L(s) = 1 | + (−0.130 + 0.130i)3-s + (−4.38 + 2.39i)5-s + (1.59 − 1.59i)7-s + 8.96i·9-s + 11.9i·11-s + (−9.59 + 9.59i)13-s + (0.260 − 0.887i)15-s + (0.857 − 0.857i)17-s − 20.5·19-s + 0.417i·21-s + (22.1 + 22.1i)23-s + (13.4 − 21.0i)25-s + (−2.34 − 2.34i)27-s + 27.3·29-s − 40.0·31-s + ⋯ |
L(s) = 1 | + (−0.0435 + 0.0435i)3-s + (−0.877 + 0.479i)5-s + (0.228 − 0.228i)7-s + 0.996i·9-s + 1.08i·11-s + (−0.738 + 0.738i)13-s + (0.0173 − 0.0591i)15-s + (0.0504 − 0.0504i)17-s − 1.08·19-s + 0.0198i·21-s + (0.963 + 0.963i)23-s + (0.539 − 0.841i)25-s + (−0.0870 − 0.0870i)27-s + 0.942·29-s − 1.29·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 160 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.332 - 0.943i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 160 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.332 - 0.943i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(0.539917 + 0.762793i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.539917 + 0.762793i\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 + (4.38 - 2.39i)T \) |
good | 3 | \( 1 + (0.130 - 0.130i)T - 9iT^{2} \) |
| 7 | \( 1 + (-1.59 + 1.59i)T - 49iT^{2} \) |
| 11 | \( 1 - 11.9iT - 121T^{2} \) |
| 13 | \( 1 + (9.59 - 9.59i)T - 169iT^{2} \) |
| 17 | \( 1 + (-0.857 + 0.857i)T - 289iT^{2} \) |
| 19 | \( 1 + 20.5T + 361T^{2} \) |
| 23 | \( 1 + (-22.1 - 22.1i)T + 529iT^{2} \) |
| 29 | \( 1 - 27.3T + 841T^{2} \) |
| 31 | \( 1 + 40.0T + 961T^{2} \) |
| 37 | \( 1 + (-1.57 - 1.57i)T + 1.36e3iT^{2} \) |
| 41 | \( 1 + 37.5T + 1.68e3T^{2} \) |
| 43 | \( 1 + (-49.2 + 49.2i)T - 1.84e3iT^{2} \) |
| 47 | \( 1 + (-34.0 + 34.0i)T - 2.20e3iT^{2} \) |
| 53 | \( 1 + (-28.8 + 28.8i)T - 2.80e3iT^{2} \) |
| 59 | \( 1 - 92.7T + 3.48e3T^{2} \) |
| 61 | \( 1 - 4.82iT - 3.72e3T^{2} \) |
| 67 | \( 1 + (54.6 + 54.6i)T + 4.48e3iT^{2} \) |
| 71 | \( 1 + 59.2T + 5.04e3T^{2} \) |
| 73 | \( 1 + (-34.1 - 34.1i)T + 5.32e3iT^{2} \) |
| 79 | \( 1 - 96.2iT - 6.24e3T^{2} \) |
| 83 | \( 1 + (63.6 - 63.6i)T - 6.88e3iT^{2} \) |
| 89 | \( 1 + 3.68iT - 7.92e3T^{2} \) |
| 97 | \( 1 + (-46.0 + 46.0i)T - 9.40e3iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.84369463834724353663668494558, −11.89374987722834512036115980976, −10.96064038006591122060749533554, −10.13980649073430894108779930377, −8.776297222349283889255150431266, −7.51411218384575551749050042423, −6.97414865053259331500352339959, −5.06579684524839429467756008804, −4.06906897173417865641900238928, −2.24651062898452295193772436094,
0.58762804741124329717946617472, 3.09579189414297609792862456427, 4.44729683334388917431073970581, 5.79528813756298342758545654047, 7.10767735189381235548712387980, 8.373061297091634734275981019421, 8.986974582799736243006804961035, 10.49105458622746309430492287240, 11.45794239954977175789751683833, 12.39057198813948275116837413627