0 1.00000 0 0 −1.07838 −1.00000 0 0
1.3 −1.00000 0 1.00000 0 0 4.42864 −1.00000 0 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
22 +1 +1
33 +1 +1
55 1 -1
1717 +1 +1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 7650.2.a.dk 3
3.b odd 2 1 7650.2.a.dn 3
5.b even 2 1 7650.2.a.dp 3
5.c odd 4 2 1530.2.d.h 6
15.d odd 2 1 7650.2.a.di 3
15.e even 4 2 1530.2.d.j yes 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1530.2.d.h 6 5.c odd 4 2
1530.2.d.j yes 6 15.e even 4 2
7650.2.a.di 3 15.d odd 2 1
7650.2.a.dk 3 1.a even 1 1 trivial
7650.2.a.dn 3 3.b odd 2 1
7650.2.a.dp 3 5.b even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(Γ0(7650))S_{2}^{\mathrm{new}}(\Gamma_0(7650)):

T7316T716 T_{7}^{3} - 16T_{7} - 16 Copy content Toggle raw display
T114 T_{11} - 4 Copy content Toggle raw display
T133+2T13220T138 T_{13}^{3} + 2T_{13}^{2} - 20T_{13} - 8 Copy content Toggle raw display
T1934T19248T19+64 T_{19}^{3} - 4T_{19}^{2} - 48T_{19} + 64 Copy content Toggle raw display
T233+6T2324T238 T_{23}^{3} + 6T_{23}^{2} - 4T_{23} - 8 Copy content Toggle raw display
T293+2T29212T298 T_{29}^{3} + 2T_{29}^{2} - 12T_{29} - 8 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 (T+1)3 (T + 1)^{3} Copy content Toggle raw display
33 T3 T^{3} Copy content Toggle raw display
55 T3 T^{3} Copy content Toggle raw display
77 T316T16 T^{3} - 16T - 16 Copy content Toggle raw display
1111 (T4)3 (T - 4)^{3} Copy content Toggle raw display
1313 T3+2T2+8 T^{3} + 2 T^{2} + \cdots - 8 Copy content Toggle raw display
1717 (T+1)3 (T + 1)^{3} Copy content Toggle raw display
1919 T34T2++64 T^{3} - 4 T^{2} + \cdots + 64 Copy content Toggle raw display
2323 T3+6T2+8 T^{3} + 6 T^{2} + \cdots - 8 Copy content Toggle raw display
2929 T3+2T2+8 T^{3} + 2 T^{2} + \cdots - 8 Copy content Toggle raw display
3131 T36T2++40 T^{3} - 6 T^{2} + \cdots + 40 Copy content Toggle raw display
3737 T314T2+40 T^{3} - 14 T^{2} + \cdots - 40 Copy content Toggle raw display
4141 T32T2++104 T^{3} - 2 T^{2} + \cdots + 104 Copy content Toggle raw display
4343 T3+14T2++8 T^{3} + 14 T^{2} + \cdots + 8 Copy content Toggle raw display
4747 T364T128 T^{3} - 64T - 128 Copy content Toggle raw display
5353 T3+10T2+1864 T^{3} + 10 T^{2} + \cdots - 1864 Copy content Toggle raw display
5959 T36T2++632 T^{3} - 6 T^{2} + \cdots + 632 Copy content Toggle raw display
6161 T312T2++944 T^{3} - 12 T^{2} + \cdots + 944 Copy content Toggle raw display
6767 T322T2+232 T^{3} - 22 T^{2} + \cdots - 232 Copy content Toggle raw display
7171 T3+8T2++80 T^{3} + 8 T^{2} + \cdots + 80 Copy content Toggle raw display
7373 T334T2+1208 T^{3} - 34 T^{2} + \cdots - 1208 Copy content Toggle raw display
7979 T310T2++1432 T^{3} - 10 T^{2} + \cdots + 1432 Copy content Toggle raw display
8383 T3+4T2+64 T^{3} + 4 T^{2} + \cdots - 64 Copy content Toggle raw display
8989 T3+12T2+320 T^{3} + 12 T^{2} + \cdots - 320 Copy content Toggle raw display
9797 T3+30T2+536 T^{3} + 30 T^{2} + \cdots - 536 Copy content Toggle raw display
show more
show less