L(s) = 1 | + (−0.130 + 0.130i)3-s + (−4.38 + 2.39i)5-s + (1.59 − 1.59i)7-s + 8.96i·9-s + 11.9i·11-s + (−9.59 + 9.59i)13-s + (0.260 − 0.887i)15-s + (0.857 − 0.857i)17-s − 20.5·19-s + 0.417i·21-s + (22.1 + 22.1i)23-s + (13.4 − 21.0i)25-s + (−2.34 − 2.34i)27-s + 27.3·29-s − 40.0·31-s + ⋯ |
L(s) = 1 | + (−0.0435 + 0.0435i)3-s + (−0.877 + 0.479i)5-s + (0.228 − 0.228i)7-s + 0.996i·9-s + 1.08i·11-s + (−0.738 + 0.738i)13-s + (0.0173 − 0.0591i)15-s + (0.0504 − 0.0504i)17-s − 1.08·19-s + 0.0198i·21-s + (0.963 + 0.963i)23-s + (0.539 − 0.841i)25-s + (−0.0870 − 0.0870i)27-s + 0.942·29-s − 1.29·31-s + ⋯ |
Λ(s)=(=(160s/2ΓC(s)L(s)(−0.332−0.943i)Λ(3−s)
Λ(s)=(=(160s/2ΓC(s+1)L(s)(−0.332−0.943i)Λ(1−s)
Degree: |
2 |
Conductor: |
160
= 25⋅5
|
Sign: |
−0.332−0.943i
|
Analytic conductor: |
4.35968 |
Root analytic conductor: |
2.08798 |
Motivic weight: |
2 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ160(113,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 160, ( :1), −0.332−0.943i)
|
Particular Values
L(23) |
≈ |
0.539917+0.762793i |
L(21) |
≈ |
0.539917+0.762793i |
L(2) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1+(4.38−2.39i)T |
good | 3 | 1+(0.130−0.130i)T−9iT2 |
| 7 | 1+(−1.59+1.59i)T−49iT2 |
| 11 | 1−11.9iT−121T2 |
| 13 | 1+(9.59−9.59i)T−169iT2 |
| 17 | 1+(−0.857+0.857i)T−289iT2 |
| 19 | 1+20.5T+361T2 |
| 23 | 1+(−22.1−22.1i)T+529iT2 |
| 29 | 1−27.3T+841T2 |
| 31 | 1+40.0T+961T2 |
| 37 | 1+(−1.57−1.57i)T+1.36e3iT2 |
| 41 | 1+37.5T+1.68e3T2 |
| 43 | 1+(−49.2+49.2i)T−1.84e3iT2 |
| 47 | 1+(−34.0+34.0i)T−2.20e3iT2 |
| 53 | 1+(−28.8+28.8i)T−2.80e3iT2 |
| 59 | 1−92.7T+3.48e3T2 |
| 61 | 1−4.82iT−3.72e3T2 |
| 67 | 1+(54.6+54.6i)T+4.48e3iT2 |
| 71 | 1+59.2T+5.04e3T2 |
| 73 | 1+(−34.1−34.1i)T+5.32e3iT2 |
| 79 | 1−96.2iT−6.24e3T2 |
| 83 | 1+(63.6−63.6i)T−6.88e3iT2 |
| 89 | 1+3.68iT−7.92e3T2 |
| 97 | 1+(−46.0+46.0i)T−9.40e3iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.84369463834724353663668494558, −11.89374987722834512036115980976, −10.96064038006591122060749533554, −10.13980649073430894108779930377, −8.776297222349283889255150431266, −7.51411218384575551749050042423, −6.97414865053259331500352339959, −5.06579684524839429467756008804, −4.06906897173417865641900238928, −2.24651062898452295193772436094,
0.58762804741124329717946617472, 3.09579189414297609792862456427, 4.44729683334388917431073970581, 5.79528813756298342758545654047, 7.10767735189381235548712387980, 8.373061297091634734275981019421, 8.986974582799736243006804961035, 10.49105458622746309430492287240, 11.45794239954977175789751683833, 12.39057198813948275116837413627