Properties

Label 2-2e4-1.1-c27-0-10
Degree $2$
Conductor $16$
Sign $1$
Analytic cond. $73.8968$
Root an. cond. $8.59633$
Motivic weight $27$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4.98e6·3-s + 3.10e9·5-s + 2.36e11·7-s + 1.72e13·9-s + 2.12e14·11-s − 1.46e15·13-s + 1.54e16·15-s + 2.34e15·17-s + 9.03e16·19-s + 1.17e18·21-s − 1.52e18·23-s + 2.18e18·25-s + 4.77e19·27-s + 1.80e19·29-s − 3.08e19·31-s + 1.05e21·33-s + 7.33e20·35-s − 6.43e20·37-s − 7.32e21·39-s − 7.21e21·41-s − 1.26e22·43-s + 5.34e22·45-s − 6.23e22·47-s − 9.79e21·49-s + 1.16e22·51-s + 1.22e23·53-s + 6.59e23·55-s + ⋯
L(s)  = 1  + 1.80·3-s + 1.13·5-s + 0.922·7-s + 2.25·9-s + 1.85·11-s − 1.34·13-s + 2.05·15-s + 0.0574·17-s + 0.492·19-s + 1.66·21-s − 0.631·23-s + 0.292·25-s + 2.26·27-s + 0.326·29-s − 0.226·31-s + 3.34·33-s + 1.04·35-s − 0.434·37-s − 2.42·39-s − 1.21·41-s − 1.11·43-s + 2.56·45-s − 1.66·47-s − 0.149·49-s + 0.103·51-s + 0.646·53-s + 2.10·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 16 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(28-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 16 ^{s/2} \, \Gamma_{\C}(s+27/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(16\)    =    \(2^{4}\)
Sign: $1$
Analytic conductor: \(73.8968\)
Root analytic conductor: \(8.59633\)
Motivic weight: \(27\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 16,\ (\ :27/2),\ 1)\)

Particular Values

\(L(14)\) \(\approx\) \(6.469567215\)
\(L(\frac12)\) \(\approx\) \(6.469567215\)
\(L(\frac{29}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
good3 \( 1 - 4.98e6T + 7.62e12T^{2} \)
5 \( 1 - 3.10e9T + 7.45e18T^{2} \)
7 \( 1 - 2.36e11T + 6.57e22T^{2} \)
11 \( 1 - 2.12e14T + 1.31e28T^{2} \)
13 \( 1 + 1.46e15T + 1.19e30T^{2} \)
17 \( 1 - 2.34e15T + 1.66e33T^{2} \)
19 \( 1 - 9.03e16T + 3.36e34T^{2} \)
23 \( 1 + 1.52e18T + 5.84e36T^{2} \)
29 \( 1 - 1.80e19T + 3.05e39T^{2} \)
31 \( 1 + 3.08e19T + 1.84e40T^{2} \)
37 \( 1 + 6.43e20T + 2.19e42T^{2} \)
41 \( 1 + 7.21e21T + 3.50e43T^{2} \)
43 \( 1 + 1.26e22T + 1.26e44T^{2} \)
47 \( 1 + 6.23e22T + 1.40e45T^{2} \)
53 \( 1 - 1.22e23T + 3.59e46T^{2} \)
59 \( 1 + 1.26e24T + 6.50e47T^{2} \)
61 \( 1 + 4.90e23T + 1.59e48T^{2} \)
67 \( 1 - 2.60e24T + 2.01e49T^{2} \)
71 \( 1 + 7.66e24T + 9.63e49T^{2} \)
73 \( 1 - 2.19e25T + 2.04e50T^{2} \)
79 \( 1 - 7.76e25T + 1.72e51T^{2} \)
83 \( 1 + 3.00e25T + 6.53e51T^{2} \)
89 \( 1 - 2.29e26T + 4.30e52T^{2} \)
97 \( 1 + 1.71e26T + 4.39e53T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.65135218437225710582321850655, −12.03413052079825843817815850242, −9.907111154658323456103239024973, −9.243636028279992175944653782056, −8.067270190111903599253911599863, −6.74721177642138430341489504585, −4.79051127184189824090222370309, −3.42314905000503201273184687042, −2.03103965597371932695249098477, −1.51508517941992458298148864352, 1.51508517941992458298148864352, 2.03103965597371932695249098477, 3.42314905000503201273184687042, 4.79051127184189824090222370309, 6.74721177642138430341489504585, 8.067270190111903599253911599863, 9.243636028279992175944653782056, 9.907111154658323456103239024973, 12.03413052079825843817815850242, 13.65135218437225710582321850655

Graph of the $Z$-function along the critical line