Properties

Label 2-7650-1.1-c1-0-21
Degree $2$
Conductor $7650$
Sign $1$
Analytic cond. $61.0855$
Root an. cond. $7.81572$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s − 1.07·7-s − 8-s + 4·11-s − 5.41·13-s + 1.07·14-s + 16-s − 17-s + 8.68·19-s − 4·22-s − 0.921·23-s + 5.41·26-s − 1.07·28-s − 4.34·29-s + 3.07·31-s − 32-s + 34-s + 8.34·37-s − 8.68·38-s + 3.26·41-s − 9.41·43-s + 4·44-s + 0.921·46-s − 2.15·47-s − 5.83·49-s − 5.41·52-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.5·4-s − 0.407·7-s − 0.353·8-s + 1.20·11-s − 1.50·13-s + 0.288·14-s + 0.250·16-s − 0.242·17-s + 1.99·19-s − 0.852·22-s − 0.192·23-s + 1.06·26-s − 0.203·28-s − 0.805·29-s + 0.552·31-s − 0.176·32-s + 0.171·34-s + 1.37·37-s − 1.40·38-s + 0.509·41-s − 1.43·43-s + 0.603·44-s + 0.135·46-s − 0.314·47-s − 0.833·49-s − 0.751·52-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 7650 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 7650 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(7650\)    =    \(2 \cdot 3^{2} \cdot 5^{2} \cdot 17\)
Sign: $1$
Analytic conductor: \(61.0855\)
Root analytic conductor: \(7.81572\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 7650,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.282876177\)
\(L(\frac12)\) \(\approx\) \(1.282876177\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + T \)
3 \( 1 \)
5 \( 1 \)
17 \( 1 + T \)
good7 \( 1 + 1.07T + 7T^{2} \)
11 \( 1 - 4T + 11T^{2} \)
13 \( 1 + 5.41T + 13T^{2} \)
19 \( 1 - 8.68T + 19T^{2} \)
23 \( 1 + 0.921T + 23T^{2} \)
29 \( 1 + 4.34T + 29T^{2} \)
31 \( 1 - 3.07T + 31T^{2} \)
37 \( 1 - 8.34T + 37T^{2} \)
41 \( 1 - 3.26T + 41T^{2} \)
43 \( 1 + 9.41T + 43T^{2} \)
47 \( 1 + 2.15T + 47T^{2} \)
53 \( 1 - 13.5T + 53T^{2} \)
59 \( 1 + 10.0T + 59T^{2} \)
61 \( 1 - 7.23T + 61T^{2} \)
67 \( 1 - 2.58T + 67T^{2} \)
71 \( 1 - 3.60T + 71T^{2} \)
73 \( 1 - 6.58T + 73T^{2} \)
79 \( 1 + 12.4T + 79T^{2} \)
83 \( 1 + 8.68T + 83T^{2} \)
89 \( 1 + 6.15T + 89T^{2} \)
97 \( 1 - 2.09T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.79810933037071940945728585426, −7.21422422202007300433046450619, −6.72652856513421828900271145785, −5.89296293448296572319371209996, −5.15266658381571489675100972309, −4.27611416720214870378123787608, −3.35931897595406840323215442285, −2.64139414825280884533298749406, −1.63621416373466228554020977512, −0.64296210677065753136520315436, 0.64296210677065753136520315436, 1.63621416373466228554020977512, 2.64139414825280884533298749406, 3.35931897595406840323215442285, 4.27611416720214870378123787608, 5.15266658381571489675100972309, 5.89296293448296572319371209996, 6.72652856513421828900271145785, 7.21422422202007300433046450619, 7.79810933037071940945728585426

Graph of the $Z$-function along the critical line