L(s) = 1 | − 2-s + 4-s − 1.07·7-s − 8-s + 4·11-s − 5.41·13-s + 1.07·14-s + 16-s − 17-s + 8.68·19-s − 4·22-s − 0.921·23-s + 5.41·26-s − 1.07·28-s − 4.34·29-s + 3.07·31-s − 32-s + 34-s + 8.34·37-s − 8.68·38-s + 3.26·41-s − 9.41·43-s + 4·44-s + 0.921·46-s − 2.15·47-s − 5.83·49-s − 5.41·52-s + ⋯ |
L(s) = 1 | − 0.707·2-s + 0.5·4-s − 0.407·7-s − 0.353·8-s + 1.20·11-s − 1.50·13-s + 0.288·14-s + 0.250·16-s − 0.242·17-s + 1.99·19-s − 0.852·22-s − 0.192·23-s + 1.06·26-s − 0.203·28-s − 0.805·29-s + 0.552·31-s − 0.176·32-s + 0.171·34-s + 1.37·37-s − 1.40·38-s + 0.509·41-s − 1.43·43-s + 0.603·44-s + 0.135·46-s − 0.314·47-s − 0.833·49-s − 0.751·52-s + ⋯ |
Λ(s)=(=(7650s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(7650s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
1.282876177 |
L(21) |
≈ |
1.282876177 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+T |
| 3 | 1 |
| 5 | 1 |
| 17 | 1+T |
good | 7 | 1+1.07T+7T2 |
| 11 | 1−4T+11T2 |
| 13 | 1+5.41T+13T2 |
| 19 | 1−8.68T+19T2 |
| 23 | 1+0.921T+23T2 |
| 29 | 1+4.34T+29T2 |
| 31 | 1−3.07T+31T2 |
| 37 | 1−8.34T+37T2 |
| 41 | 1−3.26T+41T2 |
| 43 | 1+9.41T+43T2 |
| 47 | 1+2.15T+47T2 |
| 53 | 1−13.5T+53T2 |
| 59 | 1+10.0T+59T2 |
| 61 | 1−7.23T+61T2 |
| 67 | 1−2.58T+67T2 |
| 71 | 1−3.60T+71T2 |
| 73 | 1−6.58T+73T2 |
| 79 | 1+12.4T+79T2 |
| 83 | 1+8.68T+83T2 |
| 89 | 1+6.15T+89T2 |
| 97 | 1−2.09T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.79810933037071940945728585426, −7.21422422202007300433046450619, −6.72652856513421828900271145785, −5.89296293448296572319371209996, −5.15266658381571489675100972309, −4.27611416720214870378123787608, −3.35931897595406840323215442285, −2.64139414825280884533298749406, −1.63621416373466228554020977512, −0.64296210677065753136520315436,
0.64296210677065753136520315436, 1.63621416373466228554020977512, 2.64139414825280884533298749406, 3.35931897595406840323215442285, 4.27611416720214870378123787608, 5.15266658381571489675100972309, 5.89296293448296572319371209996, 6.72652856513421828900271145785, 7.21422422202007300433046450619, 7.79810933037071940945728585426