Properties

Label 1575.2.d.e
Level 15751575
Weight 22
Character orbit 1575.d
Analytic conductor 12.57612.576
Analytic rank 00
Dimension 44
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1575,2,Mod(1324,1575)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1575, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1575.1324");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 1575=32527 1575 = 3^{2} \cdot 5^{2} \cdot 7
Weight: k k == 2 2
Character orbit: [χ][\chi] == 1575.d (of order 22, degree 11, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 12.576438318412.5764383184
Analytic rank: 00
Dimension: 44
Coefficient field: Q(i,17)\Q(i, \sqrt{17})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x4+9x2+16 x^{4} + 9x^{2} + 16 Copy content Toggle raw display
Coefficient ring: Z[a1,,a7]\Z[a_1, \ldots, a_{7}]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 35)
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,β2,β31,\beta_1,\beta_2,\beta_3 for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+β1q2+(β33)q4+β2q7+(4β2β1)q8β3q11+(3β2+β1)q13+(β3+1)q14+(3β3+3)q16+β1q98+O(q100) q + \beta_1 q^{2} + (\beta_{3} - 3) q^{4} + \beta_{2} q^{7} + (4 \beta_{2} - \beta_1) q^{8} - \beta_{3} q^{11} + (3 \beta_{2} + \beta_1) q^{13} + ( - \beta_{3} + 1) q^{14} + ( - 3 \beta_{3} + 3) q^{16}+ \cdots - \beta_1 q^{98}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q10q42q11+2q14+6q16+12q1912q26+2q29+12q344q4112q4432q464q4918q5616q59+12q6114q6432q7112q74+56q94+O(q100) 4 q - 10 q^{4} - 2 q^{11} + 2 q^{14} + 6 q^{16} + 12 q^{19} - 12 q^{26} + 2 q^{29} + 12 q^{34} - 4 q^{41} - 12 q^{44} - 32 q^{46} - 4 q^{49} - 18 q^{56} - 16 q^{59} + 12 q^{61} - 14 q^{64} - 32 q^{71} - 12 q^{74}+ \cdots - 56 q^{94}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x4+9x2+16 x^{4} + 9x^{2} + 16 : Copy content Toggle raw display

β1\beta_{1}== ν \nu Copy content Toggle raw display
β2\beta_{2}== (ν3+5ν)/4 ( \nu^{3} + 5\nu ) / 4 Copy content Toggle raw display
β3\beta_{3}== ν2+5 \nu^{2} + 5 Copy content Toggle raw display
ν\nu== β1 \beta_1 Copy content Toggle raw display
ν2\nu^{2}== β35 \beta_{3} - 5 Copy content Toggle raw display
ν3\nu^{3}== 4β25β1 4\beta_{2} - 5\beta_1 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/1575Z)×\left(\mathbb{Z}/1575\mathbb{Z}\right)^\times.

nn 127127 451451 12261226
χ(n)\chi(n) 1-1 11 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1324.1
2.56155i
1.56155i
1.56155i
2.56155i
2.56155i 0 −4.56155 0 0 1.00000i 6.56155i 0 0
1324.2 1.56155i 0 −0.438447 0 0 1.00000i 2.43845i 0 0
1324.3 1.56155i 0 −0.438447 0 0 1.00000i 2.43845i 0 0
1324.4 2.56155i 0 −4.56155 0 0 1.00000i 6.56155i 0 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1575.2.d.e 4
3.b odd 2 1 175.2.b.b 4
5.b even 2 1 inner 1575.2.d.e 4
5.c odd 4 1 315.2.a.e 2
5.c odd 4 1 1575.2.a.p 2
12.b even 2 1 2800.2.g.t 4
15.d odd 2 1 175.2.b.b 4
15.e even 4 1 35.2.a.b 2
15.e even 4 1 175.2.a.f 2
20.e even 4 1 5040.2.a.bt 2
21.c even 2 1 1225.2.b.f 4
35.f even 4 1 2205.2.a.x 2
60.h even 2 1 2800.2.g.t 4
60.l odd 4 1 560.2.a.i 2
60.l odd 4 1 2800.2.a.bi 2
105.g even 2 1 1225.2.b.f 4
105.k odd 4 1 245.2.a.d 2
105.k odd 4 1 1225.2.a.s 2
105.w odd 12 2 245.2.e.h 4
105.x even 12 2 245.2.e.i 4
120.q odd 4 1 2240.2.a.bd 2
120.w even 4 1 2240.2.a.bh 2
165.l odd 4 1 4235.2.a.m 2
195.s even 4 1 5915.2.a.l 2
420.w even 4 1 3920.2.a.bs 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
35.2.a.b 2 15.e even 4 1
175.2.a.f 2 15.e even 4 1
175.2.b.b 4 3.b odd 2 1
175.2.b.b 4 15.d odd 2 1
245.2.a.d 2 105.k odd 4 1
245.2.e.h 4 105.w odd 12 2
245.2.e.i 4 105.x even 12 2
315.2.a.e 2 5.c odd 4 1
560.2.a.i 2 60.l odd 4 1
1225.2.a.s 2 105.k odd 4 1
1225.2.b.f 4 21.c even 2 1
1225.2.b.f 4 105.g even 2 1
1575.2.a.p 2 5.c odd 4 1
1575.2.d.e 4 1.a even 1 1 trivial
1575.2.d.e 4 5.b even 2 1 inner
2205.2.a.x 2 35.f even 4 1
2240.2.a.bd 2 120.q odd 4 1
2240.2.a.bh 2 120.w even 4 1
2800.2.a.bi 2 60.l odd 4 1
2800.2.g.t 4 12.b even 2 1
2800.2.g.t 4 60.h even 2 1
3920.2.a.bs 2 420.w even 4 1
4235.2.a.m 2 165.l odd 4 1
5040.2.a.bt 2 20.e even 4 1
5915.2.a.l 2 195.s even 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(1575,[χ])S_{2}^{\mathrm{new}}(1575, [\chi]):

T24+9T22+16 T_{2}^{4} + 9T_{2}^{2} + 16 Copy content Toggle raw display
T112+T114 T_{11}^{2} + T_{11} - 4 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T4+9T2+16 T^{4} + 9T^{2} + 16 Copy content Toggle raw display
33 T4 T^{4} Copy content Toggle raw display
55 T4 T^{4} Copy content Toggle raw display
77 (T2+1)2 (T^{2} + 1)^{2} Copy content Toggle raw display
1111 (T2+T4)2 (T^{2} + T - 4)^{2} Copy content Toggle raw display
1313 T4+21T2+4 T^{4} + 21T^{2} + 4 Copy content Toggle raw display
1717 T4+21T2+4 T^{4} + 21T^{2} + 4 Copy content Toggle raw display
1919 (T26T8)2 (T^{2} - 6 T - 8)^{2} Copy content Toggle raw display
2323 T4+36T2+256 T^{4} + 36T^{2} + 256 Copy content Toggle raw display
2929 (T2T38)2 (T^{2} - T - 38)^{2} Copy content Toggle raw display
3131 T4 T^{4} Copy content Toggle raw display
3737 (T2+36)2 (T^{2} + 36)^{2} Copy content Toggle raw display
4141 (T2+2T16)2 (T^{2} + 2 T - 16)^{2} Copy content Toggle raw display
4343 T4+84T2+64 T^{4} + 84T^{2} + 64 Copy content Toggle raw display
4747 T4+89T2+1024 T^{4} + 89T^{2} + 1024 Copy content Toggle raw display
5353 T4+36T2+256 T^{4} + 36T^{2} + 256 Copy content Toggle raw display
5959 (T+4)4 (T + 4)^{4} Copy content Toggle raw display
6161 (T26T144)2 (T^{2} - 6 T - 144)^{2} Copy content Toggle raw display
6767 T4+144T2+4096 T^{4} + 144T^{2} + 4096 Copy content Toggle raw display
7171 (T+8)4 (T + 8)^{4} Copy content Toggle raw display
7373 T4+168T2+2704 T^{4} + 168T^{2} + 2704 Copy content Toggle raw display
7979 (T29T+16)2 (T^{2} - 9 T + 16)^{2} Copy content Toggle raw display
8383 (T2+16)2 (T^{2} + 16)^{2} Copy content Toggle raw display
8989 (T26T8)2 (T^{2} - 6 T - 8)^{2} Copy content Toggle raw display
9797 T4+253T2+7396 T^{4} + 253T^{2} + 7396 Copy content Toggle raw display
show more
show less