L(s) = 1 | − 1.56i·2-s − 0.438·4-s − i·7-s − 2.43i·8-s − 2.56·11-s − 4.56i·13-s − 1.56·14-s − 4.68·16-s + 4.56i·17-s − 1.12·19-s + 4i·22-s − 5.12i·23-s − 7.12·26-s + 0.438i·28-s − 5.68·29-s + ⋯ |
L(s) = 1 | − 1.10i·2-s − 0.219·4-s − 0.377i·7-s − 0.862i·8-s − 0.772·11-s − 1.26i·13-s − 0.417·14-s − 1.17·16-s + 1.10i·17-s − 0.257·19-s + 0.852i·22-s − 1.06i·23-s − 1.39·26-s + 0.0828i·28-s − 1.05·29-s + ⋯ |
Λ(s)=(=(1575s/2ΓC(s)L(s)(−0.894−0.447i)Λ(2−s)
Λ(s)=(=(1575s/2ΓC(s+1/2)L(s)(−0.894−0.447i)Λ(1−s)
Degree: |
2 |
Conductor: |
1575
= 32⋅52⋅7
|
Sign: |
−0.894−0.447i
|
Analytic conductor: |
12.5764 |
Root analytic conductor: |
3.54632 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1575(1324,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1575, ( :1/2), −0.894−0.447i)
|
Particular Values
L(1) |
≈ |
1.090060487 |
L(21) |
≈ |
1.090060487 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 5 | 1 |
| 7 | 1+iT |
good | 2 | 1+1.56iT−2T2 |
| 11 | 1+2.56T+11T2 |
| 13 | 1+4.56iT−13T2 |
| 17 | 1−4.56iT−17T2 |
| 19 | 1+1.12T+19T2 |
| 23 | 1+5.12iT−23T2 |
| 29 | 1+5.68T+29T2 |
| 31 | 1+31T2 |
| 37 | 1−6iT−37T2 |
| 41 | 1−3.12T+41T2 |
| 43 | 1+9.12iT−43T2 |
| 47 | 1+3.68iT−47T2 |
| 53 | 1−3.12iT−53T2 |
| 59 | 1+4T+59T2 |
| 61 | 1+9.36T+61T2 |
| 67 | 1+6.24iT−67T2 |
| 71 | 1+8T+71T2 |
| 73 | 1+4.24iT−73T2 |
| 79 | 1−6.56T+79T2 |
| 83 | 1−4iT−83T2 |
| 89 | 1−7.12T+89T2 |
| 97 | 1+14.8iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.153429493675716041371549902558, −8.207018861660650334661164819729, −7.51269387809278510023704412646, −6.50401882888075287433743111109, −5.62999699156149640233807671369, −4.51626160158364359327914286232, −3.58267958984426480832226036404, −2.77709823792998055210940396600, −1.74880183530616904935616320243, −0.39029540564452322454680269083,
1.88905477895534508055376154293, 2.88872793543652654702833825380, 4.31392834042464665713594538837, 5.20199900037877908056199164458, 5.86960166572514984181997014938, 6.72996637630738448129875897163, 7.47447093172145895430270401050, 7.985896817667059940479870803953, 9.157856435115486013536635343578, 9.388513772145679746426722837876