Properties

Label 1560.2.bg.h
Level 15601560
Weight 22
Character orbit 1560.bg
Analytic conductor 12.45712.457
Analytic rank 00
Dimension 66
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1560,2,Mod(601,1560)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1560, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1560.601");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 1560=233513 1560 = 2^{3} \cdot 3 \cdot 5 \cdot 13
Weight: k k == 2 2
Character orbit: [χ][\chi] == 1560.bg (of order 33, degree 22, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 12.456662715312.4566627153
Analytic rank: 00
Dimension: 66
Relative dimension: 33 over Q(ζ3)\Q(\zeta_{3})
Coefficient field: 6.0.591408.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x6x5+4x4+x3+10x23x+1 x^{6} - x^{5} + 4x^{4} + x^{3} + 10x^{2} - 3x + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a7]\Z[a_1, \ldots, a_{7}]
Coefficient ring index: 1 1
Twist minimal: yes
Sato-Tate group: SU(2)[C3]\mathrm{SU}(2)[C_{3}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β51,\beta_1,\ldots,\beta_{5} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(β41)q3q5+β1q7β4q92β5q11+(β5+β4+2β3+1)q13+(β4+1)q15+(β4β1)q17++2β3q99+O(q100) q + (\beta_{4} - 1) q^{3} - q^{5} + \beta_1 q^{7} - \beta_{4} q^{9} - 2 \beta_{5} q^{11} + ( - \beta_{5} + \beta_{4} + 2 \beta_{3} + \cdots - 1) q^{13} + ( - \beta_{4} + 1) q^{15} + (\beta_{4} - \beta_1) q^{17}+ \cdots + 2 \beta_{3} q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 6q3q36q5+q73q93q13+3q15+2q174q192q21+4q23+6q25+6q27+4q29+2q31q352q3714q41+15q43+3q45+q97+O(q100) 6 q - 3 q^{3} - 6 q^{5} + q^{7} - 3 q^{9} - 3 q^{13} + 3 q^{15} + 2 q^{17} - 4 q^{19} - 2 q^{21} + 4 q^{23} + 6 q^{25} + 6 q^{27} + 4 q^{29} + 2 q^{31} - q^{35} - 2 q^{37} - 14 q^{41} + 15 q^{43} + 3 q^{45}+ \cdots - q^{97}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x6x5+4x4+x3+10x23x+1 x^{6} - x^{5} + 4x^{4} + x^{3} + 10x^{2} - 3x + 1 : Copy content Toggle raw display

β1\beta_{1}== ν \nu Copy content Toggle raw display
β2\beta_{2}== (ν5+4ν416ν3+10ν23ν+12)/37 ( -\nu^{5} + 4\nu^{4} - 16\nu^{3} + 10\nu^{2} - 3\nu + 12 ) / 37 Copy content Toggle raw display
β3\beta_{3}== (4ν5+16ν427ν3+40ν212ν+85)/37 ( -4\nu^{5} + 16\nu^{4} - 27\nu^{3} + 40\nu^{2} - 12\nu + 85 ) / 37 Copy content Toggle raw display
β4\beta_{4}== (12ν511ν4+44ν3+28ν2+110ν+4)/37 ( 12\nu^{5} - 11\nu^{4} + 44\nu^{3} + 28\nu^{2} + 110\nu + 4 ) / 37 Copy content Toggle raw display
β5\beta_{5}== (25ν5+26ν4104ν39ν2260ν+78)/37 ( -25\nu^{5} + 26\nu^{4} - 104\nu^{3} - 9\nu^{2} - 260\nu + 78 ) / 37 Copy content Toggle raw display
ν\nu== β1 \beta_1 Copy content Toggle raw display
ν2\nu^{2}== β5+2β4β2+β12 \beta_{5} + 2\beta_{4} - \beta_{2} + \beta _1 - 2 Copy content Toggle raw display
ν3\nu^{3}== β34β21 \beta_{3} - 4\beta_{2} - 1 Copy content Toggle raw display
ν4\nu^{4}== 4β57β4+4β36β1 -4\beta_{5} - 7\beta_{4} + 4\beta_{3} - 6\beta_1 Copy content Toggle raw display
ν5\nu^{5}== 6β58β4+17β217β1+8 -6\beta_{5} - 8\beta_{4} + 17\beta_{2} - 17\beta _1 + 8 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/1560Z)×\left(\mathbb{Z}/1560\mathbb{Z}\right)^\times.

nn 391391 521521 781781 937937 10811081
χ(n)\chi(n) 11 11 11 11 β4-\beta_{4}

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
601.1
−0.740597 + 1.28275i
0.155554 0.269427i
1.08504 1.87935i
−0.740597 1.28275i
0.155554 + 0.269427i
1.08504 + 1.87935i
0 −0.500000 0.866025i 0 −1.00000 0 −0.740597 + 1.28275i 0 −0.500000 + 0.866025i 0
601.2 0 −0.500000 0.866025i 0 −1.00000 0 0.155554 0.269427i 0 −0.500000 + 0.866025i 0
601.3 0 −0.500000 0.866025i 0 −1.00000 0 1.08504 1.87935i 0 −0.500000 + 0.866025i 0
841.1 0 −0.500000 + 0.866025i 0 −1.00000 0 −0.740597 1.28275i 0 −0.500000 0.866025i 0
841.2 0 −0.500000 + 0.866025i 0 −1.00000 0 0.155554 + 0.269427i 0 −0.500000 0.866025i 0
841.3 0 −0.500000 + 0.866025i 0 −1.00000 0 1.08504 + 1.87935i 0 −0.500000 0.866025i 0
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 601.3
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
13.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1560.2.bg.h 6
13.c even 3 1 inner 1560.2.bg.h 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1560.2.bg.h 6 1.a even 1 1 trivial
1560.2.bg.h 6 13.c even 3 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(1560,[χ])S_{2}^{\mathrm{new}}(1560, [\chi]):

T76T75+4T74+T73+10T723T7+1 T_{7}^{6} - T_{7}^{5} + 4T_{7}^{4} + T_{7}^{3} + 10T_{7}^{2} - 3T_{7} + 1 Copy content Toggle raw display
T116+16T11432T113+256T112256T11+256 T_{11}^{6} + 16T_{11}^{4} - 32T_{11}^{3} + 256T_{11}^{2} - 256T_{11} + 256 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T6 T^{6} Copy content Toggle raw display
33 (T2+T+1)3 (T^{2} + T + 1)^{3} Copy content Toggle raw display
55 (T+1)6 (T + 1)^{6} Copy content Toggle raw display
77 T6T5+4T4++1 T^{6} - T^{5} + 4 T^{4} + \cdots + 1 Copy content Toggle raw display
1111 T6+16T4++256 T^{6} + 16 T^{4} + \cdots + 256 Copy content Toggle raw display
1313 T6+3T5++2197 T^{6} + 3 T^{5} + \cdots + 2197 Copy content Toggle raw display
1717 T62T5++4 T^{6} - 2 T^{5} + \cdots + 4 Copy content Toggle raw display
1919 T6+4T5++400 T^{6} + 4 T^{5} + \cdots + 400 Copy content Toggle raw display
2323 T64T5++4096 T^{6} - 4 T^{5} + \cdots + 4096 Copy content Toggle raw display
2929 T64T5++100 T^{6} - 4 T^{5} + \cdots + 100 Copy content Toggle raw display
3131 (T3T233T+85)2 (T^{3} - T^{2} - 33 T + 85)^{2} Copy content Toggle raw display
3737 T6+2T5++64 T^{6} + 2 T^{5} + \cdots + 64 Copy content Toggle raw display
4141 T6+14T5++52900 T^{6} + 14 T^{5} + \cdots + 52900 Copy content Toggle raw display
4343 T615T5++11881 T^{6} - 15 T^{5} + \cdots + 11881 Copy content Toggle raw display
4747 (T32T2++326)2 (T^{3} - 2 T^{2} + \cdots + 326)^{2} Copy content Toggle raw display
5353 (T3+4T256T+80)2 (T^{3} + 4 T^{2} - 56 T + 80)^{2} Copy content Toggle raw display
5959 T612T5++842724 T^{6} - 12 T^{5} + \cdots + 842724 Copy content Toggle raw display
6161 T63T5++13225 T^{6} - 3 T^{5} + \cdots + 13225 Copy content Toggle raw display
6767 T6+17T5++39601 T^{6} + 17 T^{5} + \cdots + 39601 Copy content Toggle raw display
7171 T6+2T5++386884 T^{6} + 2 T^{5} + \cdots + 386884 Copy content Toggle raw display
7373 (T3+17T2+1601)2 (T^{3} + 17 T^{2} + \cdots - 1601)^{2} Copy content Toggle raw display
7979 (T3+21T2++95)2 (T^{3} + 21 T^{2} + \cdots + 95)^{2} Copy content Toggle raw display
8383 (T322T2++184)2 (T^{3} - 22 T^{2} + \cdots + 184)^{2} Copy content Toggle raw display
8989 T6+8T5++91204 T^{6} + 8 T^{5} + \cdots + 91204 Copy content Toggle raw display
9797 T6+T5++1369 T^{6} + T^{5} + \cdots + 1369 Copy content Toggle raw display
show more
show less