L(s) = 1 | + (−0.5 − 0.866i)3-s − 5-s + (0.155 − 0.269i)7-s + (−0.499 + 0.866i)9-s + (−2.21 − 3.83i)11-s + (2.82 − 2.24i)13-s + (0.5 + 0.866i)15-s + (0.344 − 0.596i)17-s + (−1.76 + 3.05i)19-s − 0.311·21-s + (0.622 + 1.07i)23-s + 25-s + 0.999·27-s + (−0.418 − 0.724i)29-s − 6.33·31-s + ⋯ |
L(s) = 1 | + (−0.288 − 0.499i)3-s − 0.447·5-s + (0.0587 − 0.101i)7-s + (−0.166 + 0.288i)9-s + (−0.667 − 1.15i)11-s + (0.782 − 0.622i)13-s + (0.129 + 0.223i)15-s + (0.0835 − 0.144i)17-s + (−0.404 + 0.700i)19-s − 0.0678·21-s + (0.129 + 0.224i)23-s + 0.200·25-s + 0.192·27-s + (−0.0776 − 0.134i)29-s − 1.13·31-s + ⋯ |
Λ(s)=(=(1560s/2ΓC(s)L(s)(−0.994−0.106i)Λ(2−s)
Λ(s)=(=(1560s/2ΓC(s+1/2)L(s)(−0.994−0.106i)Λ(1−s)
Degree: |
2 |
Conductor: |
1560
= 23⋅3⋅5⋅13
|
Sign: |
−0.994−0.106i
|
Analytic conductor: |
12.4566 |
Root analytic conductor: |
3.52939 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1560(601,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1560, ( :1/2), −0.994−0.106i)
|
Particular Values
L(1) |
≈ |
0.4079938311 |
L(21) |
≈ |
0.4079938311 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1+(0.5+0.866i)T |
| 5 | 1+T |
| 13 | 1+(−2.82+2.24i)T |
good | 7 | 1+(−0.155+0.269i)T+(−3.5−6.06i)T2 |
| 11 | 1+(2.21+3.83i)T+(−5.5+9.52i)T2 |
| 17 | 1+(−0.344+0.596i)T+(−8.5−14.7i)T2 |
| 19 | 1+(1.76−3.05i)T+(−9.5−16.4i)T2 |
| 23 | 1+(−0.622−1.07i)T+(−11.5+19.9i)T2 |
| 29 | 1+(0.418+0.724i)T+(−14.5+25.1i)T2 |
| 31 | 1+6.33T+31T2 |
| 37 | 1+(−1.90−3.29i)T+(−18.5+32.0i)T2 |
| 41 | 1+(3.48+6.03i)T+(−20.5+35.5i)T2 |
| 43 | 1+(0.821−1.42i)T+(−21.5−37.2i)T2 |
| 47 | 1+12.5T+47T2 |
| 53 | 1+10.2T+53T2 |
| 59 | 1+(−5.38+9.33i)T+(−29.5−51.0i)T2 |
| 61 | 1+(−1.57+2.72i)T+(−30.5−52.8i)T2 |
| 67 | 1+(3.98+6.90i)T+(−33.5+58.0i)T2 |
| 71 | 1+(1.35−2.34i)T+(−35.5−61.4i)T2 |
| 73 | 1+14.6T+73T2 |
| 79 | 1+9.28T+79T2 |
| 83 | 1+1.61T+83T2 |
| 89 | 1+(−4.15−7.20i)T+(−44.5+77.0i)T2 |
| 97 | 1+(3.51−6.08i)T+(−48.5−84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.768538488559874327900716837404, −8.134320783144465616672089411165, −7.59823492571704688082723328065, −6.50679454036682773534648300018, −5.80638757480746913760195994723, −5.03331338889914562035381242939, −3.73978572949254583236012041143, −2.99204067548909184174018656544, −1.50837681931920008591702087521, −0.16530900912215639196768494277,
1.73096830628546984535007835548, 3.01724763383617153557560617048, 4.13410662274115770094500859571, 4.74162344804541908458133363049, 5.66812117770916360999145150789, 6.69762252698996496196790402398, 7.37199868212369332303875929321, 8.373731762820050213430298777826, 9.052199735399696364783354282042, 9.902972988844415168245109970523