Properties

Label 16.28.a.f.1.4
Level $16$
Weight $28$
Character 16.1
Self dual yes
Analytic conductor $73.897$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [16,28,Mod(1,16)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(16, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 28, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("16.1");
 
S:= CuspForms(chi, 28);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 16 = 2^{4} \)
Weight: \( k \) \(=\) \( 28 \)
Character orbit: \([\chi]\) \(=\) 16.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(73.8968919741\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\mathbb{Q}[x]/(x^{4} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 8494973x^{2} - 3687596342x + 10439241475305 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{42}\cdot 3^{5}\cdot 5 \)
Twist minimal: no (minimal twist has level 8)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(-2061.48\) of defining polynomial
Character \(\chi\) \(=\) 16.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+4.98397e6 q^{3} +3.10348e9 q^{5} +2.36469e11 q^{7} +1.72143e13 q^{9} +2.12352e14 q^{11} -1.46908e15 q^{13} +1.54676e16 q^{15} +2.34431e15 q^{17} +9.03530e16 q^{19} +1.17855e18 q^{21} -1.52631e18 q^{23} +2.18098e18 q^{25} +4.77899e19 q^{27} +1.80158e19 q^{29} -3.08284e19 q^{31} +1.05835e21 q^{33} +7.33876e20 q^{35} -6.43627e20 q^{37} -7.32184e21 q^{39} -7.21227e21 q^{41} -1.26012e22 q^{43} +5.34243e22 q^{45} -6.23837e22 q^{47} -9.79482e21 q^{49} +1.16840e22 q^{51} +1.22507e23 q^{53} +6.59029e23 q^{55} +4.50316e23 q^{57} -1.26232e24 q^{59} -4.90924e23 q^{61} +4.07065e24 q^{63} -4.55925e24 q^{65} +2.60342e24 q^{67} -7.60710e24 q^{69} -7.66670e24 q^{71} +2.19552e25 q^{73} +1.08699e25 q^{75} +5.02146e25 q^{77} +7.76957e25 q^{79} +1.06914e26 q^{81} -3.00643e25 q^{83} +7.27551e24 q^{85} +8.97901e25 q^{87} +2.29131e26 q^{89} -3.47391e26 q^{91} -1.53648e26 q^{93} +2.80408e26 q^{95} -1.71940e26 q^{97} +3.65549e27 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 122512 q^{3} + 3544066168 q^{5} + 211767036576 q^{7} + 19748930504020 q^{9} + 137002338905648 q^{11} - 5580886697000 q^{13} + 25\!\cdots\!12 q^{15} + 44\!\cdots\!44 q^{17} + 17\!\cdots\!72 q^{19}+ \cdots + 53\!\cdots\!16 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 4.98397e6 1.80484 0.902419 0.430860i \(-0.141790\pi\)
0.902419 + 0.430860i \(0.141790\pi\)
\(4\) 0 0
\(5\) 3.10348e9 1.13698 0.568491 0.822690i \(-0.307528\pi\)
0.568491 + 0.822690i \(0.307528\pi\)
\(6\) 0 0
\(7\) 2.36469e11 0.922466 0.461233 0.887279i \(-0.347407\pi\)
0.461233 + 0.887279i \(0.347407\pi\)
\(8\) 0 0
\(9\) 1.72143e13 2.25744
\(10\) 0 0
\(11\) 2.12352e14 1.85462 0.927310 0.374295i \(-0.122115\pi\)
0.927310 + 0.374295i \(0.122115\pi\)
\(12\) 0 0
\(13\) −1.46908e15 −1.34527 −0.672635 0.739974i \(-0.734838\pi\)
−0.672635 + 0.739974i \(0.734838\pi\)
\(14\) 0 0
\(15\) 1.54676e16 2.05207
\(16\) 0 0
\(17\) 2.34431e15 0.0574056 0.0287028 0.999588i \(-0.490862\pi\)
0.0287028 + 0.999588i \(0.490862\pi\)
\(18\) 0 0
\(19\) 9.03530e16 0.492911 0.246456 0.969154i \(-0.420734\pi\)
0.246456 + 0.969154i \(0.420734\pi\)
\(20\) 0 0
\(21\) 1.17855e18 1.66490
\(22\) 0 0
\(23\) −1.52631e18 −0.631419 −0.315710 0.948856i \(-0.602243\pi\)
−0.315710 + 0.948856i \(0.602243\pi\)
\(24\) 0 0
\(25\) 2.18098e18 0.292726
\(26\) 0 0
\(27\) 4.77899e19 2.26948
\(28\) 0 0
\(29\) 1.80158e19 0.326047 0.163023 0.986622i \(-0.447875\pi\)
0.163023 + 0.986622i \(0.447875\pi\)
\(30\) 0 0
\(31\) −3.08284e19 −0.226761 −0.113381 0.993552i \(-0.536168\pi\)
−0.113381 + 0.993552i \(0.536168\pi\)
\(32\) 0 0
\(33\) 1.05835e21 3.34729
\(34\) 0 0
\(35\) 7.33876e20 1.04883
\(36\) 0 0
\(37\) −6.43627e20 −0.434421 −0.217210 0.976125i \(-0.569696\pi\)
−0.217210 + 0.976125i \(0.569696\pi\)
\(38\) 0 0
\(39\) −7.32184e21 −2.42800
\(40\) 0 0
\(41\) −7.21227e21 −1.21756 −0.608780 0.793339i \(-0.708341\pi\)
−0.608780 + 0.793339i \(0.708341\pi\)
\(42\) 0 0
\(43\) −1.26012e22 −1.11838 −0.559188 0.829041i \(-0.688887\pi\)
−0.559188 + 0.829041i \(0.688887\pi\)
\(44\) 0 0
\(45\) 5.34243e22 2.56667
\(46\) 0 0
\(47\) −6.23837e22 −1.66629 −0.833144 0.553055i \(-0.813462\pi\)
−0.833144 + 0.553055i \(0.813462\pi\)
\(48\) 0 0
\(49\) −9.79482e21 −0.149056
\(50\) 0 0
\(51\) 1.16840e22 0.103608
\(52\) 0 0
\(53\) 1.22507e23 0.646302 0.323151 0.946347i \(-0.395258\pi\)
0.323151 + 0.946347i \(0.395258\pi\)
\(54\) 0 0
\(55\) 6.59029e23 2.10867
\(56\) 0 0
\(57\) 4.50316e23 0.889625
\(58\) 0 0
\(59\) −1.26232e24 −1.56555 −0.782773 0.622307i \(-0.786195\pi\)
−0.782773 + 0.622307i \(0.786195\pi\)
\(60\) 0 0
\(61\) −4.90924e23 −0.388206 −0.194103 0.980981i \(-0.562180\pi\)
−0.194103 + 0.980981i \(0.562180\pi\)
\(62\) 0 0
\(63\) 4.07065e24 2.08241
\(64\) 0 0
\(65\) −4.55925e24 −1.52955
\(66\) 0 0
\(67\) 2.60342e24 0.580141 0.290071 0.957005i \(-0.406321\pi\)
0.290071 + 0.957005i \(0.406321\pi\)
\(68\) 0 0
\(69\) −7.60710e24 −1.13961
\(70\) 0 0
\(71\) −7.66670e24 −0.780946 −0.390473 0.920614i \(-0.627689\pi\)
−0.390473 + 0.920614i \(0.627689\pi\)
\(72\) 0 0
\(73\) 2.19552e25 1.53702 0.768509 0.639839i \(-0.220999\pi\)
0.768509 + 0.639839i \(0.220999\pi\)
\(74\) 0 0
\(75\) 1.08699e25 0.528324
\(76\) 0 0
\(77\) 5.02146e25 1.71082
\(78\) 0 0
\(79\) 7.76957e25 1.87254 0.936270 0.351280i \(-0.114253\pi\)
0.936270 + 0.351280i \(0.114253\pi\)
\(80\) 0 0
\(81\) 1.06914e26 1.83860
\(82\) 0 0
\(83\) −3.00643e25 −0.371961 −0.185980 0.982553i \(-0.559546\pi\)
−0.185980 + 0.982553i \(0.559546\pi\)
\(84\) 0 0
\(85\) 7.27551e24 0.0652691
\(86\) 0 0
\(87\) 8.97901e25 0.588462
\(88\) 0 0
\(89\) 2.29131e26 1.10489 0.552444 0.833550i \(-0.313695\pi\)
0.552444 + 0.833550i \(0.313695\pi\)
\(90\) 0 0
\(91\) −3.47391e26 −1.24097
\(92\) 0 0
\(93\) −1.53648e26 −0.409267
\(94\) 0 0
\(95\) 2.80408e26 0.560431
\(96\) 0 0
\(97\) −1.71940e26 −0.259393 −0.129697 0.991554i \(-0.541400\pi\)
−0.129697 + 0.991554i \(0.541400\pi\)
\(98\) 0 0
\(99\) 3.65549e27 4.18669
\(100\) 0 0
\(101\) 4.98011e25 0.0435412 0.0217706 0.999763i \(-0.493070\pi\)
0.0217706 + 0.999763i \(0.493070\pi\)
\(102\) 0 0
\(103\) −3.83420e26 −0.257260 −0.128630 0.991693i \(-0.541058\pi\)
−0.128630 + 0.991693i \(0.541058\pi\)
\(104\) 0 0
\(105\) 3.65761e27 1.89296
\(106\) 0 0
\(107\) 7.51558e25 0.0301496 0.0150748 0.999886i \(-0.495201\pi\)
0.0150748 + 0.999886i \(0.495201\pi\)
\(108\) 0 0
\(109\) −3.10968e27 −0.971533 −0.485767 0.874089i \(-0.661460\pi\)
−0.485767 + 0.874089i \(0.661460\pi\)
\(110\) 0 0
\(111\) −3.20781e27 −0.784059
\(112\) 0 0
\(113\) 7.25589e27 1.39358 0.696790 0.717276i \(-0.254611\pi\)
0.696790 + 0.717276i \(0.254611\pi\)
\(114\) 0 0
\(115\) −4.73688e27 −0.717912
\(116\) 0 0
\(117\) −2.52892e28 −3.03687
\(118\) 0 0
\(119\) 5.54356e26 0.0529548
\(120\) 0 0
\(121\) 3.19833e28 2.43961
\(122\) 0 0
\(123\) −3.59457e28 −2.19750
\(124\) 0 0
\(125\) −1.63541e28 −0.804157
\(126\) 0 0
\(127\) −2.34263e28 −0.929722 −0.464861 0.885384i \(-0.653896\pi\)
−0.464861 + 0.885384i \(0.653896\pi\)
\(128\) 0 0
\(129\) −6.28040e28 −2.01849
\(130\) 0 0
\(131\) 4.25742e27 0.111169 0.0555845 0.998454i \(-0.482298\pi\)
0.0555845 + 0.998454i \(0.482298\pi\)
\(132\) 0 0
\(133\) 2.13657e28 0.454694
\(134\) 0 0
\(135\) 1.48315e29 2.58035
\(136\) 0 0
\(137\) 5.93659e28 0.846856 0.423428 0.905930i \(-0.360827\pi\)
0.423428 + 0.905930i \(0.360827\pi\)
\(138\) 0 0
\(139\) 5.87133e28 0.688711 0.344355 0.938839i \(-0.388097\pi\)
0.344355 + 0.938839i \(0.388097\pi\)
\(140\) 0 0
\(141\) −3.10918e29 −3.00738
\(142\) 0 0
\(143\) −3.11961e29 −2.49496
\(144\) 0 0
\(145\) 5.59115e28 0.370709
\(146\) 0 0
\(147\) −4.88170e28 −0.269022
\(148\) 0 0
\(149\) 2.14214e29 0.983635 0.491818 0.870698i \(-0.336333\pi\)
0.491818 + 0.870698i \(0.336333\pi\)
\(150\) 0 0
\(151\) −3.76796e27 −0.0144517 −0.00722583 0.999974i \(-0.502300\pi\)
−0.00722583 + 0.999974i \(0.502300\pi\)
\(152\) 0 0
\(153\) 4.03557e28 0.129590
\(154\) 0 0
\(155\) −9.56753e28 −0.257823
\(156\) 0 0
\(157\) 3.45050e29 0.782053 0.391027 0.920379i \(-0.372120\pi\)
0.391027 + 0.920379i \(0.372120\pi\)
\(158\) 0 0
\(159\) 6.10570e29 1.16647
\(160\) 0 0
\(161\) −3.60926e29 −0.582463
\(162\) 0 0
\(163\) 5.68411e29 0.776479 0.388240 0.921558i \(-0.373083\pi\)
0.388240 + 0.921558i \(0.373083\pi\)
\(164\) 0 0
\(165\) 3.28458e30 3.80580
\(166\) 0 0
\(167\) −1.38467e29 −0.136356 −0.0681781 0.997673i \(-0.521719\pi\)
−0.0681781 + 0.997673i \(0.521719\pi\)
\(168\) 0 0
\(169\) 9.65658e29 0.809753
\(170\) 0 0
\(171\) 1.55537e30 1.11272
\(172\) 0 0
\(173\) −2.35976e30 −1.44293 −0.721464 0.692452i \(-0.756530\pi\)
−0.721464 + 0.692452i \(0.756530\pi\)
\(174\) 0 0
\(175\) 5.15734e29 0.270030
\(176\) 0 0
\(177\) −6.29134e30 −2.82556
\(178\) 0 0
\(179\) 1.46454e29 0.0565178 0.0282589 0.999601i \(-0.491004\pi\)
0.0282589 + 0.999601i \(0.491004\pi\)
\(180\) 0 0
\(181\) −2.42478e29 −0.0805400 −0.0402700 0.999189i \(-0.512822\pi\)
−0.0402700 + 0.999189i \(0.512822\pi\)
\(182\) 0 0
\(183\) −2.44675e30 −0.700648
\(184\) 0 0
\(185\) −1.99748e30 −0.493928
\(186\) 0 0
\(187\) 4.97818e29 0.106466
\(188\) 0 0
\(189\) 1.13008e31 2.09351
\(190\) 0 0
\(191\) 3.20304e30 0.514768 0.257384 0.966309i \(-0.417139\pi\)
0.257384 + 0.966309i \(0.417139\pi\)
\(192\) 0 0
\(193\) −1.12177e30 −0.156632 −0.0783162 0.996929i \(-0.524954\pi\)
−0.0783162 + 0.996929i \(0.524954\pi\)
\(194\) 0 0
\(195\) −2.27231e31 −2.76059
\(196\) 0 0
\(197\) −9.10597e30 −0.963900 −0.481950 0.876199i \(-0.660071\pi\)
−0.481950 + 0.876199i \(0.660071\pi\)
\(198\) 0 0
\(199\) 1.05803e31 0.977192 0.488596 0.872510i \(-0.337509\pi\)
0.488596 + 0.872510i \(0.337509\pi\)
\(200\) 0 0
\(201\) 1.29753e31 1.04706
\(202\) 0 0
\(203\) 4.26017e30 0.300767
\(204\) 0 0
\(205\) −2.23831e31 −1.38434
\(206\) 0 0
\(207\) −2.62745e31 −1.42539
\(208\) 0 0
\(209\) 1.91866e31 0.914163
\(210\) 0 0
\(211\) −1.17863e31 −0.493814 −0.246907 0.969039i \(-0.579414\pi\)
−0.246907 + 0.969039i \(0.579414\pi\)
\(212\) 0 0
\(213\) −3.82106e31 −1.40948
\(214\) 0 0
\(215\) −3.91076e31 −1.27157
\(216\) 0 0
\(217\) −7.28997e30 −0.209180
\(218\) 0 0
\(219\) 1.09424e32 2.77407
\(220\) 0 0
\(221\) −3.44397e30 −0.0772261
\(222\) 0 0
\(223\) −5.14026e31 −1.02063 −0.510316 0.859987i \(-0.670472\pi\)
−0.510316 + 0.859987i \(0.670472\pi\)
\(224\) 0 0
\(225\) 3.75441e31 0.660812
\(226\) 0 0
\(227\) 6.85208e31 1.07022 0.535110 0.844782i \(-0.320270\pi\)
0.535110 + 0.844782i \(0.320270\pi\)
\(228\) 0 0
\(229\) −1.20413e32 −1.67069 −0.835343 0.549730i \(-0.814731\pi\)
−0.835343 + 0.549730i \(0.814731\pi\)
\(230\) 0 0
\(231\) 2.50268e32 3.08776
\(232\) 0 0
\(233\) 2.77909e31 0.305210 0.152605 0.988287i \(-0.451234\pi\)
0.152605 + 0.988287i \(0.451234\pi\)
\(234\) 0 0
\(235\) −1.93606e32 −1.89454
\(236\) 0 0
\(237\) 3.87233e32 3.37963
\(238\) 0 0
\(239\) −3.12220e31 −0.243271 −0.121635 0.992575i \(-0.538814\pi\)
−0.121635 + 0.992575i \(0.538814\pi\)
\(240\) 0 0
\(241\) 2.33705e32 1.62719 0.813596 0.581431i \(-0.197507\pi\)
0.813596 + 0.581431i \(0.197507\pi\)
\(242\) 0 0
\(243\) 1.68428e32 1.04889
\(244\) 0 0
\(245\) −3.03980e31 −0.169474
\(246\) 0 0
\(247\) −1.32736e32 −0.663099
\(248\) 0 0
\(249\) −1.49840e32 −0.671329
\(250\) 0 0
\(251\) −2.44628e32 −0.983808 −0.491904 0.870650i \(-0.663699\pi\)
−0.491904 + 0.870650i \(0.663699\pi\)
\(252\) 0 0
\(253\) −3.24115e32 −1.17104
\(254\) 0 0
\(255\) 3.62609e31 0.117800
\(256\) 0 0
\(257\) −5.77863e32 −1.68938 −0.844691 0.535254i \(-0.820216\pi\)
−0.844691 + 0.535254i \(0.820216\pi\)
\(258\) 0 0
\(259\) −1.52198e32 −0.400739
\(260\) 0 0
\(261\) 3.10130e32 0.736031
\(262\) 0 0
\(263\) −7.32407e32 −1.56801 −0.784007 0.620752i \(-0.786827\pi\)
−0.784007 + 0.620752i \(0.786827\pi\)
\(264\) 0 0
\(265\) 3.80197e32 0.734834
\(266\) 0 0
\(267\) 1.14198e33 1.99414
\(268\) 0 0
\(269\) 5.19389e32 0.820043 0.410022 0.912076i \(-0.365521\pi\)
0.410022 + 0.912076i \(0.365521\pi\)
\(270\) 0 0
\(271\) 4.92441e32 0.703508 0.351754 0.936092i \(-0.385585\pi\)
0.351754 + 0.936092i \(0.385585\pi\)
\(272\) 0 0
\(273\) −1.73139e33 −2.23974
\(274\) 0 0
\(275\) 4.63135e32 0.542896
\(276\) 0 0
\(277\) −1.77095e31 −0.0188248 −0.00941241 0.999956i \(-0.502996\pi\)
−0.00941241 + 0.999956i \(0.502996\pi\)
\(278\) 0 0
\(279\) −5.30691e32 −0.511900
\(280\) 0 0
\(281\) −1.51610e33 −1.32798 −0.663991 0.747741i \(-0.731139\pi\)
−0.663991 + 0.747741i \(0.731139\pi\)
\(282\) 0 0
\(283\) −6.97399e32 −0.555091 −0.277546 0.960712i \(-0.589521\pi\)
−0.277546 + 0.960712i \(0.589521\pi\)
\(284\) 0 0
\(285\) 1.39755e33 1.01149
\(286\) 0 0
\(287\) −1.70548e33 −1.12316
\(288\) 0 0
\(289\) −1.66222e33 −0.996705
\(290\) 0 0
\(291\) −8.56944e32 −0.468163
\(292\) 0 0
\(293\) −1.70891e33 −0.851149 −0.425575 0.904923i \(-0.639928\pi\)
−0.425575 + 0.904923i \(0.639928\pi\)
\(294\) 0 0
\(295\) −3.91757e33 −1.78000
\(296\) 0 0
\(297\) 1.01483e34 4.20901
\(298\) 0 0
\(299\) 2.24227e33 0.849430
\(300\) 0 0
\(301\) −2.97979e33 −1.03166
\(302\) 0 0
\(303\) 2.48207e32 0.0785849
\(304\) 0 0
\(305\) −1.52357e33 −0.441383
\(306\) 0 0
\(307\) 3.85932e33 1.02363 0.511814 0.859096i \(-0.328974\pi\)
0.511814 + 0.859096i \(0.328974\pi\)
\(308\) 0 0
\(309\) −1.91095e33 −0.464313
\(310\) 0 0
\(311\) 3.26279e33 0.726649 0.363324 0.931663i \(-0.381642\pi\)
0.363324 + 0.931663i \(0.381642\pi\)
\(312\) 0 0
\(313\) 8.82413e33 1.80228 0.901142 0.433525i \(-0.142730\pi\)
0.901142 + 0.433525i \(0.142730\pi\)
\(314\) 0 0
\(315\) 1.26332e34 2.36766
\(316\) 0 0
\(317\) 3.96580e33 0.682387 0.341194 0.939993i \(-0.389169\pi\)
0.341194 + 0.939993i \(0.389169\pi\)
\(318\) 0 0
\(319\) 3.82568e33 0.604693
\(320\) 0 0
\(321\) 3.74574e32 0.0544151
\(322\) 0 0
\(323\) 2.11815e32 0.0282959
\(324\) 0 0
\(325\) −3.20403e33 −0.393796
\(326\) 0 0
\(327\) −1.54985e34 −1.75346
\(328\) 0 0
\(329\) −1.47518e34 −1.53710
\(330\) 0 0
\(331\) −1.17780e34 −1.13082 −0.565410 0.824810i \(-0.691282\pi\)
−0.565410 + 0.824810i \(0.691282\pi\)
\(332\) 0 0
\(333\) −1.10796e34 −0.980679
\(334\) 0 0
\(335\) 8.07964e33 0.659610
\(336\) 0 0
\(337\) 1.94526e34 1.46546 0.732731 0.680518i \(-0.238245\pi\)
0.732731 + 0.680518i \(0.238245\pi\)
\(338\) 0 0
\(339\) 3.61631e34 2.51518
\(340\) 0 0
\(341\) −6.54648e33 −0.420556
\(342\) 0 0
\(343\) −1.78551e34 −1.05997
\(344\) 0 0
\(345\) −2.36084e34 −1.29571
\(346\) 0 0
\(347\) −2.25323e34 −1.14382 −0.571910 0.820316i \(-0.693797\pi\)
−0.571910 + 0.820316i \(0.693797\pi\)
\(348\) 0 0
\(349\) 2.87978e34 1.35275 0.676373 0.736559i \(-0.263551\pi\)
0.676373 + 0.736559i \(0.263551\pi\)
\(350\) 0 0
\(351\) −7.02071e34 −3.05306
\(352\) 0 0
\(353\) 1.55573e34 0.626577 0.313289 0.949658i \(-0.398569\pi\)
0.313289 + 0.949658i \(0.398569\pi\)
\(354\) 0 0
\(355\) −2.37934e34 −0.887921
\(356\) 0 0
\(357\) 2.76289e33 0.0955748
\(358\) 0 0
\(359\) −2.82527e33 −0.0906326 −0.0453163 0.998973i \(-0.514430\pi\)
−0.0453163 + 0.998973i \(0.514430\pi\)
\(360\) 0 0
\(361\) −2.54370e34 −0.757038
\(362\) 0 0
\(363\) 1.59404e35 4.40310
\(364\) 0 0
\(365\) 6.81375e34 1.74756
\(366\) 0 0
\(367\) −6.62769e34 −1.57896 −0.789478 0.613778i \(-0.789649\pi\)
−0.789478 + 0.613778i \(0.789649\pi\)
\(368\) 0 0
\(369\) −1.24154e35 −2.74857
\(370\) 0 0
\(371\) 2.89690e34 0.596192
\(372\) 0 0
\(373\) −3.28983e33 −0.0629657 −0.0314829 0.999504i \(-0.510023\pi\)
−0.0314829 + 0.999504i \(0.510023\pi\)
\(374\) 0 0
\(375\) −8.15082e34 −1.45137
\(376\) 0 0
\(377\) −2.64666e34 −0.438621
\(378\) 0 0
\(379\) 2.68710e34 0.414624 0.207312 0.978275i \(-0.433529\pi\)
0.207312 + 0.978275i \(0.433529\pi\)
\(380\) 0 0
\(381\) −1.16756e35 −1.67800
\(382\) 0 0
\(383\) 1.34101e35 1.79577 0.897883 0.440234i \(-0.145104\pi\)
0.897883 + 0.440234i \(0.145104\pi\)
\(384\) 0 0
\(385\) 1.55840e35 1.94517
\(386\) 0 0
\(387\) −2.16921e35 −2.52467
\(388\) 0 0
\(389\) −4.33242e34 −0.470339 −0.235170 0.971954i \(-0.575565\pi\)
−0.235170 + 0.971954i \(0.575565\pi\)
\(390\) 0 0
\(391\) −3.57815e33 −0.0362470
\(392\) 0 0
\(393\) 2.12188e34 0.200642
\(394\) 0 0
\(395\) 2.41127e35 2.12904
\(396\) 0 0
\(397\) 1.60466e35 1.32346 0.661731 0.749742i \(-0.269822\pi\)
0.661731 + 0.749742i \(0.269822\pi\)
\(398\) 0 0
\(399\) 1.06486e35 0.820649
\(400\) 0 0
\(401\) −1.76431e34 −0.127094 −0.0635471 0.997979i \(-0.520241\pi\)
−0.0635471 + 0.997979i \(0.520241\pi\)
\(402\) 0 0
\(403\) 4.52894e34 0.305055
\(404\) 0 0
\(405\) 3.31805e35 2.09045
\(406\) 0 0
\(407\) −1.36675e35 −0.805685
\(408\) 0 0
\(409\) 2.15166e35 1.18716 0.593580 0.804775i \(-0.297714\pi\)
0.593580 + 0.804775i \(0.297714\pi\)
\(410\) 0 0
\(411\) 2.95878e35 1.52844
\(412\) 0 0
\(413\) −2.98498e35 −1.44416
\(414\) 0 0
\(415\) −9.33038e34 −0.422912
\(416\) 0 0
\(417\) 2.92625e35 1.24301
\(418\) 0 0
\(419\) 3.84206e34 0.152994 0.0764970 0.997070i \(-0.475626\pi\)
0.0764970 + 0.997070i \(0.475626\pi\)
\(420\) 0 0
\(421\) 1.44796e35 0.540690 0.270345 0.962763i \(-0.412862\pi\)
0.270345 + 0.962763i \(0.412862\pi\)
\(422\) 0 0
\(423\) −1.07389e36 −3.76155
\(424\) 0 0
\(425\) 5.11289e33 0.0168041
\(426\) 0 0
\(427\) −1.16088e35 −0.358107
\(428\) 0 0
\(429\) −1.55481e36 −4.50301
\(430\) 0 0
\(431\) 4.31104e35 1.17257 0.586286 0.810104i \(-0.300590\pi\)
0.586286 + 0.810104i \(0.300590\pi\)
\(432\) 0 0
\(433\) −1.65756e35 −0.423528 −0.211764 0.977321i \(-0.567921\pi\)
−0.211764 + 0.977321i \(0.567921\pi\)
\(434\) 0 0
\(435\) 2.78661e35 0.669070
\(436\) 0 0
\(437\) −1.37907e35 −0.311234
\(438\) 0 0
\(439\) 2.34003e35 0.496537 0.248268 0.968691i \(-0.420139\pi\)
0.248268 + 0.968691i \(0.420139\pi\)
\(440\) 0 0
\(441\) −1.68611e35 −0.336485
\(442\) 0 0
\(443\) 2.30890e35 0.433466 0.216733 0.976231i \(-0.430460\pi\)
0.216733 + 0.976231i \(0.430460\pi\)
\(444\) 0 0
\(445\) 7.11102e35 1.25624
\(446\) 0 0
\(447\) 1.06764e36 1.77530
\(448\) 0 0
\(449\) −1.25981e34 −0.0197233 −0.00986163 0.999951i \(-0.503139\pi\)
−0.00986163 + 0.999951i \(0.503139\pi\)
\(450\) 0 0
\(451\) −1.53154e36 −2.25811
\(452\) 0 0
\(453\) −1.87794e34 −0.0260829
\(454\) 0 0
\(455\) −1.07812e36 −1.41096
\(456\) 0 0
\(457\) −4.05132e35 −0.499722 −0.249861 0.968282i \(-0.580385\pi\)
−0.249861 + 0.968282i \(0.580385\pi\)
\(458\) 0 0
\(459\) 1.12034e35 0.130281
\(460\) 0 0
\(461\) 1.47179e36 1.61393 0.806964 0.590601i \(-0.201109\pi\)
0.806964 + 0.590601i \(0.201109\pi\)
\(462\) 0 0
\(463\) −1.22965e35 −0.127185 −0.0635927 0.997976i \(-0.520256\pi\)
−0.0635927 + 0.997976i \(0.520256\pi\)
\(464\) 0 0
\(465\) −4.76843e35 −0.465329
\(466\) 0 0
\(467\) −4.73907e35 −0.436430 −0.218215 0.975901i \(-0.570023\pi\)
−0.218215 + 0.975901i \(0.570023\pi\)
\(468\) 0 0
\(469\) 6.15627e35 0.535161
\(470\) 0 0
\(471\) 1.71972e36 1.41148
\(472\) 0 0
\(473\) −2.67589e36 −2.07416
\(474\) 0 0
\(475\) 1.97058e35 0.144288
\(476\) 0 0
\(477\) 2.10887e36 1.45899
\(478\) 0 0
\(479\) −8.61638e35 −0.563372 −0.281686 0.959507i \(-0.590894\pi\)
−0.281686 + 0.959507i \(0.590894\pi\)
\(480\) 0 0
\(481\) 9.45538e35 0.584414
\(482\) 0 0
\(483\) −1.79884e36 −1.05125
\(484\) 0 0
\(485\) −5.33612e35 −0.294925
\(486\) 0 0
\(487\) −2.71211e36 −1.41797 −0.708983 0.705225i \(-0.750846\pi\)
−0.708983 + 0.705225i \(0.750846\pi\)
\(488\) 0 0
\(489\) 2.83294e36 1.40142
\(490\) 0 0
\(491\) 1.50407e36 0.704153 0.352077 0.935971i \(-0.385476\pi\)
0.352077 + 0.935971i \(0.385476\pi\)
\(492\) 0 0
\(493\) 4.22346e34 0.0187169
\(494\) 0 0
\(495\) 1.13447e37 4.76019
\(496\) 0 0
\(497\) −1.81294e36 −0.720396
\(498\) 0 0
\(499\) −5.13988e36 −1.93462 −0.967309 0.253600i \(-0.918385\pi\)
−0.967309 + 0.253600i \(0.918385\pi\)
\(500\) 0 0
\(501\) −6.90116e35 −0.246101
\(502\) 0 0
\(503\) 2.32303e36 0.785032 0.392516 0.919745i \(-0.371605\pi\)
0.392516 + 0.919745i \(0.371605\pi\)
\(504\) 0 0
\(505\) 1.54557e35 0.0495056
\(506\) 0 0
\(507\) 4.81281e36 1.46147
\(508\) 0 0
\(509\) 2.52922e36 0.728278 0.364139 0.931345i \(-0.381363\pi\)
0.364139 + 0.931345i \(0.381363\pi\)
\(510\) 0 0
\(511\) 5.19173e36 1.41785
\(512\) 0 0
\(513\) 4.31796e36 1.11865
\(514\) 0 0
\(515\) −1.18994e36 −0.292500
\(516\) 0 0
\(517\) −1.32473e37 −3.09033
\(518\) 0 0
\(519\) −1.17609e37 −2.60425
\(520\) 0 0
\(521\) 3.53956e36 0.744116 0.372058 0.928210i \(-0.378652\pi\)
0.372058 + 0.928210i \(0.378652\pi\)
\(522\) 0 0
\(523\) 2.83783e36 0.566519 0.283259 0.959043i \(-0.408584\pi\)
0.283259 + 0.959043i \(0.408584\pi\)
\(524\) 0 0
\(525\) 2.57040e36 0.487361
\(526\) 0 0
\(527\) −7.22714e34 −0.0130174
\(528\) 0 0
\(529\) −3.51358e36 −0.601310
\(530\) 0 0
\(531\) −2.17299e37 −3.53413
\(532\) 0 0
\(533\) 1.05954e37 1.63795
\(534\) 0 0
\(535\) 2.33244e35 0.0342795
\(536\) 0 0
\(537\) 7.29922e35 0.102005
\(538\) 0 0
\(539\) −2.07995e36 −0.276442
\(540\) 0 0
\(541\) −1.41671e37 −1.79109 −0.895545 0.444972i \(-0.853214\pi\)
−0.895545 + 0.444972i \(0.853214\pi\)
\(542\) 0 0
\(543\) −1.20850e36 −0.145362
\(544\) 0 0
\(545\) −9.65081e36 −1.10462
\(546\) 0 0
\(547\) 3.30352e36 0.359872 0.179936 0.983678i \(-0.442411\pi\)
0.179936 + 0.983678i \(0.442411\pi\)
\(548\) 0 0
\(549\) −8.45094e36 −0.876351
\(550\) 0 0
\(551\) 1.62778e36 0.160712
\(552\) 0 0
\(553\) 1.83726e37 1.72736
\(554\) 0 0
\(555\) −9.95537e36 −0.891461
\(556\) 0 0
\(557\) −1.48102e37 −1.26333 −0.631664 0.775242i \(-0.717628\pi\)
−0.631664 + 0.775242i \(0.717628\pi\)
\(558\) 0 0
\(559\) 1.85122e37 1.50452
\(560\) 0 0
\(561\) 2.48111e36 0.192153
\(562\) 0 0
\(563\) −6.27545e36 −0.463214 −0.231607 0.972809i \(-0.574398\pi\)
−0.231607 + 0.972809i \(0.574398\pi\)
\(564\) 0 0
\(565\) 2.25185e37 1.58447
\(566\) 0 0
\(567\) 2.52818e37 1.69604
\(568\) 0 0
\(569\) 1.50622e37 0.963549 0.481774 0.876295i \(-0.339992\pi\)
0.481774 + 0.876295i \(0.339992\pi\)
\(570\) 0 0
\(571\) 1.23412e37 0.752959 0.376480 0.926425i \(-0.377134\pi\)
0.376480 + 0.926425i \(0.377134\pi\)
\(572\) 0 0
\(573\) 1.59638e37 0.929074
\(574\) 0 0
\(575\) −3.32886e36 −0.184833
\(576\) 0 0
\(577\) −2.71273e37 −1.43725 −0.718626 0.695397i \(-0.755228\pi\)
−0.718626 + 0.695397i \(0.755228\pi\)
\(578\) 0 0
\(579\) −5.59088e36 −0.282696
\(580\) 0 0
\(581\) −7.10927e36 −0.343121
\(582\) 0 0
\(583\) 2.60145e37 1.19864
\(584\) 0 0
\(585\) −7.84844e37 −3.45286
\(586\) 0 0
\(587\) −2.02495e36 −0.0850744 −0.0425372 0.999095i \(-0.513544\pi\)
−0.0425372 + 0.999095i \(0.513544\pi\)
\(588\) 0 0
\(589\) −2.78544e36 −0.111773
\(590\) 0 0
\(591\) −4.53838e37 −1.73968
\(592\) 0 0
\(593\) 2.96953e37 1.08755 0.543775 0.839231i \(-0.316994\pi\)
0.543775 + 0.839231i \(0.316994\pi\)
\(594\) 0 0
\(595\) 1.72043e36 0.0602086
\(596\) 0 0
\(597\) 5.27317e37 1.76367
\(598\) 0 0
\(599\) −3.18999e37 −1.01983 −0.509914 0.860225i \(-0.670323\pi\)
−0.509914 + 0.860225i \(0.670323\pi\)
\(600\) 0 0
\(601\) 2.98723e37 0.912985 0.456492 0.889727i \(-0.349106\pi\)
0.456492 + 0.889727i \(0.349106\pi\)
\(602\) 0 0
\(603\) 4.48161e37 1.30963
\(604\) 0 0
\(605\) 9.92594e37 2.77379
\(606\) 0 0
\(607\) 3.86067e36 0.103185 0.0515924 0.998668i \(-0.483570\pi\)
0.0515924 + 0.998668i \(0.483570\pi\)
\(608\) 0 0
\(609\) 2.12326e37 0.542836
\(610\) 0 0
\(611\) 9.16466e37 2.24161
\(612\) 0 0
\(613\) −4.07829e37 −0.954468 −0.477234 0.878776i \(-0.658361\pi\)
−0.477234 + 0.878776i \(0.658361\pi\)
\(614\) 0 0
\(615\) −1.11557e38 −2.49851
\(616\) 0 0
\(617\) 4.76142e37 1.02067 0.510336 0.859975i \(-0.329521\pi\)
0.510336 + 0.859975i \(0.329521\pi\)
\(618\) 0 0
\(619\) −5.61889e37 −1.15299 −0.576497 0.817099i \(-0.695581\pi\)
−0.576497 + 0.817099i \(0.695581\pi\)
\(620\) 0 0
\(621\) −7.29424e37 −1.43299
\(622\) 0 0
\(623\) 5.41823e37 1.01922
\(624\) 0 0
\(625\) −6.70040e37 −1.20704
\(626\) 0 0
\(627\) 9.56255e37 1.64992
\(628\) 0 0
\(629\) −1.50886e36 −0.0249382
\(630\) 0 0
\(631\) 8.44313e37 1.33693 0.668463 0.743745i \(-0.266952\pi\)
0.668463 + 0.743745i \(0.266952\pi\)
\(632\) 0 0
\(633\) −5.87424e37 −0.891254
\(634\) 0 0
\(635\) −7.27029e37 −1.05708
\(636\) 0 0
\(637\) 1.43894e37 0.200521
\(638\) 0 0
\(639\) −1.31977e38 −1.76294
\(640\) 0 0
\(641\) 6.89743e37 0.883291 0.441646 0.897190i \(-0.354395\pi\)
0.441646 + 0.897190i \(0.354395\pi\)
\(642\) 0 0
\(643\) −9.85286e37 −1.20980 −0.604901 0.796301i \(-0.706787\pi\)
−0.604901 + 0.796301i \(0.706787\pi\)
\(644\) 0 0
\(645\) −1.94911e38 −2.29498
\(646\) 0 0
\(647\) −4.18480e37 −0.472571 −0.236286 0.971684i \(-0.575930\pi\)
−0.236286 + 0.971684i \(0.575930\pi\)
\(648\) 0 0
\(649\) −2.68055e38 −2.90349
\(650\) 0 0
\(651\) −3.63330e37 −0.377535
\(652\) 0 0
\(653\) −1.30758e38 −1.30359 −0.651796 0.758394i \(-0.725984\pi\)
−0.651796 + 0.758394i \(0.725984\pi\)
\(654\) 0 0
\(655\) 1.32128e37 0.126397
\(656\) 0 0
\(657\) 3.77944e38 3.46973
\(658\) 0 0
\(659\) 2.08098e38 1.83365 0.916823 0.399294i \(-0.130745\pi\)
0.916823 + 0.399294i \(0.130745\pi\)
\(660\) 0 0
\(661\) 1.40577e38 1.18904 0.594519 0.804081i \(-0.297342\pi\)
0.594519 + 0.804081i \(0.297342\pi\)
\(662\) 0 0
\(663\) −1.71647e37 −0.139381
\(664\) 0 0
\(665\) 6.63079e37 0.516979
\(666\) 0 0
\(667\) −2.74977e37 −0.205872
\(668\) 0 0
\(669\) −2.56189e38 −1.84208
\(670\) 0 0
\(671\) −1.04249e38 −0.719974
\(672\) 0 0
\(673\) 5.46802e37 0.362766 0.181383 0.983413i \(-0.441943\pi\)
0.181383 + 0.983413i \(0.441943\pi\)
\(674\) 0 0
\(675\) 1.04229e38 0.664335
\(676\) 0 0
\(677\) −9.40445e37 −0.575952 −0.287976 0.957638i \(-0.592982\pi\)
−0.287976 + 0.957638i \(0.592982\pi\)
\(678\) 0 0
\(679\) −4.06585e37 −0.239282
\(680\) 0 0
\(681\) 3.41505e38 1.93157
\(682\) 0 0
\(683\) 3.05025e38 1.65827 0.829137 0.559045i \(-0.188832\pi\)
0.829137 + 0.559045i \(0.188832\pi\)
\(684\) 0 0
\(685\) 1.84241e38 0.962859
\(686\) 0 0
\(687\) −6.00135e38 −3.01532
\(688\) 0 0
\(689\) −1.79972e38 −0.869452
\(690\) 0 0
\(691\) 1.09109e38 0.506883 0.253441 0.967351i \(-0.418438\pi\)
0.253441 + 0.967351i \(0.418438\pi\)
\(692\) 0 0
\(693\) 8.64411e38 3.86208
\(694\) 0 0
\(695\) 1.82215e38 0.783051
\(696\) 0 0
\(697\) −1.69078e37 −0.0698948
\(698\) 0 0
\(699\) 1.38509e38 0.550854
\(700\) 0 0
\(701\) 1.64967e38 0.631253 0.315627 0.948883i \(-0.397785\pi\)
0.315627 + 0.948883i \(0.397785\pi\)
\(702\) 0 0
\(703\) −5.81536e37 −0.214131
\(704\) 0 0
\(705\) −9.64928e38 −3.41934
\(706\) 0 0
\(707\) 1.17764e37 0.0401653
\(708\) 0 0
\(709\) −4.51785e38 −1.48323 −0.741614 0.670827i \(-0.765939\pi\)
−0.741614 + 0.670827i \(0.765939\pi\)
\(710\) 0 0
\(711\) 1.33748e39 4.22715
\(712\) 0 0
\(713\) 4.70539e37 0.143181
\(714\) 0 0
\(715\) −9.68165e38 −2.83673
\(716\) 0 0
\(717\) −1.55610e38 −0.439064
\(718\) 0 0
\(719\) −5.50353e38 −1.49555 −0.747776 0.663951i \(-0.768878\pi\)
−0.747776 + 0.663951i \(0.768878\pi\)
\(720\) 0 0
\(721\) −9.06669e37 −0.237314
\(722\) 0 0
\(723\) 1.16478e39 2.93682
\(724\) 0 0
\(725\) 3.92921e37 0.0954425
\(726\) 0 0
\(727\) −4.56014e38 −1.06724 −0.533622 0.845723i \(-0.679169\pi\)
−0.533622 + 0.845723i \(0.679169\pi\)
\(728\) 0 0
\(729\) 2.41595e37 0.0544837
\(730\) 0 0
\(731\) −2.95411e37 −0.0642011
\(732\) 0 0
\(733\) 8.20814e38 1.71926 0.859629 0.510918i \(-0.170694\pi\)
0.859629 + 0.510918i \(0.170694\pi\)
\(734\) 0 0
\(735\) −1.51503e38 −0.305873
\(736\) 0 0
\(737\) 5.52840e38 1.07594
\(738\) 0 0
\(739\) −2.21038e38 −0.414731 −0.207366 0.978264i \(-0.566489\pi\)
−0.207366 + 0.978264i \(0.566489\pi\)
\(740\) 0 0
\(741\) −6.61550e38 −1.19679
\(742\) 0 0
\(743\) 7.17538e38 1.25169 0.625843 0.779949i \(-0.284755\pi\)
0.625843 + 0.779949i \(0.284755\pi\)
\(744\) 0 0
\(745\) 6.64809e38 1.11837
\(746\) 0 0
\(747\) −5.17537e38 −0.839679
\(748\) 0 0
\(749\) 1.77720e37 0.0278120
\(750\) 0 0
\(751\) 1.48899e37 0.0224778 0.0112389 0.999937i \(-0.496422\pi\)
0.0112389 + 0.999937i \(0.496422\pi\)
\(752\) 0 0
\(753\) −1.21922e39 −1.77561
\(754\) 0 0
\(755\) −1.16938e37 −0.0164313
\(756\) 0 0
\(757\) −3.26772e38 −0.443048 −0.221524 0.975155i \(-0.571103\pi\)
−0.221524 + 0.975155i \(0.571103\pi\)
\(758\) 0 0
\(759\) −1.61538e39 −2.11354
\(760\) 0 0
\(761\) −5.38363e38 −0.679802 −0.339901 0.940461i \(-0.610394\pi\)
−0.339901 + 0.940461i \(0.610394\pi\)
\(762\) 0 0
\(763\) −7.35342e38 −0.896207
\(764\) 0 0
\(765\) 1.25243e38 0.147341
\(766\) 0 0
\(767\) 1.85444e39 2.10608
\(768\) 0 0
\(769\) 5.03277e38 0.551825 0.275913 0.961183i \(-0.411020\pi\)
0.275913 + 0.961183i \(0.411020\pi\)
\(770\) 0 0
\(771\) −2.88005e39 −3.04906
\(772\) 0 0
\(773\) 1.25666e39 1.28468 0.642341 0.766419i \(-0.277963\pi\)
0.642341 + 0.766419i \(0.277963\pi\)
\(774\) 0 0
\(775\) −6.72363e37 −0.0663790
\(776\) 0 0
\(777\) −7.58548e38 −0.723268
\(778\) 0 0
\(779\) −6.51651e38 −0.600149
\(780\) 0 0
\(781\) −1.62804e39 −1.44836
\(782\) 0 0
\(783\) 8.60973e38 0.739956
\(784\) 0 0
\(785\) 1.07085e39 0.889180
\(786\) 0 0
\(787\) −1.12469e39 −0.902349 −0.451174 0.892436i \(-0.648995\pi\)
−0.451174 + 0.892436i \(0.648995\pi\)
\(788\) 0 0
\(789\) −3.65029e39 −2.83001
\(790\) 0 0
\(791\) 1.71579e39 1.28553
\(792\) 0 0
\(793\) 7.21207e38 0.522242
\(794\) 0 0
\(795\) 1.89489e39 1.32626
\(796\) 0 0
\(797\) 1.13227e39 0.766062 0.383031 0.923735i \(-0.374880\pi\)
0.383031 + 0.923735i \(0.374880\pi\)
\(798\) 0 0
\(799\) −1.46247e38 −0.0956544
\(800\) 0 0
\(801\) 3.94433e39 2.49422
\(802\) 0 0
\(803\) 4.66223e39 2.85058
\(804\) 0 0
\(805\) −1.12012e39 −0.662250
\(806\) 0 0
\(807\) 2.58862e39 1.48004
\(808\) 0 0
\(809\) −7.83646e38 −0.433326 −0.216663 0.976246i \(-0.569517\pi\)
−0.216663 + 0.976246i \(0.569517\pi\)
\(810\) 0 0
\(811\) 2.10581e39 1.12626 0.563130 0.826368i \(-0.309597\pi\)
0.563130 + 0.826368i \(0.309597\pi\)
\(812\) 0 0
\(813\) 2.45431e39 1.26972
\(814\) 0 0
\(815\) 1.76405e39 0.882843
\(816\) 0 0
\(817\) −1.13856e39 −0.551261
\(818\) 0 0
\(819\) −5.98011e39 −2.80141
\(820\) 0 0
\(821\) 1.97957e39 0.897303 0.448652 0.893707i \(-0.351904\pi\)
0.448652 + 0.893707i \(0.351904\pi\)
\(822\) 0 0
\(823\) −3.79739e39 −1.66566 −0.832832 0.553525i \(-0.813282\pi\)
−0.832832 + 0.553525i \(0.813282\pi\)
\(824\) 0 0
\(825\) 2.30825e39 0.979839
\(826\) 0 0
\(827\) 9.06763e38 0.372537 0.186268 0.982499i \(-0.440361\pi\)
0.186268 + 0.982499i \(0.440361\pi\)
\(828\) 0 0
\(829\) −1.06862e39 −0.424949 −0.212475 0.977167i \(-0.568152\pi\)
−0.212475 + 0.977167i \(0.568152\pi\)
\(830\) 0 0
\(831\) −8.82638e37 −0.0339757
\(832\) 0 0
\(833\) −2.29621e37 −0.00855665
\(834\) 0 0
\(835\) −4.29730e38 −0.155034
\(836\) 0 0
\(837\) −1.47329e39 −0.514629
\(838\) 0 0
\(839\) −4.99062e39 −1.68798 −0.843992 0.536356i \(-0.819801\pi\)
−0.843992 + 0.536356i \(0.819801\pi\)
\(840\) 0 0
\(841\) −2.72857e39 −0.893693
\(842\) 0 0
\(843\) −7.55619e39 −2.39679
\(844\) 0 0
\(845\) 2.99690e39 0.920674
\(846\) 0 0
\(847\) 7.56305e39 2.25046
\(848\) 0 0
\(849\) −3.47581e39 −1.00185
\(850\) 0 0
\(851\) 9.82376e38 0.274302
\(852\) 0 0
\(853\) 7.26169e39 1.96438 0.982190 0.187891i \(-0.0601650\pi\)
0.982190 + 0.187891i \(0.0601650\pi\)
\(854\) 0 0
\(855\) 4.82704e39 1.26514
\(856\) 0 0
\(857\) 1.14984e38 0.0292008 0.0146004 0.999893i \(-0.495352\pi\)
0.0146004 + 0.999893i \(0.495352\pi\)
\(858\) 0 0
\(859\) 2.75022e39 0.676798 0.338399 0.941003i \(-0.390115\pi\)
0.338399 + 0.941003i \(0.390115\pi\)
\(860\) 0 0
\(861\) −8.50005e39 −2.02712
\(862\) 0 0
\(863\) 4.61137e39 1.06582 0.532910 0.846172i \(-0.321098\pi\)
0.532910 + 0.846172i \(0.321098\pi\)
\(864\) 0 0
\(865\) −7.32344e39 −1.64058
\(866\) 0 0
\(867\) −8.28443e39 −1.79889
\(868\) 0 0
\(869\) 1.64988e40 3.47285
\(870\) 0 0
\(871\) −3.82462e39 −0.780447
\(872\) 0 0
\(873\) −2.95983e39 −0.585565
\(874\) 0 0
\(875\) −3.86723e39 −0.741808
\(876\) 0 0
\(877\) 1.02693e39 0.191006 0.0955028 0.995429i \(-0.469554\pi\)
0.0955028 + 0.995429i \(0.469554\pi\)
\(878\) 0 0
\(879\) −8.51714e39 −1.53619
\(880\) 0 0
\(881\) −4.80184e38 −0.0839911 −0.0419955 0.999118i \(-0.513372\pi\)
−0.0419955 + 0.999118i \(0.513372\pi\)
\(882\) 0 0
\(883\) 5.06858e39 0.859839 0.429919 0.902867i \(-0.358542\pi\)
0.429919 + 0.902867i \(0.358542\pi\)
\(884\) 0 0
\(885\) −1.95250e40 −3.21261
\(886\) 0 0
\(887\) 9.25025e38 0.147633 0.0738167 0.997272i \(-0.476482\pi\)
0.0738167 + 0.997272i \(0.476482\pi\)
\(888\) 0 0
\(889\) −5.53959e39 −0.857637
\(890\) 0 0
\(891\) 2.27033e40 3.40989
\(892\) 0 0
\(893\) −5.63656e39 −0.821333
\(894\) 0 0
\(895\) 4.54516e38 0.0642597
\(896\) 0 0
\(897\) 1.11754e40 1.53308
\(898\) 0 0
\(899\) −5.55398e38 −0.0739348
\(900\) 0 0
\(901\) 2.87194e38 0.0371014
\(902\) 0 0
\(903\) −1.48512e40 −1.86199
\(904\) 0 0
\(905\) −7.52524e38 −0.0915724
\(906\) 0 0
\(907\) −3.26356e39 −0.385472 −0.192736 0.981251i \(-0.561736\pi\)
−0.192736 + 0.981251i \(0.561736\pi\)
\(908\) 0 0
\(909\) 8.57293e38 0.0982917
\(910\) 0 0
\(911\) −9.43229e38 −0.104983 −0.0524915 0.998621i \(-0.516716\pi\)
−0.0524915 + 0.998621i \(0.516716\pi\)
\(912\) 0 0
\(913\) −6.38421e39 −0.689845
\(914\) 0 0
\(915\) −7.59343e39 −0.796624
\(916\) 0 0
\(917\) 1.00675e39 0.102550
\(918\) 0 0
\(919\) −1.63185e40 −1.61407 −0.807033 0.590507i \(-0.798928\pi\)
−0.807033 + 0.590507i \(0.798928\pi\)
\(920\) 0 0
\(921\) 1.92347e40 1.84748
\(922\) 0 0
\(923\) 1.12630e40 1.05058
\(924\) 0 0
\(925\) −1.40374e39 −0.127166
\(926\) 0 0
\(927\) −6.60032e39 −0.580749
\(928\) 0 0
\(929\) 1.93800e40 1.65631 0.828153 0.560502i \(-0.189392\pi\)
0.828153 + 0.560502i \(0.189392\pi\)
\(930\) 0 0
\(931\) −8.84991e38 −0.0734714
\(932\) 0 0
\(933\) 1.62617e40 1.31148
\(934\) 0 0
\(935\) 1.54497e39 0.121049
\(936\) 0 0
\(937\) −6.58389e39 −0.501185 −0.250592 0.968093i \(-0.580625\pi\)
−0.250592 + 0.968093i \(0.580625\pi\)
\(938\) 0 0
\(939\) 4.39791e40 3.25283
\(940\) 0 0
\(941\) −3.92916e39 −0.282384 −0.141192 0.989982i \(-0.545093\pi\)
−0.141192 + 0.989982i \(0.545093\pi\)
\(942\) 0 0
\(943\) 1.10082e40 0.768791
\(944\) 0 0
\(945\) 3.50719e40 2.38029
\(946\) 0 0
\(947\) −2.18622e40 −1.44201 −0.721005 0.692930i \(-0.756320\pi\)
−0.721005 + 0.692930i \(0.756320\pi\)
\(948\) 0 0
\(949\) −3.22539e40 −2.06771
\(950\) 0 0
\(951\) 1.97654e40 1.23160
\(952\) 0 0
\(953\) −8.73050e39 −0.528792 −0.264396 0.964414i \(-0.585173\pi\)
−0.264396 + 0.964414i \(0.585173\pi\)
\(954\) 0 0
\(955\) 9.94056e39 0.585282
\(956\) 0 0
\(957\) 1.90671e40 1.09137
\(958\) 0 0
\(959\) 1.40382e40 0.781196
\(960\) 0 0
\(961\) −1.75323e40 −0.948579
\(962\) 0 0
\(963\) 1.29376e39 0.0680609
\(964\) 0 0
\(965\) −3.48140e39 −0.178088
\(966\) 0 0
\(967\) −1.69507e40 −0.843197 −0.421599 0.906783i \(-0.638531\pi\)
−0.421599 + 0.906783i \(0.638531\pi\)
\(968\) 0 0
\(969\) 1.05568e39 0.0510695
\(970\) 0 0
\(971\) −1.20819e40 −0.568430 −0.284215 0.958761i \(-0.591733\pi\)
−0.284215 + 0.958761i \(0.591733\pi\)
\(972\) 0 0
\(973\) 1.38839e40 0.635313
\(974\) 0 0
\(975\) −1.59688e40 −0.710738
\(976\) 0 0
\(977\) 3.02320e39 0.130885 0.0654426 0.997856i \(-0.479154\pi\)
0.0654426 + 0.997856i \(0.479154\pi\)
\(978\) 0 0
\(979\) 4.86563e40 2.04915
\(980\) 0 0
\(981\) −5.35310e40 −2.19318
\(982\) 0 0
\(983\) −1.75980e39 −0.0701440 −0.0350720 0.999385i \(-0.511166\pi\)
−0.0350720 + 0.999385i \(0.511166\pi\)
\(984\) 0 0
\(985\) −2.82601e40 −1.09594
\(986\) 0 0
\(987\) −7.35226e40 −2.77421
\(988\) 0 0
\(989\) 1.92334e40 0.706165
\(990\) 0 0
\(991\) −4.81245e40 −1.71938 −0.859691 0.510815i \(-0.829344\pi\)
−0.859691 + 0.510815i \(0.829344\pi\)
\(992\) 0 0
\(993\) −5.87011e40 −2.04095
\(994\) 0 0
\(995\) 3.28356e40 1.11105
\(996\) 0 0
\(997\) 3.20519e40 1.05553 0.527764 0.849391i \(-0.323031\pi\)
0.527764 + 0.849391i \(0.323031\pi\)
\(998\) 0 0
\(999\) −3.07589e40 −0.985908
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 16.28.a.f.1.4 4
4.3 odd 2 8.28.a.b.1.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
8.28.a.b.1.1 4 4.3 odd 2
16.28.a.f.1.4 4 1.1 even 1 trivial