L(s) = 1 | + 4.98e6·3-s + 3.10e9·5-s + 2.36e11·7-s + 1.72e13·9-s + 2.12e14·11-s − 1.46e15·13-s + 1.54e16·15-s + 2.34e15·17-s + 9.03e16·19-s + 1.17e18·21-s − 1.52e18·23-s + 2.18e18·25-s + 4.77e19·27-s + 1.80e19·29-s − 3.08e19·31-s + 1.05e21·33-s + 7.33e20·35-s − 6.43e20·37-s − 7.32e21·39-s − 7.21e21·41-s − 1.26e22·43-s + 5.34e22·45-s − 6.23e22·47-s − 9.79e21·49-s + 1.16e22·51-s + 1.22e23·53-s + 6.59e23·55-s + ⋯ |
L(s) = 1 | + 1.80·3-s + 1.13·5-s + 0.922·7-s + 2.25·9-s + 1.85·11-s − 1.34·13-s + 2.05·15-s + 0.0574·17-s + 0.492·19-s + 1.66·21-s − 0.631·23-s + 0.292·25-s + 2.26·27-s + 0.326·29-s − 0.226·31-s + 3.34·33-s + 1.04·35-s − 0.434·37-s − 2.42·39-s − 1.21·41-s − 1.11·43-s + 2.56·45-s − 1.66·47-s − 0.149·49-s + 0.103·51-s + 0.646·53-s + 2.10·55-s + ⋯ |
Λ(s)=(=(16s/2ΓC(s)L(s)Λ(28−s)
Λ(s)=(=(16s/2ΓC(s+27/2)L(s)Λ(1−s)
Particular Values
L(14) |
≈ |
6.469567215 |
L(21) |
≈ |
6.469567215 |
L(229) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
good | 3 | 1−4.98e6T+7.62e12T2 |
| 5 | 1−3.10e9T+7.45e18T2 |
| 7 | 1−2.36e11T+6.57e22T2 |
| 11 | 1−2.12e14T+1.31e28T2 |
| 13 | 1+1.46e15T+1.19e30T2 |
| 17 | 1−2.34e15T+1.66e33T2 |
| 19 | 1−9.03e16T+3.36e34T2 |
| 23 | 1+1.52e18T+5.84e36T2 |
| 29 | 1−1.80e19T+3.05e39T2 |
| 31 | 1+3.08e19T+1.84e40T2 |
| 37 | 1+6.43e20T+2.19e42T2 |
| 41 | 1+7.21e21T+3.50e43T2 |
| 43 | 1+1.26e22T+1.26e44T2 |
| 47 | 1+6.23e22T+1.40e45T2 |
| 53 | 1−1.22e23T+3.59e46T2 |
| 59 | 1+1.26e24T+6.50e47T2 |
| 61 | 1+4.90e23T+1.59e48T2 |
| 67 | 1−2.60e24T+2.01e49T2 |
| 71 | 1+7.66e24T+9.63e49T2 |
| 73 | 1−2.19e25T+2.04e50T2 |
| 79 | 1−7.76e25T+1.72e51T2 |
| 83 | 1+3.00e25T+6.53e51T2 |
| 89 | 1−2.29e26T+4.30e52T2 |
| 97 | 1+1.71e26T+4.39e53T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−13.65135218437225710582321850655, −12.03413052079825843817815850242, −9.907111154658323456103239024973, −9.243636028279992175944653782056, −8.067270190111903599253911599863, −6.74721177642138430341489504585, −4.79051127184189824090222370309, −3.42314905000503201273184687042, −2.03103965597371932695249098477, −1.51508517941992458298148864352,
1.51508517941992458298148864352, 2.03103965597371932695249098477, 3.42314905000503201273184687042, 4.79051127184189824090222370309, 6.74721177642138430341489504585, 8.067270190111903599253911599863, 9.243636028279992175944653782056, 9.907111154658323456103239024973, 12.03413052079825843817815850242, 13.65135218437225710582321850655