Properties

Label 16.28.a.f.1.4
Level 1616
Weight 2828
Character 16.1
Self dual yes
Analytic conductor 73.89773.897
Analytic rank 00
Dimension 44
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [16,28,Mod(1,16)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(16, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 28, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("16.1");
 
S:= CuspForms(chi, 28);
 
N := Newforms(S);
 
Level: N N == 16=24 16 = 2^{4}
Weight: k k == 28 28
Character orbit: [χ][\chi] == 16.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 73.896891974173.8968919741
Analytic rank: 00
Dimension: 44
Coefficient field: Q[x]/(x4)\mathbb{Q}[x]/(x^{4} - \cdots)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x48494973x23687596342x+10439241475305 x^{4} - 8494973x^{2} - 3687596342x + 10439241475305 Copy content Toggle raw display
Coefficient ring: Z[a1,,a7]\Z[a_1, \ldots, a_{7}]
Coefficient ring index: 242355 2^{42}\cdot 3^{5}\cdot 5
Twist minimal: no (minimal twist has level 8)
Fricke sign: +1+1
Sato-Tate group: SU(2)\mathrm{SU}(2)

Embedding invariants

Embedding label 1.4
Root 2061.48-2061.48 of defining polynomial
Character χ\chi == 16.1

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q+4.98397e6q3+3.10348e9q5+2.36469e11q7+1.72143e13q9+2.12352e14q111.46908e15q13+1.54676e16q15+2.34431e15q17+9.03530e16q19+1.17855e18q211.52631e18q23+2.18098e18q25+4.77899e19q27+1.80158e19q293.08284e19q31+1.05835e21q33+7.33876e20q356.43627e20q377.32184e21q397.21227e21q411.26012e22q43+5.34243e22q456.23837e22q479.79482e21q49+1.16840e22q51+1.22507e23q53+6.59029e23q55+4.50316e23q571.26232e24q594.90924e23q61+4.07065e24q634.55925e24q65+2.60342e24q677.60710e24q697.66670e24q71+2.19552e25q73+1.08699e25q75+5.02146e25q77+7.76957e25q79+1.06914e26q813.00643e25q83+7.27551e24q85+8.97901e25q87+2.29131e26q893.47391e26q911.53648e26q93+2.80408e26q951.71940e26q97+3.65549e27q99+O(q100)q+4.98397e6 q^{3} +3.10348e9 q^{5} +2.36469e11 q^{7} +1.72143e13 q^{9} +2.12352e14 q^{11} -1.46908e15 q^{13} +1.54676e16 q^{15} +2.34431e15 q^{17} +9.03530e16 q^{19} +1.17855e18 q^{21} -1.52631e18 q^{23} +2.18098e18 q^{25} +4.77899e19 q^{27} +1.80158e19 q^{29} -3.08284e19 q^{31} +1.05835e21 q^{33} +7.33876e20 q^{35} -6.43627e20 q^{37} -7.32184e21 q^{39} -7.21227e21 q^{41} -1.26012e22 q^{43} +5.34243e22 q^{45} -6.23837e22 q^{47} -9.79482e21 q^{49} +1.16840e22 q^{51} +1.22507e23 q^{53} +6.59029e23 q^{55} +4.50316e23 q^{57} -1.26232e24 q^{59} -4.90924e23 q^{61} +4.07065e24 q^{63} -4.55925e24 q^{65} +2.60342e24 q^{67} -7.60710e24 q^{69} -7.66670e24 q^{71} +2.19552e25 q^{73} +1.08699e25 q^{75} +5.02146e25 q^{77} +7.76957e25 q^{79} +1.06914e26 q^{81} -3.00643e25 q^{83} +7.27551e24 q^{85} +8.97901e25 q^{87} +2.29131e26 q^{89} -3.47391e26 q^{91} -1.53648e26 q^{93} +2.80408e26 q^{95} -1.71940e26 q^{97} +3.65549e27 q^{99} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q+122512q3+3544066168q5+211767036576q7+19748930504020q9+137002338905648q115580886697000q13+25 ⁣ ⁣12q15+44 ⁣ ⁣44q17+17 ⁣ ⁣72q19++53 ⁣ ⁣16q99+O(q100) 4 q + 122512 q^{3} + 3544066168 q^{5} + 211767036576 q^{7} + 19748930504020 q^{9} + 137002338905648 q^{11} - 5580886697000 q^{13} + 25\!\cdots\!12 q^{15} + 44\!\cdots\!44 q^{17} + 17\!\cdots\!72 q^{19}+ \cdots + 53\!\cdots\!16 q^{99}+O(q^{100}) Copy content Toggle raw display

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 0 0
33 4.98397e6 1.80484 0.902419 0.430860i 0.141790π-0.141790\pi
0.902419 + 0.430860i 0.141790π0.141790\pi
44 0 0
55 3.10348e9 1.13698 0.568491 0.822690i 0.307528π-0.307528\pi
0.568491 + 0.822690i 0.307528π0.307528\pi
66 0 0
77 2.36469e11 0.922466 0.461233 0.887279i 0.347407π-0.347407\pi
0.461233 + 0.887279i 0.347407π0.347407\pi
88 0 0
99 1.72143e13 2.25744
1010 0 0
1111 2.12352e14 1.85462 0.927310 0.374295i 0.122115π-0.122115\pi
0.927310 + 0.374295i 0.122115π0.122115\pi
1212 0 0
1313 −1.46908e15 −1.34527 −0.672635 0.739974i 0.734838π-0.734838\pi
−0.672635 + 0.739974i 0.734838π0.734838\pi
1414 0 0
1515 1.54676e16 2.05207
1616 0 0
1717 2.34431e15 0.0574056 0.0287028 0.999588i 0.490862π-0.490862\pi
0.0287028 + 0.999588i 0.490862π0.490862\pi
1818 0 0
1919 9.03530e16 0.492911 0.246456 0.969154i 0.420734π-0.420734\pi
0.246456 + 0.969154i 0.420734π0.420734\pi
2020 0 0
2121 1.17855e18 1.66490
2222 0 0
2323 −1.52631e18 −0.631419 −0.315710 0.948856i 0.602243π-0.602243\pi
−0.315710 + 0.948856i 0.602243π0.602243\pi
2424 0 0
2525 2.18098e18 0.292726
2626 0 0
2727 4.77899e19 2.26948
2828 0 0
2929 1.80158e19 0.326047 0.163023 0.986622i 0.447875π-0.447875\pi
0.163023 + 0.986622i 0.447875π0.447875\pi
3030 0 0
3131 −3.08284e19 −0.226761 −0.113381 0.993552i 0.536168π-0.536168\pi
−0.113381 + 0.993552i 0.536168π0.536168\pi
3232 0 0
3333 1.05835e21 3.34729
3434 0 0
3535 7.33876e20 1.04883
3636 0 0
3737 −6.43627e20 −0.434421 −0.217210 0.976125i 0.569696π-0.569696\pi
−0.217210 + 0.976125i 0.569696π0.569696\pi
3838 0 0
3939 −7.32184e21 −2.42800
4040 0 0
4141 −7.21227e21 −1.21756 −0.608780 0.793339i 0.708341π-0.708341\pi
−0.608780 + 0.793339i 0.708341π0.708341\pi
4242 0 0
4343 −1.26012e22 −1.11838 −0.559188 0.829041i 0.688887π-0.688887\pi
−0.559188 + 0.829041i 0.688887π0.688887\pi
4444 0 0
4545 5.34243e22 2.56667
4646 0 0
4747 −6.23837e22 −1.66629 −0.833144 0.553055i 0.813462π-0.813462\pi
−0.833144 + 0.553055i 0.813462π0.813462\pi
4848 0 0
4949 −9.79482e21 −0.149056
5050 0 0
5151 1.16840e22 0.103608
5252 0 0
5353 1.22507e23 0.646302 0.323151 0.946347i 0.395258π-0.395258\pi
0.323151 + 0.946347i 0.395258π0.395258\pi
5454 0 0
5555 6.59029e23 2.10867
5656 0 0
5757 4.50316e23 0.889625
5858 0 0
5959 −1.26232e24 −1.56555 −0.782773 0.622307i 0.786195π-0.786195\pi
−0.782773 + 0.622307i 0.786195π0.786195\pi
6060 0 0
6161 −4.90924e23 −0.388206 −0.194103 0.980981i 0.562180π-0.562180\pi
−0.194103 + 0.980981i 0.562180π0.562180\pi
6262 0 0
6363 4.07065e24 2.08241
6464 0 0
6565 −4.55925e24 −1.52955
6666 0 0
6767 2.60342e24 0.580141 0.290071 0.957005i 0.406321π-0.406321\pi
0.290071 + 0.957005i 0.406321π0.406321\pi
6868 0 0
6969 −7.60710e24 −1.13961
7070 0 0
7171 −7.66670e24 −0.780946 −0.390473 0.920614i 0.627689π-0.627689\pi
−0.390473 + 0.920614i 0.627689π0.627689\pi
7272 0 0
7373 2.19552e25 1.53702 0.768509 0.639839i 0.220999π-0.220999\pi
0.768509 + 0.639839i 0.220999π0.220999\pi
7474 0 0
7575 1.08699e25 0.528324
7676 0 0
7777 5.02146e25 1.71082
7878 0 0
7979 7.76957e25 1.87254 0.936270 0.351280i 0.114253π-0.114253\pi
0.936270 + 0.351280i 0.114253π0.114253\pi
8080 0 0
8181 1.06914e26 1.83860
8282 0 0
8383 −3.00643e25 −0.371961 −0.185980 0.982553i 0.559546π-0.559546\pi
−0.185980 + 0.982553i 0.559546π0.559546\pi
8484 0 0
8585 7.27551e24 0.0652691
8686 0 0
8787 8.97901e25 0.588462
8888 0 0
8989 2.29131e26 1.10489 0.552444 0.833550i 0.313695π-0.313695\pi
0.552444 + 0.833550i 0.313695π0.313695\pi
9090 0 0
9191 −3.47391e26 −1.24097
9292 0 0
9393 −1.53648e26 −0.409267
9494 0 0
9595 2.80408e26 0.560431
9696 0 0
9797 −1.71940e26 −0.259393 −0.129697 0.991554i 0.541400π-0.541400\pi
−0.129697 + 0.991554i 0.541400π0.541400\pi
9898 0 0
9999 3.65549e27 4.18669
100100 0 0
101101 4.98011e25 0.0435412 0.0217706 0.999763i 0.493070π-0.493070\pi
0.0217706 + 0.999763i 0.493070π0.493070\pi
102102 0 0
103103 −3.83420e26 −0.257260 −0.128630 0.991693i 0.541058π-0.541058\pi
−0.128630 + 0.991693i 0.541058π0.541058\pi
104104 0 0
105105 3.65761e27 1.89296
106106 0 0
107107 7.51558e25 0.0301496 0.0150748 0.999886i 0.495201π-0.495201\pi
0.0150748 + 0.999886i 0.495201π0.495201\pi
108108 0 0
109109 −3.10968e27 −0.971533 −0.485767 0.874089i 0.661460π-0.661460\pi
−0.485767 + 0.874089i 0.661460π0.661460\pi
110110 0 0
111111 −3.20781e27 −0.784059
112112 0 0
113113 7.25589e27 1.39358 0.696790 0.717276i 0.254611π-0.254611\pi
0.696790 + 0.717276i 0.254611π0.254611\pi
114114 0 0
115115 −4.73688e27 −0.717912
116116 0 0
117117 −2.52892e28 −3.03687
118118 0 0
119119 5.54356e26 0.0529548
120120 0 0
121121 3.19833e28 2.43961
122122 0 0
123123 −3.59457e28 −2.19750
124124 0 0
125125 −1.63541e28 −0.804157
126126 0 0
127127 −2.34263e28 −0.929722 −0.464861 0.885384i 0.653896π-0.653896\pi
−0.464861 + 0.885384i 0.653896π0.653896\pi
128128 0 0
129129 −6.28040e28 −2.01849
130130 0 0
131131 4.25742e27 0.111169 0.0555845 0.998454i 0.482298π-0.482298\pi
0.0555845 + 0.998454i 0.482298π0.482298\pi
132132 0 0
133133 2.13657e28 0.454694
134134 0 0
135135 1.48315e29 2.58035
136136 0 0
137137 5.93659e28 0.846856 0.423428 0.905930i 0.360827π-0.360827\pi
0.423428 + 0.905930i 0.360827π0.360827\pi
138138 0 0
139139 5.87133e28 0.688711 0.344355 0.938839i 0.388097π-0.388097\pi
0.344355 + 0.938839i 0.388097π0.388097\pi
140140 0 0
141141 −3.10918e29 −3.00738
142142 0 0
143143 −3.11961e29 −2.49496
144144 0 0
145145 5.59115e28 0.370709
146146 0 0
147147 −4.88170e28 −0.269022
148148 0 0
149149 2.14214e29 0.983635 0.491818 0.870698i 0.336333π-0.336333\pi
0.491818 + 0.870698i 0.336333π0.336333\pi
150150 0 0
151151 −3.76796e27 −0.0144517 −0.00722583 0.999974i 0.502300π-0.502300\pi
−0.00722583 + 0.999974i 0.502300π0.502300\pi
152152 0 0
153153 4.03557e28 0.129590
154154 0 0
155155 −9.56753e28 −0.257823
156156 0 0
157157 3.45050e29 0.782053 0.391027 0.920379i 0.372120π-0.372120\pi
0.391027 + 0.920379i 0.372120π0.372120\pi
158158 0 0
159159 6.10570e29 1.16647
160160 0 0
161161 −3.60926e29 −0.582463
162162 0 0
163163 5.68411e29 0.776479 0.388240 0.921558i 0.373083π-0.373083\pi
0.388240 + 0.921558i 0.373083π0.373083\pi
164164 0 0
165165 3.28458e30 3.80580
166166 0 0
167167 −1.38467e29 −0.136356 −0.0681781 0.997673i 0.521719π-0.521719\pi
−0.0681781 + 0.997673i 0.521719π0.521719\pi
168168 0 0
169169 9.65658e29 0.809753
170170 0 0
171171 1.55537e30 1.11272
172172 0 0
173173 −2.35976e30 −1.44293 −0.721464 0.692452i 0.756530π-0.756530\pi
−0.721464 + 0.692452i 0.756530π0.756530\pi
174174 0 0
175175 5.15734e29 0.270030
176176 0 0
177177 −6.29134e30 −2.82556
178178 0 0
179179 1.46454e29 0.0565178 0.0282589 0.999601i 0.491004π-0.491004\pi
0.0282589 + 0.999601i 0.491004π0.491004\pi
180180 0 0
181181 −2.42478e29 −0.0805400 −0.0402700 0.999189i 0.512822π-0.512822\pi
−0.0402700 + 0.999189i 0.512822π0.512822\pi
182182 0 0
183183 −2.44675e30 −0.700648
184184 0 0
185185 −1.99748e30 −0.493928
186186 0 0
187187 4.97818e29 0.106466
188188 0 0
189189 1.13008e31 2.09351
190190 0 0
191191 3.20304e30 0.514768 0.257384 0.966309i 0.417139π-0.417139\pi
0.257384 + 0.966309i 0.417139π0.417139\pi
192192 0 0
193193 −1.12177e30 −0.156632 −0.0783162 0.996929i 0.524954π-0.524954\pi
−0.0783162 + 0.996929i 0.524954π0.524954\pi
194194 0 0
195195 −2.27231e31 −2.76059
196196 0 0
197197 −9.10597e30 −0.963900 −0.481950 0.876199i 0.660071π-0.660071\pi
−0.481950 + 0.876199i 0.660071π0.660071\pi
198198 0 0
199199 1.05803e31 0.977192 0.488596 0.872510i 0.337509π-0.337509\pi
0.488596 + 0.872510i 0.337509π0.337509\pi
200200 0 0
201201 1.29753e31 1.04706
202202 0 0
203203 4.26017e30 0.300767
204204 0 0
205205 −2.23831e31 −1.38434
206206 0 0
207207 −2.62745e31 −1.42539
208208 0 0
209209 1.91866e31 0.914163
210210 0 0
211211 −1.17863e31 −0.493814 −0.246907 0.969039i 0.579414π-0.579414\pi
−0.246907 + 0.969039i 0.579414π0.579414\pi
212212 0 0
213213 −3.82106e31 −1.40948
214214 0 0
215215 −3.91076e31 −1.27157
216216 0 0
217217 −7.28997e30 −0.209180
218218 0 0
219219 1.09424e32 2.77407
220220 0 0
221221 −3.44397e30 −0.0772261
222222 0 0
223223 −5.14026e31 −1.02063 −0.510316 0.859987i 0.670472π-0.670472\pi
−0.510316 + 0.859987i 0.670472π0.670472\pi
224224 0 0
225225 3.75441e31 0.660812
226226 0 0
227227 6.85208e31 1.07022 0.535110 0.844782i 0.320270π-0.320270\pi
0.535110 + 0.844782i 0.320270π0.320270\pi
228228 0 0
229229 −1.20413e32 −1.67069 −0.835343 0.549730i 0.814731π-0.814731\pi
−0.835343 + 0.549730i 0.814731π0.814731\pi
230230 0 0
231231 2.50268e32 3.08776
232232 0 0
233233 2.77909e31 0.305210 0.152605 0.988287i 0.451234π-0.451234\pi
0.152605 + 0.988287i 0.451234π0.451234\pi
234234 0 0
235235 −1.93606e32 −1.89454
236236 0 0
237237 3.87233e32 3.37963
238238 0 0
239239 −3.12220e31 −0.243271 −0.121635 0.992575i 0.538814π-0.538814\pi
−0.121635 + 0.992575i 0.538814π0.538814\pi
240240 0 0
241241 2.33705e32 1.62719 0.813596 0.581431i 0.197507π-0.197507\pi
0.813596 + 0.581431i 0.197507π0.197507\pi
242242 0 0
243243 1.68428e32 1.04889
244244 0 0
245245 −3.03980e31 −0.169474
246246 0 0
247247 −1.32736e32 −0.663099
248248 0 0
249249 −1.49840e32 −0.671329
250250 0 0
251251 −2.44628e32 −0.983808 −0.491904 0.870650i 0.663699π-0.663699\pi
−0.491904 + 0.870650i 0.663699π0.663699\pi
252252 0 0
253253 −3.24115e32 −1.17104
254254 0 0
255255 3.62609e31 0.117800
256256 0 0
257257 −5.77863e32 −1.68938 −0.844691 0.535254i 0.820216π-0.820216\pi
−0.844691 + 0.535254i 0.820216π0.820216\pi
258258 0 0
259259 −1.52198e32 −0.400739
260260 0 0
261261 3.10130e32 0.736031
262262 0 0
263263 −7.32407e32 −1.56801 −0.784007 0.620752i 0.786827π-0.786827\pi
−0.784007 + 0.620752i 0.786827π0.786827\pi
264264 0 0
265265 3.80197e32 0.734834
266266 0 0
267267 1.14198e33 1.99414
268268 0 0
269269 5.19389e32 0.820043 0.410022 0.912076i 0.365521π-0.365521\pi
0.410022 + 0.912076i 0.365521π0.365521\pi
270270 0 0
271271 4.92441e32 0.703508 0.351754 0.936092i 0.385585π-0.385585\pi
0.351754 + 0.936092i 0.385585π0.385585\pi
272272 0 0
273273 −1.73139e33 −2.23974
274274 0 0
275275 4.63135e32 0.542896
276276 0 0
277277 −1.77095e31 −0.0188248 −0.00941241 0.999956i 0.502996π-0.502996\pi
−0.00941241 + 0.999956i 0.502996π0.502996\pi
278278 0 0
279279 −5.30691e32 −0.511900
280280 0 0
281281 −1.51610e33 −1.32798 −0.663991 0.747741i 0.731139π-0.731139\pi
−0.663991 + 0.747741i 0.731139π0.731139\pi
282282 0 0
283283 −6.97399e32 −0.555091 −0.277546 0.960712i 0.589521π-0.589521\pi
−0.277546 + 0.960712i 0.589521π0.589521\pi
284284 0 0
285285 1.39755e33 1.01149
286286 0 0
287287 −1.70548e33 −1.12316
288288 0 0
289289 −1.66222e33 −0.996705
290290 0 0
291291 −8.56944e32 −0.468163
292292 0 0
293293 −1.70891e33 −0.851149 −0.425575 0.904923i 0.639928π-0.639928\pi
−0.425575 + 0.904923i 0.639928π0.639928\pi
294294 0 0
295295 −3.91757e33 −1.78000
296296 0 0
297297 1.01483e34 4.20901
298298 0 0
299299 2.24227e33 0.849430
300300 0 0
301301 −2.97979e33 −1.03166
302302 0 0
303303 2.48207e32 0.0785849
304304 0 0
305305 −1.52357e33 −0.441383
306306 0 0
307307 3.85932e33 1.02363 0.511814 0.859096i 0.328974π-0.328974\pi
0.511814 + 0.859096i 0.328974π0.328974\pi
308308 0 0
309309 −1.91095e33 −0.464313
310310 0 0
311311 3.26279e33 0.726649 0.363324 0.931663i 0.381642π-0.381642\pi
0.363324 + 0.931663i 0.381642π0.381642\pi
312312 0 0
313313 8.82413e33 1.80228 0.901142 0.433525i 0.142730π-0.142730\pi
0.901142 + 0.433525i 0.142730π0.142730\pi
314314 0 0
315315 1.26332e34 2.36766
316316 0 0
317317 3.96580e33 0.682387 0.341194 0.939993i 0.389169π-0.389169\pi
0.341194 + 0.939993i 0.389169π0.389169\pi
318318 0 0
319319 3.82568e33 0.604693
320320 0 0
321321 3.74574e32 0.0544151
322322 0 0
323323 2.11815e32 0.0282959
324324 0 0
325325 −3.20403e33 −0.393796
326326 0 0
327327 −1.54985e34 −1.75346
328328 0 0
329329 −1.47518e34 −1.53710
330330 0 0
331331 −1.17780e34 −1.13082 −0.565410 0.824810i 0.691282π-0.691282\pi
−0.565410 + 0.824810i 0.691282π0.691282\pi
332332 0 0
333333 −1.10796e34 −0.980679
334334 0 0
335335 8.07964e33 0.659610
336336 0 0
337337 1.94526e34 1.46546 0.732731 0.680518i 0.238245π-0.238245\pi
0.732731 + 0.680518i 0.238245π0.238245\pi
338338 0 0
339339 3.61631e34 2.51518
340340 0 0
341341 −6.54648e33 −0.420556
342342 0 0
343343 −1.78551e34 −1.05997
344344 0 0
345345 −2.36084e34 −1.29571
346346 0 0
347347 −2.25323e34 −1.14382 −0.571910 0.820316i 0.693797π-0.693797\pi
−0.571910 + 0.820316i 0.693797π0.693797\pi
348348 0 0
349349 2.87978e34 1.35275 0.676373 0.736559i 0.263551π-0.263551\pi
0.676373 + 0.736559i 0.263551π0.263551\pi
350350 0 0
351351 −7.02071e34 −3.05306
352352 0 0
353353 1.55573e34 0.626577 0.313289 0.949658i 0.398569π-0.398569\pi
0.313289 + 0.949658i 0.398569π0.398569\pi
354354 0 0
355355 −2.37934e34 −0.887921
356356 0 0
357357 2.76289e33 0.0955748
358358 0 0
359359 −2.82527e33 −0.0906326 −0.0453163 0.998973i 0.514430π-0.514430\pi
−0.0453163 + 0.998973i 0.514430π0.514430\pi
360360 0 0
361361 −2.54370e34 −0.757038
362362 0 0
363363 1.59404e35 4.40310
364364 0 0
365365 6.81375e34 1.74756
366366 0 0
367367 −6.62769e34 −1.57896 −0.789478 0.613778i 0.789649π-0.789649\pi
−0.789478 + 0.613778i 0.789649π0.789649\pi
368368 0 0
369369 −1.24154e35 −2.74857
370370 0 0
371371 2.89690e34 0.596192
372372 0 0
373373 −3.28983e33 −0.0629657 −0.0314829 0.999504i 0.510023π-0.510023\pi
−0.0314829 + 0.999504i 0.510023π0.510023\pi
374374 0 0
375375 −8.15082e34 −1.45137
376376 0 0
377377 −2.64666e34 −0.438621
378378 0 0
379379 2.68710e34 0.414624 0.207312 0.978275i 0.433529π-0.433529\pi
0.207312 + 0.978275i 0.433529π0.433529\pi
380380 0 0
381381 −1.16756e35 −1.67800
382382 0 0
383383 1.34101e35 1.79577 0.897883 0.440234i 0.145104π-0.145104\pi
0.897883 + 0.440234i 0.145104π0.145104\pi
384384 0 0
385385 1.55840e35 1.94517
386386 0 0
387387 −2.16921e35 −2.52467
388388 0 0
389389 −4.33242e34 −0.470339 −0.235170 0.971954i 0.575565π-0.575565\pi
−0.235170 + 0.971954i 0.575565π0.575565\pi
390390 0 0
391391 −3.57815e33 −0.0362470
392392 0 0
393393 2.12188e34 0.200642
394394 0 0
395395 2.41127e35 2.12904
396396 0 0
397397 1.60466e35 1.32346 0.661731 0.749742i 0.269822π-0.269822\pi
0.661731 + 0.749742i 0.269822π0.269822\pi
398398 0 0
399399 1.06486e35 0.820649
400400 0 0
401401 −1.76431e34 −0.127094 −0.0635471 0.997979i 0.520241π-0.520241\pi
−0.0635471 + 0.997979i 0.520241π0.520241\pi
402402 0 0
403403 4.52894e34 0.305055
404404 0 0
405405 3.31805e35 2.09045
406406 0 0
407407 −1.36675e35 −0.805685
408408 0 0
409409 2.15166e35 1.18716 0.593580 0.804775i 0.297714π-0.297714\pi
0.593580 + 0.804775i 0.297714π0.297714\pi
410410 0 0
411411 2.95878e35 1.52844
412412 0 0
413413 −2.98498e35 −1.44416
414414 0 0
415415 −9.33038e34 −0.422912
416416 0 0
417417 2.92625e35 1.24301
418418 0 0
419419 3.84206e34 0.152994 0.0764970 0.997070i 0.475626π-0.475626\pi
0.0764970 + 0.997070i 0.475626π0.475626\pi
420420 0 0
421421 1.44796e35 0.540690 0.270345 0.962763i 0.412862π-0.412862\pi
0.270345 + 0.962763i 0.412862π0.412862\pi
422422 0 0
423423 −1.07389e36 −3.76155
424424 0 0
425425 5.11289e33 0.0168041
426426 0 0
427427 −1.16088e35 −0.358107
428428 0 0
429429 −1.55481e36 −4.50301
430430 0 0
431431 4.31104e35 1.17257 0.586286 0.810104i 0.300590π-0.300590\pi
0.586286 + 0.810104i 0.300590π0.300590\pi
432432 0 0
433433 −1.65756e35 −0.423528 −0.211764 0.977321i 0.567921π-0.567921\pi
−0.211764 + 0.977321i 0.567921π0.567921\pi
434434 0 0
435435 2.78661e35 0.669070
436436 0 0
437437 −1.37907e35 −0.311234
438438 0 0
439439 2.34003e35 0.496537 0.248268 0.968691i 0.420139π-0.420139\pi
0.248268 + 0.968691i 0.420139π0.420139\pi
440440 0 0
441441 −1.68611e35 −0.336485
442442 0 0
443443 2.30890e35 0.433466 0.216733 0.976231i 0.430460π-0.430460\pi
0.216733 + 0.976231i 0.430460π0.430460\pi
444444 0 0
445445 7.11102e35 1.25624
446446 0 0
447447 1.06764e36 1.77530
448448 0 0
449449 −1.25981e34 −0.0197233 −0.00986163 0.999951i 0.503139π-0.503139\pi
−0.00986163 + 0.999951i 0.503139π0.503139\pi
450450 0 0
451451 −1.53154e36 −2.25811
452452 0 0
453453 −1.87794e34 −0.0260829
454454 0 0
455455 −1.07812e36 −1.41096
456456 0 0
457457 −4.05132e35 −0.499722 −0.249861 0.968282i 0.580385π-0.580385\pi
−0.249861 + 0.968282i 0.580385π0.580385\pi
458458 0 0
459459 1.12034e35 0.130281
460460 0 0
461461 1.47179e36 1.61393 0.806964 0.590601i 0.201109π-0.201109\pi
0.806964 + 0.590601i 0.201109π0.201109\pi
462462 0 0
463463 −1.22965e35 −0.127185 −0.0635927 0.997976i 0.520256π-0.520256\pi
−0.0635927 + 0.997976i 0.520256π0.520256\pi
464464 0 0
465465 −4.76843e35 −0.465329
466466 0 0
467467 −4.73907e35 −0.436430 −0.218215 0.975901i 0.570023π-0.570023\pi
−0.218215 + 0.975901i 0.570023π0.570023\pi
468468 0 0
469469 6.15627e35 0.535161
470470 0 0
471471 1.71972e36 1.41148
472472 0 0
473473 −2.67589e36 −2.07416
474474 0 0
475475 1.97058e35 0.144288
476476 0 0
477477 2.10887e36 1.45899
478478 0 0
479479 −8.61638e35 −0.563372 −0.281686 0.959507i 0.590894π-0.590894\pi
−0.281686 + 0.959507i 0.590894π0.590894\pi
480480 0 0
481481 9.45538e35 0.584414
482482 0 0
483483 −1.79884e36 −1.05125
484484 0 0
485485 −5.33612e35 −0.294925
486486 0 0
487487 −2.71211e36 −1.41797 −0.708983 0.705225i 0.750846π-0.750846\pi
−0.708983 + 0.705225i 0.750846π0.750846\pi
488488 0 0
489489 2.83294e36 1.40142
490490 0 0
491491 1.50407e36 0.704153 0.352077 0.935971i 0.385476π-0.385476\pi
0.352077 + 0.935971i 0.385476π0.385476\pi
492492 0 0
493493 4.22346e34 0.0187169
494494 0 0
495495 1.13447e37 4.76019
496496 0 0
497497 −1.81294e36 −0.720396
498498 0 0
499499 −5.13988e36 −1.93462 −0.967309 0.253600i 0.918385π-0.918385\pi
−0.967309 + 0.253600i 0.918385π0.918385\pi
500500 0 0
501501 −6.90116e35 −0.246101
502502 0 0
503503 2.32303e36 0.785032 0.392516 0.919745i 0.371605π-0.371605\pi
0.392516 + 0.919745i 0.371605π0.371605\pi
504504 0 0
505505 1.54557e35 0.0495056
506506 0 0
507507 4.81281e36 1.46147
508508 0 0
509509 2.52922e36 0.728278 0.364139 0.931345i 0.381363π-0.381363\pi
0.364139 + 0.931345i 0.381363π0.381363\pi
510510 0 0
511511 5.19173e36 1.41785
512512 0 0
513513 4.31796e36 1.11865
514514 0 0
515515 −1.18994e36 −0.292500
516516 0 0
517517 −1.32473e37 −3.09033
518518 0 0
519519 −1.17609e37 −2.60425
520520 0 0
521521 3.53956e36 0.744116 0.372058 0.928210i 0.378652π-0.378652\pi
0.372058 + 0.928210i 0.378652π0.378652\pi
522522 0 0
523523 2.83783e36 0.566519 0.283259 0.959043i 0.408584π-0.408584\pi
0.283259 + 0.959043i 0.408584π0.408584\pi
524524 0 0
525525 2.57040e36 0.487361
526526 0 0
527527 −7.22714e34 −0.0130174
528528 0 0
529529 −3.51358e36 −0.601310
530530 0 0
531531 −2.17299e37 −3.53413
532532 0 0
533533 1.05954e37 1.63795
534534 0 0
535535 2.33244e35 0.0342795
536536 0 0
537537 7.29922e35 0.102005
538538 0 0
539539 −2.07995e36 −0.276442
540540 0 0
541541 −1.41671e37 −1.79109 −0.895545 0.444972i 0.853214π-0.853214\pi
−0.895545 + 0.444972i 0.853214π0.853214\pi
542542 0 0
543543 −1.20850e36 −0.145362
544544 0 0
545545 −9.65081e36 −1.10462
546546 0 0
547547 3.30352e36 0.359872 0.179936 0.983678i 0.442411π-0.442411\pi
0.179936 + 0.983678i 0.442411π0.442411\pi
548548 0 0
549549 −8.45094e36 −0.876351
550550 0 0
551551 1.62778e36 0.160712
552552 0 0
553553 1.83726e37 1.72736
554554 0 0
555555 −9.95537e36 −0.891461
556556 0 0
557557 −1.48102e37 −1.26333 −0.631664 0.775242i 0.717628π-0.717628\pi
−0.631664 + 0.775242i 0.717628π0.717628\pi
558558 0 0
559559 1.85122e37 1.50452
560560 0 0
561561 2.48111e36 0.192153
562562 0 0
563563 −6.27545e36 −0.463214 −0.231607 0.972809i 0.574398π-0.574398\pi
−0.231607 + 0.972809i 0.574398π0.574398\pi
564564 0 0
565565 2.25185e37 1.58447
566566 0 0
567567 2.52818e37 1.69604
568568 0 0
569569 1.50622e37 0.963549 0.481774 0.876295i 0.339992π-0.339992\pi
0.481774 + 0.876295i 0.339992π0.339992\pi
570570 0 0
571571 1.23412e37 0.752959 0.376480 0.926425i 0.377134π-0.377134\pi
0.376480 + 0.926425i 0.377134π0.377134\pi
572572 0 0
573573 1.59638e37 0.929074
574574 0 0
575575 −3.32886e36 −0.184833
576576 0 0
577577 −2.71273e37 −1.43725 −0.718626 0.695397i 0.755228π-0.755228\pi
−0.718626 + 0.695397i 0.755228π0.755228\pi
578578 0 0
579579 −5.59088e36 −0.282696
580580 0 0
581581 −7.10927e36 −0.343121
582582 0 0
583583 2.60145e37 1.19864
584584 0 0
585585 −7.84844e37 −3.45286
586586 0 0
587587 −2.02495e36 −0.0850744 −0.0425372 0.999095i 0.513544π-0.513544\pi
−0.0425372 + 0.999095i 0.513544π0.513544\pi
588588 0 0
589589 −2.78544e36 −0.111773
590590 0 0
591591 −4.53838e37 −1.73968
592592 0 0
593593 2.96953e37 1.08755 0.543775 0.839231i 0.316994π-0.316994\pi
0.543775 + 0.839231i 0.316994π0.316994\pi
594594 0 0
595595 1.72043e36 0.0602086
596596 0 0
597597 5.27317e37 1.76367
598598 0 0
599599 −3.18999e37 −1.01983 −0.509914 0.860225i 0.670323π-0.670323\pi
−0.509914 + 0.860225i 0.670323π0.670323\pi
600600 0 0
601601 2.98723e37 0.912985 0.456492 0.889727i 0.349106π-0.349106\pi
0.456492 + 0.889727i 0.349106π0.349106\pi
602602 0 0
603603 4.48161e37 1.30963
604604 0 0
605605 9.92594e37 2.77379
606606 0 0
607607 3.86067e36 0.103185 0.0515924 0.998668i 0.483570π-0.483570\pi
0.0515924 + 0.998668i 0.483570π0.483570\pi
608608 0 0
609609 2.12326e37 0.542836
610610 0 0
611611 9.16466e37 2.24161
612612 0 0
613613 −4.07829e37 −0.954468 −0.477234 0.878776i 0.658361π-0.658361\pi
−0.477234 + 0.878776i 0.658361π0.658361\pi
614614 0 0
615615 −1.11557e38 −2.49851
616616 0 0
617617 4.76142e37 1.02067 0.510336 0.859975i 0.329521π-0.329521\pi
0.510336 + 0.859975i 0.329521π0.329521\pi
618618 0 0
619619 −5.61889e37 −1.15299 −0.576497 0.817099i 0.695581π-0.695581\pi
−0.576497 + 0.817099i 0.695581π0.695581\pi
620620 0 0
621621 −7.29424e37 −1.43299
622622 0 0
623623 5.41823e37 1.01922
624624 0 0
625625 −6.70040e37 −1.20704
626626 0 0
627627 9.56255e37 1.64992
628628 0 0
629629 −1.50886e36 −0.0249382
630630 0 0
631631 8.44313e37 1.33693 0.668463 0.743745i 0.266952π-0.266952\pi
0.668463 + 0.743745i 0.266952π0.266952\pi
632632 0 0
633633 −5.87424e37 −0.891254
634634 0 0
635635 −7.27029e37 −1.05708
636636 0 0
637637 1.43894e37 0.200521
638638 0 0
639639 −1.31977e38 −1.76294
640640 0 0
641641 6.89743e37 0.883291 0.441646 0.897190i 0.354395π-0.354395\pi
0.441646 + 0.897190i 0.354395π0.354395\pi
642642 0 0
643643 −9.85286e37 −1.20980 −0.604901 0.796301i 0.706787π-0.706787\pi
−0.604901 + 0.796301i 0.706787π0.706787\pi
644644 0 0
645645 −1.94911e38 −2.29498
646646 0 0
647647 −4.18480e37 −0.472571 −0.236286 0.971684i 0.575930π-0.575930\pi
−0.236286 + 0.971684i 0.575930π0.575930\pi
648648 0 0
649649 −2.68055e38 −2.90349
650650 0 0
651651 −3.63330e37 −0.377535
652652 0 0
653653 −1.30758e38 −1.30359 −0.651796 0.758394i 0.725984π-0.725984\pi
−0.651796 + 0.758394i 0.725984π0.725984\pi
654654 0 0
655655 1.32128e37 0.126397
656656 0 0
657657 3.77944e38 3.46973
658658 0 0
659659 2.08098e38 1.83365 0.916823 0.399294i 0.130745π-0.130745\pi
0.916823 + 0.399294i 0.130745π0.130745\pi
660660 0 0
661661 1.40577e38 1.18904 0.594519 0.804081i 0.297342π-0.297342\pi
0.594519 + 0.804081i 0.297342π0.297342\pi
662662 0 0
663663 −1.71647e37 −0.139381
664664 0 0
665665 6.63079e37 0.516979
666666 0 0
667667 −2.74977e37 −0.205872
668668 0 0
669669 −2.56189e38 −1.84208
670670 0 0
671671 −1.04249e38 −0.719974
672672 0 0
673673 5.46802e37 0.362766 0.181383 0.983413i 0.441943π-0.441943\pi
0.181383 + 0.983413i 0.441943π0.441943\pi
674674 0 0
675675 1.04229e38 0.664335
676676 0 0
677677 −9.40445e37 −0.575952 −0.287976 0.957638i 0.592982π-0.592982\pi
−0.287976 + 0.957638i 0.592982π0.592982\pi
678678 0 0
679679 −4.06585e37 −0.239282
680680 0 0
681681 3.41505e38 1.93157
682682 0 0
683683 3.05025e38 1.65827 0.829137 0.559045i 0.188832π-0.188832\pi
0.829137 + 0.559045i 0.188832π0.188832\pi
684684 0 0
685685 1.84241e38 0.962859
686686 0 0
687687 −6.00135e38 −3.01532
688688 0 0
689689 −1.79972e38 −0.869452
690690 0 0
691691 1.09109e38 0.506883 0.253441 0.967351i 0.418438π-0.418438\pi
0.253441 + 0.967351i 0.418438π0.418438\pi
692692 0 0
693693 8.64411e38 3.86208
694694 0 0
695695 1.82215e38 0.783051
696696 0 0
697697 −1.69078e37 −0.0698948
698698 0 0
699699 1.38509e38 0.550854
700700 0 0
701701 1.64967e38 0.631253 0.315627 0.948883i 0.397785π-0.397785\pi
0.315627 + 0.948883i 0.397785π0.397785\pi
702702 0 0
703703 −5.81536e37 −0.214131
704704 0 0
705705 −9.64928e38 −3.41934
706706 0 0
707707 1.17764e37 0.0401653
708708 0 0
709709 −4.51785e38 −1.48323 −0.741614 0.670827i 0.765939π-0.765939\pi
−0.741614 + 0.670827i 0.765939π0.765939\pi
710710 0 0
711711 1.33748e39 4.22715
712712 0 0
713713 4.70539e37 0.143181
714714 0 0
715715 −9.68165e38 −2.83673
716716 0 0
717717 −1.55610e38 −0.439064
718718 0 0
719719 −5.50353e38 −1.49555 −0.747776 0.663951i 0.768878π-0.768878\pi
−0.747776 + 0.663951i 0.768878π0.768878\pi
720720 0 0
721721 −9.06669e37 −0.237314
722722 0 0
723723 1.16478e39 2.93682
724724 0 0
725725 3.92921e37 0.0954425
726726 0 0
727727 −4.56014e38 −1.06724 −0.533622 0.845723i 0.679169π-0.679169\pi
−0.533622 + 0.845723i 0.679169π0.679169\pi
728728 0 0
729729 2.41595e37 0.0544837
730730 0 0
731731 −2.95411e37 −0.0642011
732732 0 0
733733 8.20814e38 1.71926 0.859629 0.510918i 0.170694π-0.170694\pi
0.859629 + 0.510918i 0.170694π0.170694\pi
734734 0 0
735735 −1.51503e38 −0.305873
736736 0 0
737737 5.52840e38 1.07594
738738 0 0
739739 −2.21038e38 −0.414731 −0.207366 0.978264i 0.566489π-0.566489\pi
−0.207366 + 0.978264i 0.566489π0.566489\pi
740740 0 0
741741 −6.61550e38 −1.19679
742742 0 0
743743 7.17538e38 1.25169 0.625843 0.779949i 0.284755π-0.284755\pi
0.625843 + 0.779949i 0.284755π0.284755\pi
744744 0 0
745745 6.64809e38 1.11837
746746 0 0
747747 −5.17537e38 −0.839679
748748 0 0
749749 1.77720e37 0.0278120
750750 0 0
751751 1.48899e37 0.0224778 0.0112389 0.999937i 0.496422π-0.496422\pi
0.0112389 + 0.999937i 0.496422π0.496422\pi
752752 0 0
753753 −1.21922e39 −1.77561
754754 0 0
755755 −1.16938e37 −0.0164313
756756 0 0
757757 −3.26772e38 −0.443048 −0.221524 0.975155i 0.571103π-0.571103\pi
−0.221524 + 0.975155i 0.571103π0.571103\pi
758758 0 0
759759 −1.61538e39 −2.11354
760760 0 0
761761 −5.38363e38 −0.679802 −0.339901 0.940461i 0.610394π-0.610394\pi
−0.339901 + 0.940461i 0.610394π0.610394\pi
762762 0 0
763763 −7.35342e38 −0.896207
764764 0 0
765765 1.25243e38 0.147341
766766 0 0
767767 1.85444e39 2.10608
768768 0 0
769769 5.03277e38 0.551825 0.275913 0.961183i 0.411020π-0.411020\pi
0.275913 + 0.961183i 0.411020π0.411020\pi
770770 0 0
771771 −2.88005e39 −3.04906
772772 0 0
773773 1.25666e39 1.28468 0.642341 0.766419i 0.277963π-0.277963\pi
0.642341 + 0.766419i 0.277963π0.277963\pi
774774 0 0
775775 −6.72363e37 −0.0663790
776776 0 0
777777 −7.58548e38 −0.723268
778778 0 0
779779 −6.51651e38 −0.600149
780780 0 0
781781 −1.62804e39 −1.44836
782782 0 0
783783 8.60973e38 0.739956
784784 0 0
785785 1.07085e39 0.889180
786786 0 0
787787 −1.12469e39 −0.902349 −0.451174 0.892436i 0.648995π-0.648995\pi
−0.451174 + 0.892436i 0.648995π0.648995\pi
788788 0 0
789789 −3.65029e39 −2.83001
790790 0 0
791791 1.71579e39 1.28553
792792 0 0
793793 7.21207e38 0.522242
794794 0 0
795795 1.89489e39 1.32626
796796 0 0
797797 1.13227e39 0.766062 0.383031 0.923735i 0.374880π-0.374880\pi
0.383031 + 0.923735i 0.374880π0.374880\pi
798798 0 0
799799 −1.46247e38 −0.0956544
800800 0 0
801801 3.94433e39 2.49422
802802 0 0
803803 4.66223e39 2.85058
804804 0 0
805805 −1.12012e39 −0.662250
806806 0 0
807807 2.58862e39 1.48004
808808 0 0
809809 −7.83646e38 −0.433326 −0.216663 0.976246i 0.569517π-0.569517\pi
−0.216663 + 0.976246i 0.569517π0.569517\pi
810810 0 0
811811 2.10581e39 1.12626 0.563130 0.826368i 0.309597π-0.309597\pi
0.563130 + 0.826368i 0.309597π0.309597\pi
812812 0 0
813813 2.45431e39 1.26972
814814 0 0
815815 1.76405e39 0.882843
816816 0 0
817817 −1.13856e39 −0.551261
818818 0 0
819819 −5.98011e39 −2.80141
820820 0 0
821821 1.97957e39 0.897303 0.448652 0.893707i 0.351904π-0.351904\pi
0.448652 + 0.893707i 0.351904π0.351904\pi
822822 0 0
823823 −3.79739e39 −1.66566 −0.832832 0.553525i 0.813282π-0.813282\pi
−0.832832 + 0.553525i 0.813282π0.813282\pi
824824 0 0
825825 2.30825e39 0.979839
826826 0 0
827827 9.06763e38 0.372537 0.186268 0.982499i 0.440361π-0.440361\pi
0.186268 + 0.982499i 0.440361π0.440361\pi
828828 0 0
829829 −1.06862e39 −0.424949 −0.212475 0.977167i 0.568152π-0.568152\pi
−0.212475 + 0.977167i 0.568152π0.568152\pi
830830 0 0
831831 −8.82638e37 −0.0339757
832832 0 0
833833 −2.29621e37 −0.00855665
834834 0 0
835835 −4.29730e38 −0.155034
836836 0 0
837837 −1.47329e39 −0.514629
838838 0 0
839839 −4.99062e39 −1.68798 −0.843992 0.536356i 0.819801π-0.819801\pi
−0.843992 + 0.536356i 0.819801π0.819801\pi
840840 0 0
841841 −2.72857e39 −0.893693
842842 0 0
843843 −7.55619e39 −2.39679
844844 0 0
845845 2.99690e39 0.920674
846846 0 0
847847 7.56305e39 2.25046
848848 0 0
849849 −3.47581e39 −1.00185
850850 0 0
851851 9.82376e38 0.274302
852852 0 0
853853 7.26169e39 1.96438 0.982190 0.187891i 0.0601650π-0.0601650\pi
0.982190 + 0.187891i 0.0601650π0.0601650\pi
854854 0 0
855855 4.82704e39 1.26514
856856 0 0
857857 1.14984e38 0.0292008 0.0146004 0.999893i 0.495352π-0.495352\pi
0.0146004 + 0.999893i 0.495352π0.495352\pi
858858 0 0
859859 2.75022e39 0.676798 0.338399 0.941003i 0.390115π-0.390115\pi
0.338399 + 0.941003i 0.390115π0.390115\pi
860860 0 0
861861 −8.50005e39 −2.02712
862862 0 0
863863 4.61137e39 1.06582 0.532910 0.846172i 0.321098π-0.321098\pi
0.532910 + 0.846172i 0.321098π0.321098\pi
864864 0 0
865865 −7.32344e39 −1.64058
866866 0 0
867867 −8.28443e39 −1.79889
868868 0 0
869869 1.64988e40 3.47285
870870 0 0
871871 −3.82462e39 −0.780447
872872 0 0
873873 −2.95983e39 −0.585565
874874 0 0
875875 −3.86723e39 −0.741808
876876 0 0
877877 1.02693e39 0.191006 0.0955028 0.995429i 0.469554π-0.469554\pi
0.0955028 + 0.995429i 0.469554π0.469554\pi
878878 0 0
879879 −8.51714e39 −1.53619
880880 0 0
881881 −4.80184e38 −0.0839911 −0.0419955 0.999118i 0.513372π-0.513372\pi
−0.0419955 + 0.999118i 0.513372π0.513372\pi
882882 0 0
883883 5.06858e39 0.859839 0.429919 0.902867i 0.358542π-0.358542\pi
0.429919 + 0.902867i 0.358542π0.358542\pi
884884 0 0
885885 −1.95250e40 −3.21261
886886 0 0
887887 9.25025e38 0.147633 0.0738167 0.997272i 0.476482π-0.476482\pi
0.0738167 + 0.997272i 0.476482π0.476482\pi
888888 0 0
889889 −5.53959e39 −0.857637
890890 0 0
891891 2.27033e40 3.40989
892892 0 0
893893 −5.63656e39 −0.821333
894894 0 0
895895 4.54516e38 0.0642597
896896 0 0
897897 1.11754e40 1.53308
898898 0 0
899899 −5.55398e38 −0.0739348
900900 0 0
901901 2.87194e38 0.0371014
902902 0 0
903903 −1.48512e40 −1.86199
904904 0 0
905905 −7.52524e38 −0.0915724
906906 0 0
907907 −3.26356e39 −0.385472 −0.192736 0.981251i 0.561736π-0.561736\pi
−0.192736 + 0.981251i 0.561736π0.561736\pi
908908 0 0
909909 8.57293e38 0.0982917
910910 0 0
911911 −9.43229e38 −0.104983 −0.0524915 0.998621i 0.516716π-0.516716\pi
−0.0524915 + 0.998621i 0.516716π0.516716\pi
912912 0 0
913913 −6.38421e39 −0.689845
914914 0 0
915915 −7.59343e39 −0.796624
916916 0 0
917917 1.00675e39 0.102550
918918 0 0
919919 −1.63185e40 −1.61407 −0.807033 0.590507i 0.798928π-0.798928\pi
−0.807033 + 0.590507i 0.798928π0.798928\pi
920920 0 0
921921 1.92347e40 1.84748
922922 0 0
923923 1.12630e40 1.05058
924924 0 0
925925 −1.40374e39 −0.127166
926926 0 0
927927 −6.60032e39 −0.580749
928928 0 0
929929 1.93800e40 1.65631 0.828153 0.560502i 0.189392π-0.189392\pi
0.828153 + 0.560502i 0.189392π0.189392\pi
930930 0 0
931931 −8.84991e38 −0.0734714
932932 0 0
933933 1.62617e40 1.31148
934934 0 0
935935 1.54497e39 0.121049
936936 0 0
937937 −6.58389e39 −0.501185 −0.250592 0.968093i 0.580625π-0.580625\pi
−0.250592 + 0.968093i 0.580625π0.580625\pi
938938 0 0
939939 4.39791e40 3.25283
940940 0 0
941941 −3.92916e39 −0.282384 −0.141192 0.989982i 0.545093π-0.545093\pi
−0.141192 + 0.989982i 0.545093π0.545093\pi
942942 0 0
943943 1.10082e40 0.768791
944944 0 0
945945 3.50719e40 2.38029
946946 0 0
947947 −2.18622e40 −1.44201 −0.721005 0.692930i 0.756320π-0.756320\pi
−0.721005 + 0.692930i 0.756320π0.756320\pi
948948 0 0
949949 −3.22539e40 −2.06771
950950 0 0
951951 1.97654e40 1.23160
952952 0 0
953953 −8.73050e39 −0.528792 −0.264396 0.964414i 0.585173π-0.585173\pi
−0.264396 + 0.964414i 0.585173π0.585173\pi
954954 0 0
955955 9.94056e39 0.585282
956956 0 0
957957 1.90671e40 1.09137
958958 0 0
959959 1.40382e40 0.781196
960960 0 0
961961 −1.75323e40 −0.948579
962962 0 0
963963 1.29376e39 0.0680609
964964 0 0
965965 −3.48140e39 −0.178088
966966 0 0
967967 −1.69507e40 −0.843197 −0.421599 0.906783i 0.638531π-0.638531\pi
−0.421599 + 0.906783i 0.638531π0.638531\pi
968968 0 0
969969 1.05568e39 0.0510695
970970 0 0
971971 −1.20819e40 −0.568430 −0.284215 0.958761i 0.591733π-0.591733\pi
−0.284215 + 0.958761i 0.591733π0.591733\pi
972972 0 0
973973 1.38839e40 0.635313
974974 0 0
975975 −1.59688e40 −0.710738
976976 0 0
977977 3.02320e39 0.130885 0.0654426 0.997856i 0.479154π-0.479154\pi
0.0654426 + 0.997856i 0.479154π0.479154\pi
978978 0 0
979979 4.86563e40 2.04915
980980 0 0
981981 −5.35310e40 −2.19318
982982 0 0
983983 −1.75980e39 −0.0701440 −0.0350720 0.999385i 0.511166π-0.511166\pi
−0.0350720 + 0.999385i 0.511166π0.511166\pi
984984 0 0
985985 −2.82601e40 −1.09594
986986 0 0
987987 −7.35226e40 −2.77421
988988 0 0
989989 1.92334e40 0.706165
990990 0 0
991991 −4.81245e40 −1.71938 −0.859691 0.510815i 0.829344π-0.829344\pi
−0.859691 + 0.510815i 0.829344π0.829344\pi
992992 0 0
993993 −5.87011e40 −2.04095
994994 0 0
995995 3.28356e40 1.11105
996996 0 0
997997 3.20519e40 1.05553 0.527764 0.849391i 0.323031π-0.323031\pi
0.527764 + 0.849391i 0.323031π0.323031\pi
998998 0 0
999999 −3.07589e40 −0.985908
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 16.28.a.f.1.4 4
4.3 odd 2 8.28.a.b.1.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
8.28.a.b.1.1 4 4.3 odd 2
16.28.a.f.1.4 4 1.1 even 1 trivial