Properties

Label 160.3.m.a.113.5
Level $160$
Weight $3$
Character 160.113
Analytic conductor $4.360$
Analytic rank $0$
Dimension $20$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [160,3,Mod(17,160)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(160, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([0, 2, 1]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("160.17");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 160 = 2^{5} \cdot 5 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 160.m (of order \(4\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.35968422976\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(10\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} - x^{18} - 3x^{16} + 11x^{14} + x^{12} - 40x^{10} + 4x^{8} + 176x^{6} - 192x^{4} - 256x^{2} + 1024 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 2^{34} \)
Twist minimal: no (minimal twist has level 40)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 113.5
Root \(-0.541828 + 1.30630i\) of defining polynomial
Character \(\chi\) \(=\) 160.113
Dual form 160.3.m.a.17.5

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.130791 + 0.130791i) q^{3} +(-4.38731 + 2.39823i) q^{5} +(1.59713 - 1.59713i) q^{7} +8.96579i q^{9} +11.9427i q^{11} +(-9.59714 + 9.59714i) q^{13} +(0.260155 - 0.887490i) q^{15} +(0.857288 - 0.857288i) q^{17} -20.5611 q^{19} +0.417782i q^{21} +(22.1560 + 22.1560i) q^{23} +(13.4970 - 21.0435i) q^{25} +(-2.34977 - 2.34977i) q^{27} +27.3404 q^{29} -40.0267 q^{31} +(-1.56200 - 1.56200i) q^{33} +(-3.17684 + 10.8374i) q^{35} +(1.57131 + 1.57131i) q^{37} -2.51044i q^{39} -37.5504 q^{41} +(49.2602 - 49.2602i) q^{43} +(-21.5020 - 39.3357i) q^{45} +(34.0876 - 34.0876i) q^{47} +43.8983i q^{49} +0.224252i q^{51} +(28.8002 - 28.8002i) q^{53} +(-28.6412 - 52.3962i) q^{55} +(2.68921 - 2.68921i) q^{57} +92.7071 q^{59} +4.82618i q^{61} +(14.3196 + 14.3196i) q^{63} +(19.0895 - 65.1217i) q^{65} +(-54.6048 - 54.6048i) q^{67} -5.79564 q^{69} -59.2198 q^{71} +(34.1124 + 34.1124i) q^{73} +(0.987017 + 4.51761i) q^{75} +(19.0740 + 19.0740i) q^{77} +96.2455i q^{79} -80.0774 q^{81} +(-63.6959 + 63.6959i) q^{83} +(-1.70522 + 5.81716i) q^{85} +(-3.57588 + 3.57588i) q^{87} -3.68406i q^{89} +30.6558i q^{91} +(5.23514 - 5.23514i) q^{93} +(90.2080 - 49.3101i) q^{95} +(46.0410 - 46.0410i) q^{97} -107.075 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q + 4 q^{7} + 4 q^{15} - 12 q^{17} + 4 q^{23} - 28 q^{25} + 136 q^{31} + 32 q^{33} - 8 q^{41} - 188 q^{47} - 96 q^{55} - 40 q^{57} - 228 q^{63} - 60 q^{65} - 248 q^{71} - 124 q^{73} + 132 q^{81} + 488 q^{87}+ \cdots + 100 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/160\mathbb{Z}\right)^\times\).

\(n\) \(31\) \(97\) \(101\)
\(\chi(n)\) \(1\) \(e\left(\frac{3}{4}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.130791 + 0.130791i −0.0435971 + 0.0435971i −0.728569 0.684972i \(-0.759814\pi\)
0.684972 + 0.728569i \(0.259814\pi\)
\(4\) 0 0
\(5\) −4.38731 + 2.39823i −0.877463 + 0.479645i
\(6\) 0 0
\(7\) 1.59713 1.59713i 0.228162 0.228162i −0.583763 0.811924i \(-0.698420\pi\)
0.811924 + 0.583763i \(0.198420\pi\)
\(8\) 0 0
\(9\) 8.96579i 0.996199i
\(10\) 0 0
\(11\) 11.9427i 1.08570i 0.839831 + 0.542849i \(0.182654\pi\)
−0.839831 + 0.542849i \(0.817346\pi\)
\(12\) 0 0
\(13\) −9.59714 + 9.59714i −0.738241 + 0.738241i −0.972238 0.233996i \(-0.924820\pi\)
0.233996 + 0.972238i \(0.424820\pi\)
\(14\) 0 0
\(15\) 0.260155 0.887490i 0.0173437 0.0591660i
\(16\) 0 0
\(17\) 0.857288 0.857288i 0.0504287 0.0504287i −0.681443 0.731871i \(-0.738647\pi\)
0.731871 + 0.681443i \(0.238647\pi\)
\(18\) 0 0
\(19\) −20.5611 −1.08216 −0.541082 0.840970i \(-0.681985\pi\)
−0.541082 + 0.840970i \(0.681985\pi\)
\(20\) 0 0
\(21\) 0.417782i 0.0198944i
\(22\) 0 0
\(23\) 22.1560 + 22.1560i 0.963306 + 0.963306i 0.999350 0.0360441i \(-0.0114757\pi\)
−0.0360441 + 0.999350i \(0.511476\pi\)
\(24\) 0 0
\(25\) 13.4970 21.0435i 0.539881 0.841741i
\(26\) 0 0
\(27\) −2.34977 2.34977i −0.0870285 0.0870285i
\(28\) 0 0
\(29\) 27.3404 0.942771 0.471385 0.881927i \(-0.343754\pi\)
0.471385 + 0.881927i \(0.343754\pi\)
\(30\) 0 0
\(31\) −40.0267 −1.29118 −0.645591 0.763683i \(-0.723389\pi\)
−0.645591 + 0.763683i \(0.723389\pi\)
\(32\) 0 0
\(33\) −1.56200 1.56200i −0.0473333 0.0473333i
\(34\) 0 0
\(35\) −3.17684 + 10.8374i −0.0907668 + 0.309640i
\(36\) 0 0
\(37\) 1.57131 + 1.57131i 0.0424677 + 0.0424677i 0.728022 0.685554i \(-0.240440\pi\)
−0.685554 + 0.728022i \(0.740440\pi\)
\(38\) 0 0
\(39\) 2.51044i 0.0643704i
\(40\) 0 0
\(41\) −37.5504 −0.915864 −0.457932 0.888987i \(-0.651410\pi\)
−0.457932 + 0.888987i \(0.651410\pi\)
\(42\) 0 0
\(43\) 49.2602 49.2602i 1.14558 1.14558i 0.158174 0.987411i \(-0.449439\pi\)
0.987411 0.158174i \(-0.0505606\pi\)
\(44\) 0 0
\(45\) −21.5020 39.3357i −0.477822 0.874127i
\(46\) 0 0
\(47\) 34.0876 34.0876i 0.725268 0.725268i −0.244405 0.969673i \(-0.578593\pi\)
0.969673 + 0.244405i \(0.0785926\pi\)
\(48\) 0 0
\(49\) 43.8983i 0.895884i
\(50\) 0 0
\(51\) 0.224252i 0.00439709i
\(52\) 0 0
\(53\) 28.8002 28.8002i 0.543401 0.543401i −0.381124 0.924524i \(-0.624463\pi\)
0.924524 + 0.381124i \(0.124463\pi\)
\(54\) 0 0
\(55\) −28.6412 52.3962i −0.520749 0.952659i
\(56\) 0 0
\(57\) 2.68921 2.68921i 0.0471792 0.0471792i
\(58\) 0 0
\(59\) 92.7071 1.57131 0.785653 0.618667i \(-0.212327\pi\)
0.785653 + 0.618667i \(0.212327\pi\)
\(60\) 0 0
\(61\) 4.82618i 0.0791176i 0.999217 + 0.0395588i \(0.0125952\pi\)
−0.999217 + 0.0395588i \(0.987405\pi\)
\(62\) 0 0
\(63\) 14.3196 + 14.3196i 0.227294 + 0.227294i
\(64\) 0 0
\(65\) 19.0895 65.1217i 0.293685 1.00187i
\(66\) 0 0
\(67\) −54.6048 54.6048i −0.814997 0.814997i 0.170381 0.985378i \(-0.445500\pi\)
−0.985378 + 0.170381i \(0.945500\pi\)
\(68\) 0 0
\(69\) −5.79564 −0.0839947
\(70\) 0 0
\(71\) −59.2198 −0.834082 −0.417041 0.908888i \(-0.636933\pi\)
−0.417041 + 0.908888i \(0.636933\pi\)
\(72\) 0 0
\(73\) 34.1124 + 34.1124i 0.467293 + 0.467293i 0.901037 0.433743i \(-0.142807\pi\)
−0.433743 + 0.901037i \(0.642807\pi\)
\(74\) 0 0
\(75\) 0.987017 + 4.51761i 0.0131602 + 0.0602347i
\(76\) 0 0
\(77\) 19.0740 + 19.0740i 0.247715 + 0.247715i
\(78\) 0 0
\(79\) 96.2455i 1.21830i 0.793056 + 0.609149i \(0.208489\pi\)
−0.793056 + 0.609149i \(0.791511\pi\)
\(80\) 0 0
\(81\) −80.0774 −0.988610
\(82\) 0 0
\(83\) −63.6959 + 63.6959i −0.767421 + 0.767421i −0.977652 0.210231i \(-0.932578\pi\)
0.210231 + 0.977652i \(0.432578\pi\)
\(84\) 0 0
\(85\) −1.70522 + 5.81716i −0.0200614 + 0.0684372i
\(86\) 0 0
\(87\) −3.57588 + 3.57588i −0.0411021 + 0.0411021i
\(88\) 0 0
\(89\) 3.68406i 0.0413939i −0.999786 0.0206970i \(-0.993411\pi\)
0.999786 0.0206970i \(-0.00658852\pi\)
\(90\) 0 0
\(91\) 30.6558i 0.336877i
\(92\) 0 0
\(93\) 5.23514 5.23514i 0.0562918 0.0562918i
\(94\) 0 0
\(95\) 90.2080 49.3101i 0.949558 0.519054i
\(96\) 0 0
\(97\) 46.0410 46.0410i 0.474650 0.474650i −0.428766 0.903416i \(-0.641051\pi\)
0.903416 + 0.428766i \(0.141051\pi\)
\(98\) 0 0
\(99\) −107.075 −1.08157
\(100\) 0 0
\(101\) 108.173i 1.07102i 0.844529 + 0.535510i \(0.179880\pi\)
−0.844529 + 0.535510i \(0.820120\pi\)
\(102\) 0 0
\(103\) 50.9112 + 50.9112i 0.494284 + 0.494284i 0.909653 0.415369i \(-0.136348\pi\)
−0.415369 + 0.909653i \(0.636348\pi\)
\(104\) 0 0
\(105\) −1.00194 1.83294i −0.00954225 0.0174566i
\(106\) 0 0
\(107\) 95.4147 + 95.4147i 0.891726 + 0.891726i 0.994686 0.102960i \(-0.0328312\pi\)
−0.102960 + 0.994686i \(0.532831\pi\)
\(108\) 0 0
\(109\) −46.5432 −0.427002 −0.213501 0.976943i \(-0.568487\pi\)
−0.213501 + 0.976943i \(0.568487\pi\)
\(110\) 0 0
\(111\) −0.411026 −0.00370294
\(112\) 0 0
\(113\) 88.0400 + 88.0400i 0.779115 + 0.779115i 0.979680 0.200565i \(-0.0642779\pi\)
−0.200565 + 0.979680i \(0.564278\pi\)
\(114\) 0 0
\(115\) −150.341 44.0703i −1.30731 0.383220i
\(116\) 0 0
\(117\) −86.0459 86.0459i −0.735435 0.735435i
\(118\) 0 0
\(119\) 2.73841i 0.0230118i
\(120\) 0 0
\(121\) −21.6274 −0.178739
\(122\) 0 0
\(123\) 4.91127 4.91127i 0.0399290 0.0399290i
\(124\) 0 0
\(125\) −8.74856 + 124.693i −0.0699885 + 0.997548i
\(126\) 0 0
\(127\) −44.3246 + 44.3246i −0.349012 + 0.349012i −0.859742 0.510729i \(-0.829375\pi\)
0.510729 + 0.859742i \(0.329375\pi\)
\(128\) 0 0
\(129\) 12.8856i 0.0998884i
\(130\) 0 0
\(131\) 82.8025i 0.632080i 0.948746 + 0.316040i \(0.102353\pi\)
−0.948746 + 0.316040i \(0.897647\pi\)
\(132\) 0 0
\(133\) −32.8388 + 32.8388i −0.246908 + 0.246908i
\(134\) 0 0
\(135\) 15.9444 + 4.67390i 0.118107 + 0.0346215i
\(136\) 0 0
\(137\) 25.0030 25.0030i 0.182503 0.182503i −0.609942 0.792446i \(-0.708807\pi\)
0.792446 + 0.609942i \(0.208807\pi\)
\(138\) 0 0
\(139\) 104.684 0.753121 0.376561 0.926392i \(-0.377107\pi\)
0.376561 + 0.926392i \(0.377107\pi\)
\(140\) 0 0
\(141\) 8.91673i 0.0632392i
\(142\) 0 0
\(143\) −114.615 114.615i −0.801507 0.801507i
\(144\) 0 0
\(145\) −119.951 + 65.5683i −0.827246 + 0.452195i
\(146\) 0 0
\(147\) −5.74152 5.74152i −0.0390580 0.0390580i
\(148\) 0 0
\(149\) 49.3481 0.331196 0.165598 0.986193i \(-0.447045\pi\)
0.165598 + 0.986193i \(0.447045\pi\)
\(150\) 0 0
\(151\) 22.1078 0.146409 0.0732047 0.997317i \(-0.476677\pi\)
0.0732047 + 0.997317i \(0.476677\pi\)
\(152\) 0 0
\(153\) 7.68626 + 7.68626i 0.0502370 + 0.0502370i
\(154\) 0 0
\(155\) 175.609 95.9930i 1.13296 0.619309i
\(156\) 0 0
\(157\) −64.7264 64.7264i −0.412270 0.412270i 0.470258 0.882529i \(-0.344161\pi\)
−0.882529 + 0.470258i \(0.844161\pi\)
\(158\) 0 0
\(159\) 7.53364i 0.0473814i
\(160\) 0 0
\(161\) 70.7723 0.439579
\(162\) 0 0
\(163\) −25.7888 + 25.7888i −0.158213 + 0.158213i −0.781775 0.623561i \(-0.785685\pi\)
0.623561 + 0.781775i \(0.285685\pi\)
\(164\) 0 0
\(165\) 10.5990 + 3.10695i 0.0642363 + 0.0188300i
\(166\) 0 0
\(167\) 56.4754 56.4754i 0.338176 0.338176i −0.517504 0.855681i \(-0.673139\pi\)
0.855681 + 0.517504i \(0.173139\pi\)
\(168\) 0 0
\(169\) 15.2101i 0.0900005i
\(170\) 0 0
\(171\) 184.346i 1.07805i
\(172\) 0 0
\(173\) 135.496 135.496i 0.783216 0.783216i −0.197156 0.980372i \(-0.563171\pi\)
0.980372 + 0.197156i \(0.0631706\pi\)
\(174\) 0 0
\(175\) −12.0528 55.1659i −0.0688729 0.315233i
\(176\) 0 0
\(177\) −12.1253 + 12.1253i −0.0685044 + 0.0685044i
\(178\) 0 0
\(179\) −15.5036 −0.0866121 −0.0433061 0.999062i \(-0.513789\pi\)
−0.0433061 + 0.999062i \(0.513789\pi\)
\(180\) 0 0
\(181\) 263.672i 1.45675i −0.685179 0.728375i \(-0.740276\pi\)
0.685179 0.728375i \(-0.259724\pi\)
\(182\) 0 0
\(183\) −0.631222 0.631222i −0.00344930 0.00344930i
\(184\) 0 0
\(185\) −10.6622 3.12546i −0.0576333 0.0168944i
\(186\) 0 0
\(187\) 10.2383 + 10.2383i 0.0547503 + 0.0547503i
\(188\) 0 0
\(189\) −7.50579 −0.0397132
\(190\) 0 0
\(191\) 120.714 0.632010 0.316005 0.948758i \(-0.397658\pi\)
0.316005 + 0.948758i \(0.397658\pi\)
\(192\) 0 0
\(193\) −182.404 182.404i −0.945098 0.945098i 0.0534716 0.998569i \(-0.482971\pi\)
−0.998569 + 0.0534716i \(0.982971\pi\)
\(194\) 0 0
\(195\) 6.02061 + 11.0141i 0.0308749 + 0.0564826i
\(196\) 0 0
\(197\) 224.288 + 224.288i 1.13852 + 1.13852i 0.988716 + 0.149799i \(0.0478626\pi\)
0.149799 + 0.988716i \(0.452137\pi\)
\(198\) 0 0
\(199\) 87.9089i 0.441753i −0.975302 0.220877i \(-0.929108\pi\)
0.975302 0.220877i \(-0.0708918\pi\)
\(200\) 0 0
\(201\) 14.2837 0.0710631
\(202\) 0 0
\(203\) 43.6662 43.6662i 0.215104 0.215104i
\(204\) 0 0
\(205\) 164.745 90.0544i 0.803636 0.439290i
\(206\) 0 0
\(207\) −198.646 + 198.646i −0.959644 + 0.959644i
\(208\) 0 0
\(209\) 245.554i 1.17490i
\(210\) 0 0
\(211\) 119.117i 0.564534i −0.959336 0.282267i \(-0.908914\pi\)
0.959336 0.282267i \(-0.0910864\pi\)
\(212\) 0 0
\(213\) 7.74544 7.74544i 0.0363636 0.0363636i
\(214\) 0 0
\(215\) −97.9828 + 334.257i −0.455734 + 1.55468i
\(216\) 0 0
\(217\) −63.9279 + 63.9279i −0.294599 + 0.294599i
\(218\) 0 0
\(219\) −8.92322 −0.0407453
\(220\) 0 0
\(221\) 16.4550i 0.0744571i
\(222\) 0 0
\(223\) −111.993 111.993i −0.502212 0.502212i 0.409913 0.912125i \(-0.365559\pi\)
−0.912125 + 0.409913i \(0.865559\pi\)
\(224\) 0 0
\(225\) 188.672 + 121.011i 0.838541 + 0.537829i
\(226\) 0 0
\(227\) −85.8837 85.8837i −0.378342 0.378342i 0.492162 0.870504i \(-0.336207\pi\)
−0.870504 + 0.492162i \(0.836207\pi\)
\(228\) 0 0
\(229\) −26.5156 −0.115789 −0.0578943 0.998323i \(-0.518439\pi\)
−0.0578943 + 0.998323i \(0.518439\pi\)
\(230\) 0 0
\(231\) −4.98944 −0.0215993
\(232\) 0 0
\(233\) −71.6569 71.6569i −0.307541 0.307541i 0.536414 0.843955i \(-0.319778\pi\)
−0.843955 + 0.536414i \(0.819778\pi\)
\(234\) 0 0
\(235\) −67.8033 + 231.303i −0.288524 + 0.984267i
\(236\) 0 0
\(237\) −12.5881 12.5881i −0.0531143 0.0531143i
\(238\) 0 0
\(239\) 114.913i 0.480809i −0.970673 0.240405i \(-0.922720\pi\)
0.970673 0.240405i \(-0.0772801\pi\)
\(240\) 0 0
\(241\) 219.080 0.909045 0.454522 0.890735i \(-0.349810\pi\)
0.454522 + 0.890735i \(0.349810\pi\)
\(242\) 0 0
\(243\) 31.6214 31.6214i 0.130129 0.130129i
\(244\) 0 0
\(245\) −105.278 192.596i −0.429707 0.786105i
\(246\) 0 0
\(247\) 197.328 197.328i 0.798897 0.798897i
\(248\) 0 0
\(249\) 16.6618i 0.0669147i
\(250\) 0 0
\(251\) 95.0552i 0.378706i 0.981909 + 0.189353i \(0.0606390\pi\)
−0.981909 + 0.189353i \(0.939361\pi\)
\(252\) 0 0
\(253\) −264.602 + 264.602i −1.04586 + 1.04586i
\(254\) 0 0
\(255\) −0.537806 0.983862i −0.00210904 0.00385828i
\(256\) 0 0
\(257\) −249.128 + 249.128i −0.969369 + 0.969369i −0.999545 0.0301755i \(-0.990393\pi\)
0.0301755 + 0.999545i \(0.490393\pi\)
\(258\) 0 0
\(259\) 5.01917 0.0193790
\(260\) 0 0
\(261\) 245.128i 0.939187i
\(262\) 0 0
\(263\) 85.6095 + 85.6095i 0.325511 + 0.325511i 0.850877 0.525365i \(-0.176071\pi\)
−0.525365 + 0.850877i \(0.676071\pi\)
\(264\) 0 0
\(265\) −57.2862 + 195.425i −0.216174 + 0.737453i
\(266\) 0 0
\(267\) 0.481843 + 0.481843i 0.00180465 + 0.00180465i
\(268\) 0 0
\(269\) −192.119 −0.714196 −0.357098 0.934067i \(-0.616234\pi\)
−0.357098 + 0.934067i \(0.616234\pi\)
\(270\) 0 0
\(271\) 485.780 1.79255 0.896274 0.443501i \(-0.146264\pi\)
0.896274 + 0.443501i \(0.146264\pi\)
\(272\) 0 0
\(273\) −4.00951 4.00951i −0.0146869 0.0146869i
\(274\) 0 0
\(275\) 251.316 + 161.191i 0.913876 + 0.586148i
\(276\) 0 0
\(277\) −88.8551 88.8551i −0.320777 0.320777i 0.528288 0.849065i \(-0.322834\pi\)
−0.849065 + 0.528288i \(0.822834\pi\)
\(278\) 0 0
\(279\) 358.871i 1.28627i
\(280\) 0 0
\(281\) 390.006 1.38792 0.693961 0.720012i \(-0.255864\pi\)
0.693961 + 0.720012i \(0.255864\pi\)
\(282\) 0 0
\(283\) −121.062 + 121.062i −0.427779 + 0.427779i −0.887871 0.460092i \(-0.847816\pi\)
0.460092 + 0.887871i \(0.347816\pi\)
\(284\) 0 0
\(285\) −5.34908 + 18.2478i −0.0187687 + 0.0640272i
\(286\) 0 0
\(287\) −59.9730 + 59.9730i −0.208965 + 0.208965i
\(288\) 0 0
\(289\) 287.530i 0.994914i
\(290\) 0 0
\(291\) 12.0435i 0.0413867i
\(292\) 0 0
\(293\) −244.956 + 244.956i −0.836026 + 0.836026i −0.988333 0.152307i \(-0.951330\pi\)
0.152307 + 0.988333i \(0.451330\pi\)
\(294\) 0 0
\(295\) −406.735 + 222.332i −1.37876 + 0.753669i
\(296\) 0 0
\(297\) 28.0625 28.0625i 0.0944866 0.0944866i
\(298\) 0 0
\(299\) −425.269 −1.42230
\(300\) 0 0
\(301\) 157.350i 0.522757i
\(302\) 0 0
\(303\) −14.1481 14.1481i −0.0466934 0.0466934i
\(304\) 0 0
\(305\) −11.5743 21.1739i −0.0379484 0.0694228i
\(306\) 0 0
\(307\) 135.324 + 135.324i 0.440796 + 0.440796i 0.892280 0.451483i \(-0.149105\pi\)
−0.451483 + 0.892280i \(0.649105\pi\)
\(308\) 0 0
\(309\) −13.3175 −0.0430987
\(310\) 0 0
\(311\) −225.951 −0.726531 −0.363266 0.931686i \(-0.618338\pi\)
−0.363266 + 0.931686i \(0.618338\pi\)
\(312\) 0 0
\(313\) −230.622 230.622i −0.736812 0.736812i 0.235148 0.971960i \(-0.424443\pi\)
−0.971960 + 0.235148i \(0.924443\pi\)
\(314\) 0 0
\(315\) −97.1659 28.4828i −0.308463 0.0904217i
\(316\) 0 0
\(317\) 221.563 + 221.563i 0.698938 + 0.698938i 0.964182 0.265243i \(-0.0854522\pi\)
−0.265243 + 0.964182i \(0.585452\pi\)
\(318\) 0 0
\(319\) 326.517i 1.02356i
\(320\) 0 0
\(321\) −24.9588 −0.0777534
\(322\) 0 0
\(323\) −17.6268 + 17.6268i −0.0545721 + 0.0545721i
\(324\) 0 0
\(325\) 72.4248 + 331.490i 0.222846 + 1.01997i
\(326\) 0 0
\(327\) 6.08745 6.08745i 0.0186161 0.0186161i
\(328\) 0 0
\(329\) 108.885i 0.330957i
\(330\) 0 0
\(331\) 141.212i 0.426624i 0.976984 + 0.213312i \(0.0684250\pi\)
−0.976984 + 0.213312i \(0.931575\pi\)
\(332\) 0 0
\(333\) −14.0880 + 14.0880i −0.0423063 + 0.0423063i
\(334\) 0 0
\(335\) 370.523 + 108.614i 1.10604 + 0.324220i
\(336\) 0 0
\(337\) 225.465 225.465i 0.669035 0.669035i −0.288458 0.957493i \(-0.593142\pi\)
0.957493 + 0.288458i \(0.0931424\pi\)
\(338\) 0 0
\(339\) −23.0297 −0.0679343
\(340\) 0 0
\(341\) 478.025i 1.40183i
\(342\) 0 0
\(343\) 148.371 + 148.371i 0.432568 + 0.432568i
\(344\) 0 0
\(345\) 25.4273 13.8992i 0.0737022 0.0402877i
\(346\) 0 0
\(347\) −346.013 346.013i −0.997155 0.997155i 0.00284067 0.999996i \(-0.499096\pi\)
−0.999996 + 0.00284067i \(0.999096\pi\)
\(348\) 0 0
\(349\) 428.411 1.22754 0.613769 0.789486i \(-0.289653\pi\)
0.613769 + 0.789486i \(0.289653\pi\)
\(350\) 0 0
\(351\) 45.1021 0.128496
\(352\) 0 0
\(353\) 25.9724 + 25.9724i 0.0735762 + 0.0735762i 0.742937 0.669361i \(-0.233432\pi\)
−0.669361 + 0.742937i \(0.733432\pi\)
\(354\) 0 0
\(355\) 259.816 142.022i 0.731876 0.400063i
\(356\) 0 0
\(357\) 0.358160 + 0.358160i 0.00100325 + 0.00100325i
\(358\) 0 0
\(359\) 288.043i 0.802348i −0.916002 0.401174i \(-0.868602\pi\)
0.916002 0.401174i \(-0.131398\pi\)
\(360\) 0 0
\(361\) 61.7587 0.171077
\(362\) 0 0
\(363\) 2.82868 2.82868i 0.00779249 0.00779249i
\(364\) 0 0
\(365\) −231.471 67.8526i −0.634168 0.185898i
\(366\) 0 0
\(367\) −160.854 + 160.854i −0.438295 + 0.438295i −0.891438 0.453143i \(-0.850303\pi\)
0.453143 + 0.891438i \(0.350303\pi\)
\(368\) 0 0
\(369\) 336.669i 0.912382i
\(370\) 0 0
\(371\) 91.9956i 0.247966i
\(372\) 0 0
\(373\) 360.121 360.121i 0.965471 0.965471i −0.0339529 0.999423i \(-0.510810\pi\)
0.999423 + 0.0339529i \(0.0108096\pi\)
\(374\) 0 0
\(375\) −15.1646 17.4531i −0.0404389 0.0465415i
\(376\) 0 0
\(377\) −262.389 + 262.389i −0.695992 + 0.695992i
\(378\) 0 0
\(379\) −64.1572 −0.169280 −0.0846402 0.996412i \(-0.526974\pi\)
−0.0846402 + 0.996412i \(0.526974\pi\)
\(380\) 0 0
\(381\) 11.5945i 0.0304319i
\(382\) 0 0
\(383\) −376.877 376.877i −0.984014 0.984014i 0.0158604 0.999874i \(-0.494951\pi\)
−0.999874 + 0.0158604i \(0.994951\pi\)
\(384\) 0 0
\(385\) −129.428 37.9399i −0.336175 0.0985452i
\(386\) 0 0
\(387\) 441.656 + 441.656i 1.14123 + 1.14123i
\(388\) 0 0
\(389\) −10.3794 −0.0266823 −0.0133411 0.999911i \(-0.504247\pi\)
−0.0133411 + 0.999911i \(0.504247\pi\)
\(390\) 0 0
\(391\) 37.9882 0.0971566
\(392\) 0 0
\(393\) −10.8298 10.8298i −0.0275569 0.0275569i
\(394\) 0 0
\(395\) −230.818 422.259i −0.584350 1.06901i
\(396\) 0 0
\(397\) −184.458 184.458i −0.464630 0.464630i 0.435540 0.900169i \(-0.356558\pi\)
−0.900169 + 0.435540i \(0.856558\pi\)
\(398\) 0 0
\(399\) 8.59006i 0.0215290i
\(400\) 0 0
\(401\) −262.943 −0.655719 −0.327859 0.944727i \(-0.606327\pi\)
−0.327859 + 0.944727i \(0.606327\pi\)
\(402\) 0 0
\(403\) 384.141 384.141i 0.953204 0.953204i
\(404\) 0 0
\(405\) 351.325 192.044i 0.867468 0.474182i
\(406\) 0 0
\(407\) −18.7656 + 18.7656i −0.0461071 + 0.0461071i
\(408\) 0 0
\(409\) 245.618i 0.600532i 0.953855 + 0.300266i \(0.0970755\pi\)
−0.953855 + 0.300266i \(0.902925\pi\)
\(410\) 0 0
\(411\) 6.54034i 0.0159132i
\(412\) 0 0
\(413\) 148.065 148.065i 0.358512 0.358512i
\(414\) 0 0
\(415\) 126.697 432.211i 0.305293 1.04147i
\(416\) 0 0
\(417\) −13.6917 + 13.6917i −0.0328339 + 0.0328339i
\(418\) 0 0
\(419\) 673.011 1.60623 0.803116 0.595823i \(-0.203174\pi\)
0.803116 + 0.595823i \(0.203174\pi\)
\(420\) 0 0
\(421\) 701.227i 1.66562i 0.553557 + 0.832811i \(0.313270\pi\)
−0.553557 + 0.832811i \(0.686730\pi\)
\(422\) 0 0
\(423\) 305.622 + 305.622i 0.722511 + 0.722511i
\(424\) 0 0
\(425\) −6.46952 29.6112i −0.0152224 0.0696734i
\(426\) 0 0
\(427\) 7.70804 + 7.70804i 0.0180516 + 0.0180516i
\(428\) 0 0
\(429\) 29.9814 0.0698868
\(430\) 0 0
\(431\) −405.559 −0.940973 −0.470486 0.882407i \(-0.655922\pi\)
−0.470486 + 0.882407i \(0.655922\pi\)
\(432\) 0 0
\(433\) 145.764 + 145.764i 0.336638 + 0.336638i 0.855100 0.518462i \(-0.173495\pi\)
−0.518462 + 0.855100i \(0.673495\pi\)
\(434\) 0 0
\(435\) 7.11274 24.2643i 0.0163511 0.0557800i
\(436\) 0 0
\(437\) −455.553 455.553i −1.04245 1.04245i
\(438\) 0 0
\(439\) 62.3888i 0.142116i 0.997472 + 0.0710579i \(0.0226375\pi\)
−0.997472 + 0.0710579i \(0.977362\pi\)
\(440\) 0 0
\(441\) −393.583 −0.892479
\(442\) 0 0
\(443\) −169.632 + 169.632i −0.382918 + 0.382918i −0.872152 0.489235i \(-0.837276\pi\)
0.489235 + 0.872152i \(0.337276\pi\)
\(444\) 0 0
\(445\) 8.83520 + 16.1631i 0.0198544 + 0.0363216i
\(446\) 0 0
\(447\) −6.45431 + 6.45431i −0.0144392 + 0.0144392i
\(448\) 0 0
\(449\) 17.0056i 0.0378743i −0.999821 0.0189371i \(-0.993972\pi\)
0.999821 0.0189371i \(-0.00602824\pi\)
\(450\) 0 0
\(451\) 448.452i 0.994351i
\(452\) 0 0
\(453\) −2.89151 + 2.89151i −0.00638303 + 0.00638303i
\(454\) 0 0
\(455\) −73.5195 134.497i −0.161581 0.295597i
\(456\) 0 0
\(457\) 559.163 559.163i 1.22355 1.22355i 0.257191 0.966360i \(-0.417203\pi\)
0.966360 0.257191i \(-0.0827971\pi\)
\(458\) 0 0
\(459\) −4.02886 −0.00877747
\(460\) 0 0
\(461\) 327.625i 0.710683i −0.934737 0.355341i \(-0.884365\pi\)
0.934737 0.355341i \(-0.115635\pi\)
\(462\) 0 0
\(463\) −605.934 605.934i −1.30871 1.30871i −0.922345 0.386367i \(-0.873730\pi\)
−0.386367 0.922345i \(-0.626270\pi\)
\(464\) 0 0
\(465\) −10.4132 + 35.5232i −0.0223939 + 0.0763941i
\(466\) 0 0
\(467\) −83.9231 83.9231i −0.179707 0.179707i 0.611521 0.791228i \(-0.290558\pi\)
−0.791228 + 0.611521i \(0.790558\pi\)
\(468\) 0 0
\(469\) −174.422 −0.371903
\(470\) 0 0
\(471\) 16.9313 0.0359476
\(472\) 0 0
\(473\) 588.298 + 588.298i 1.24376 + 1.24376i
\(474\) 0 0
\(475\) −277.514 + 432.678i −0.584239 + 0.910901i
\(476\) 0 0
\(477\) 258.217 + 258.217i 0.541335 + 0.541335i
\(478\) 0 0
\(479\) 831.992i 1.73694i 0.495746 + 0.868468i \(0.334895\pi\)
−0.495746 + 0.868468i \(0.665105\pi\)
\(480\) 0 0
\(481\) −30.1601 −0.0627028
\(482\) 0 0
\(483\) −9.25640 + 9.25640i −0.0191644 + 0.0191644i
\(484\) 0 0
\(485\) −91.5797 + 312.413i −0.188824 + 0.644151i
\(486\) 0 0
\(487\) 373.676 373.676i 0.767301 0.767301i −0.210329 0.977631i \(-0.567454\pi\)
0.977631 + 0.210329i \(0.0674537\pi\)
\(488\) 0 0
\(489\) 6.74590i 0.0137953i
\(490\) 0 0
\(491\) 42.8051i 0.0871795i −0.999050 0.0435898i \(-0.986121\pi\)
0.999050 0.0435898i \(-0.0138794\pi\)
\(492\) 0 0
\(493\) 23.4386 23.4386i 0.0475427 0.0475427i
\(494\) 0 0
\(495\) 469.773 256.791i 0.949037 0.518770i
\(496\) 0 0
\(497\) −94.5819 + 94.5819i −0.190306 + 0.190306i
\(498\) 0 0
\(499\) 485.100 0.972143 0.486072 0.873919i \(-0.338429\pi\)
0.486072 + 0.873919i \(0.338429\pi\)
\(500\) 0 0
\(501\) 14.7730i 0.0294870i
\(502\) 0 0
\(503\) 666.926 + 666.926i 1.32590 + 1.32590i 0.908916 + 0.416980i \(0.136912\pi\)
0.416980 + 0.908916i \(0.363088\pi\)
\(504\) 0 0
\(505\) −259.423 474.589i −0.513709 0.939780i
\(506\) 0 0
\(507\) 1.98935 + 1.98935i 0.00392376 + 0.00392376i
\(508\) 0 0
\(509\) −779.971 −1.53236 −0.766180 0.642626i \(-0.777845\pi\)
−0.766180 + 0.642626i \(0.777845\pi\)
\(510\) 0 0
\(511\) 108.964 0.213237
\(512\) 0 0
\(513\) 48.3138 + 48.3138i 0.0941790 + 0.0941790i
\(514\) 0 0
\(515\) −345.460 101.267i −0.670796 0.196635i
\(516\) 0 0
\(517\) 407.097 + 407.097i 0.787422 + 0.787422i
\(518\) 0 0
\(519\) 35.4435i 0.0682919i
\(520\) 0 0
\(521\) −736.972 −1.41453 −0.707267 0.706947i \(-0.750072\pi\)
−0.707267 + 0.706947i \(0.750072\pi\)
\(522\) 0 0
\(523\) −671.690 + 671.690i −1.28430 + 1.28430i −0.346108 + 0.938195i \(0.612497\pi\)
−0.938195 + 0.346108i \(0.887503\pi\)
\(524\) 0 0
\(525\) 8.79161 + 5.63882i 0.0167459 + 0.0107406i
\(526\) 0 0
\(527\) −34.3144 + 34.3144i −0.0651127 + 0.0651127i
\(528\) 0 0
\(529\) 452.780i 0.855917i
\(530\) 0 0
\(531\) 831.192i 1.56533i
\(532\) 0 0
\(533\) 360.377 360.377i 0.676129 0.676129i
\(534\) 0 0
\(535\) −647.440 189.788i −1.21017 0.354744i
\(536\) 0 0
\(537\) 2.02773 2.02773i 0.00377604 0.00377604i
\(538\) 0 0
\(539\) −524.263 −0.972659
\(540\) 0 0
\(541\) 1039.61i 1.92164i 0.277168 + 0.960822i \(0.410604\pi\)
−0.277168 + 0.960822i \(0.589396\pi\)
\(542\) 0 0
\(543\) 34.4860 + 34.4860i 0.0635101 + 0.0635101i
\(544\) 0 0
\(545\) 204.200 111.621i 0.374678 0.204809i
\(546\) 0 0
\(547\) −238.506 238.506i −0.436026 0.436026i 0.454646 0.890672i \(-0.349766\pi\)
−0.890672 + 0.454646i \(0.849766\pi\)
\(548\) 0 0
\(549\) −43.2705 −0.0788169
\(550\) 0 0
\(551\) −562.148 −1.02023
\(552\) 0 0
\(553\) 153.717 + 153.717i 0.277969 + 0.277969i
\(554\) 0 0
\(555\) 1.80330 0.985734i 0.00324919 0.00177610i
\(556\) 0 0
\(557\) −263.387 263.387i −0.472867 0.472867i 0.429974 0.902841i \(-0.358523\pi\)
−0.902841 + 0.429974i \(0.858523\pi\)
\(558\) 0 0
\(559\) 945.513i 1.69144i
\(560\) 0 0
\(561\) −2.67816 −0.00477391
\(562\) 0 0
\(563\) −160.698 + 160.698i −0.285431 + 0.285431i −0.835270 0.549839i \(-0.814689\pi\)
0.549839 + 0.835270i \(0.314689\pi\)
\(564\) 0 0
\(565\) −597.399 175.119i −1.05734 0.309946i
\(566\) 0 0
\(567\) −127.894 + 127.894i −0.225563 + 0.225563i
\(568\) 0 0
\(569\) 407.195i 0.715633i −0.933792 0.357817i \(-0.883521\pi\)
0.933792 0.357817i \(-0.116479\pi\)
\(570\) 0 0
\(571\) 131.146i 0.229678i −0.993384 0.114839i \(-0.963365\pi\)
0.993384 0.114839i \(-0.0366351\pi\)
\(572\) 0 0
\(573\) −15.7883 + 15.7883i −0.0275538 + 0.0275538i
\(574\) 0 0
\(575\) 765.282 167.201i 1.33093 0.290784i
\(576\) 0 0
\(577\) 417.933 417.933i 0.724321 0.724321i −0.245162 0.969482i \(-0.578841\pi\)
0.969482 + 0.245162i \(0.0788410\pi\)
\(578\) 0 0
\(579\) 47.7137 0.0824071
\(580\) 0 0
\(581\) 203.462i 0.350192i
\(582\) 0 0
\(583\) 343.952 + 343.952i 0.589969 + 0.589969i
\(584\) 0 0
\(585\) 583.868 + 171.153i 0.998064 + 0.292569i
\(586\) 0 0
\(587\) −212.882 212.882i −0.362660 0.362660i 0.502131 0.864791i \(-0.332549\pi\)
−0.864791 + 0.502131i \(0.832549\pi\)
\(588\) 0 0
\(589\) 822.992 1.39727
\(590\) 0 0
\(591\) −58.6697 −0.0992720
\(592\) 0 0
\(593\) 97.2530 + 97.2530i 0.164002 + 0.164002i 0.784337 0.620335i \(-0.213003\pi\)
−0.620335 + 0.784337i \(0.713003\pi\)
\(594\) 0 0
\(595\) 6.56731 + 12.0142i 0.0110375 + 0.0201920i
\(596\) 0 0
\(597\) 11.4977 + 11.4977i 0.0192592 + 0.0192592i
\(598\) 0 0
\(599\) 712.479i 1.18945i −0.803930 0.594723i \(-0.797262\pi\)
0.803930 0.594723i \(-0.202738\pi\)
\(600\) 0 0
\(601\) 217.550 0.361980 0.180990 0.983485i \(-0.442070\pi\)
0.180990 + 0.983485i \(0.442070\pi\)
\(602\) 0 0
\(603\) 489.575 489.575i 0.811899 0.811899i
\(604\) 0 0
\(605\) 94.8861 51.8674i 0.156837 0.0857312i
\(606\) 0 0
\(607\) −12.6560 + 12.6560i −0.0208501 + 0.0208501i −0.717455 0.696605i \(-0.754693\pi\)
0.696605 + 0.717455i \(0.254693\pi\)
\(608\) 0 0
\(609\) 11.4223i 0.0187558i
\(610\) 0 0
\(611\) 654.287i 1.07085i
\(612\) 0 0
\(613\) −523.841 + 523.841i −0.854552 + 0.854552i −0.990690 0.136138i \(-0.956531\pi\)
0.136138 + 0.990690i \(0.456531\pi\)
\(614\) 0 0
\(615\) −9.76895 + 33.3256i −0.0158845 + 0.0541880i
\(616\) 0 0
\(617\) −331.035 + 331.035i −0.536523 + 0.536523i −0.922506 0.385983i \(-0.873862\pi\)
0.385983 + 0.922506i \(0.373862\pi\)
\(618\) 0 0
\(619\) 277.907 0.448961 0.224481 0.974479i \(-0.427931\pi\)
0.224481 + 0.974479i \(0.427931\pi\)
\(620\) 0 0
\(621\) 104.123i 0.167670i
\(622\) 0 0
\(623\) −5.88393 5.88393i −0.00944451 0.00944451i
\(624\) 0 0
\(625\) −260.660 568.050i −0.417057 0.908881i
\(626\) 0 0
\(627\) 32.1164 + 32.1164i 0.0512223 + 0.0512223i
\(628\) 0 0
\(629\) 2.69412 0.00428318
\(630\) 0 0
\(631\) −425.237 −0.673910 −0.336955 0.941521i \(-0.609397\pi\)
−0.336955 + 0.941521i \(0.609397\pi\)
\(632\) 0 0
\(633\) 15.5794 + 15.5794i 0.0246121 + 0.0246121i
\(634\) 0 0
\(635\) 88.1655 300.766i 0.138843 0.473647i
\(636\) 0 0
\(637\) −421.298 421.298i −0.661379 0.661379i
\(638\) 0 0
\(639\) 530.952i 0.830911i
\(640\) 0 0
\(641\) −474.056 −0.739558 −0.369779 0.929120i \(-0.620567\pi\)
−0.369779 + 0.929120i \(0.620567\pi\)
\(642\) 0 0
\(643\) 490.408 490.408i 0.762687 0.762687i −0.214121 0.976807i \(-0.568689\pi\)
0.976807 + 0.214121i \(0.0686885\pi\)
\(644\) 0 0
\(645\) −30.9026 56.5332i −0.0479110 0.0876483i
\(646\) 0 0
\(647\) 319.187 319.187i 0.493334 0.493334i −0.416021 0.909355i \(-0.636576\pi\)
0.909355 + 0.416021i \(0.136576\pi\)
\(648\) 0 0
\(649\) 1107.17i 1.70596i
\(650\) 0 0
\(651\) 16.7224i 0.0256873i
\(652\) 0 0
\(653\) 95.6351 95.6351i 0.146455 0.146455i −0.630077 0.776532i \(-0.716977\pi\)
0.776532 + 0.630077i \(0.216977\pi\)
\(654\) 0 0
\(655\) −198.579 363.280i −0.303174 0.554626i
\(656\) 0 0
\(657\) −305.845 + 305.845i −0.465517 + 0.465517i
\(658\) 0 0
\(659\) −295.703 −0.448715 −0.224358 0.974507i \(-0.572028\pi\)
−0.224358 + 0.974507i \(0.572028\pi\)
\(660\) 0 0
\(661\) 1223.87i 1.85154i −0.378088 0.925770i \(-0.623418\pi\)
0.378088 0.925770i \(-0.376582\pi\)
\(662\) 0 0
\(663\) −2.15217 2.15217i −0.00324611 0.00324611i
\(664\) 0 0
\(665\) 65.3192 222.829i 0.0982244 0.335081i
\(666\) 0 0
\(667\) 605.754 + 605.754i 0.908177 + 0.908177i
\(668\) 0 0
\(669\) 29.2955 0.0437900
\(670\) 0 0
\(671\) −57.6374 −0.0858978
\(672\) 0 0
\(673\) −95.3663 95.3663i −0.141703 0.141703i 0.632697 0.774400i \(-0.281948\pi\)
−0.774400 + 0.632697i \(0.781948\pi\)
\(674\) 0 0
\(675\) −81.1623 + 17.7325i −0.120241 + 0.0262704i
\(676\) 0 0
\(677\) 208.006 + 208.006i 0.307247 + 0.307247i 0.843841 0.536594i \(-0.180289\pi\)
−0.536594 + 0.843841i \(0.680289\pi\)
\(678\) 0 0
\(679\) 147.067i 0.216594i
\(680\) 0 0
\(681\) 22.4657 0.0329892
\(682\) 0 0
\(683\) 704.881 704.881i 1.03204 1.03204i 0.0325668 0.999470i \(-0.489632\pi\)
0.999470 0.0325668i \(-0.0103682\pi\)
\(684\) 0 0
\(685\) −49.7331 + 169.658i −0.0726030 + 0.247677i
\(686\) 0 0
\(687\) 3.46801 3.46801i 0.00504805 0.00504805i
\(688\) 0 0
\(689\) 552.800i 0.802321i
\(690\) 0 0
\(691\) 814.437i 1.17864i −0.807901 0.589318i \(-0.799397\pi\)
0.807901 0.589318i \(-0.200603\pi\)
\(692\) 0 0
\(693\) −171.014 + 171.014i −0.246773 + 0.246773i
\(694\) 0 0
\(695\) −459.281 + 251.056i −0.660836 + 0.361231i
\(696\) 0 0
\(697\) −32.1915 + 32.1915i −0.0461858 + 0.0461858i
\(698\) 0 0
\(699\) 18.7442 0.0268158
\(700\) 0 0
\(701\) 39.4607i 0.0562920i −0.999604 0.0281460i \(-0.991040\pi\)
0.999604 0.0281460i \(-0.00896033\pi\)
\(702\) 0 0
\(703\) −32.3078 32.3078i −0.0459570 0.0459570i
\(704\) 0 0
\(705\) −21.3843 39.1205i −0.0303324 0.0554900i
\(706\) 0 0
\(707\) 172.767 + 172.767i 0.244366 + 0.244366i
\(708\) 0 0
\(709\) 1177.86 1.66130 0.830648 0.556798i \(-0.187970\pi\)
0.830648 + 0.556798i \(0.187970\pi\)
\(710\) 0 0
\(711\) −862.917 −1.21367
\(712\) 0 0
\(713\) −886.832 886.832i −1.24380 1.24380i
\(714\) 0 0
\(715\) 777.728 + 227.980i 1.08773 + 0.318853i
\(716\) 0 0
\(717\) 15.0297 + 15.0297i 0.0209619 + 0.0209619i
\(718\) 0 0
\(719\) 242.835i 0.337740i 0.985638 + 0.168870i \(0.0540119\pi\)
−0.985638 + 0.168870i \(0.945988\pi\)
\(720\) 0 0
\(721\) 162.624 0.225553
\(722\) 0 0
\(723\) −28.6537 + 28.6537i −0.0396317 + 0.0396317i
\(724\) 0 0
\(725\) 369.014 575.338i 0.508984 0.793569i
\(726\) 0 0
\(727\) 619.622 619.622i 0.852300 0.852300i −0.138116 0.990416i \(-0.544105\pi\)
0.990416 + 0.138116i \(0.0441048\pi\)
\(728\) 0 0
\(729\) 712.425i 0.977264i
\(730\) 0 0
\(731\) 84.4603i 0.115541i
\(732\) 0 0
\(733\) 281.127 281.127i 0.383529 0.383529i −0.488843 0.872372i \(-0.662581\pi\)
0.872372 + 0.488843i \(0.162581\pi\)
\(734\) 0 0
\(735\) 38.9593 + 11.4204i 0.0530059 + 0.0155379i
\(736\) 0 0
\(737\) 652.127 652.127i 0.884841 0.884841i
\(738\) 0 0
\(739\) −1109.74 −1.50168 −0.750839 0.660485i \(-0.770351\pi\)
−0.750839 + 0.660485i \(0.770351\pi\)
\(740\) 0 0
\(741\) 51.6175i 0.0696592i
\(742\) 0 0
\(743\) 339.850 + 339.850i 0.457403 + 0.457403i 0.897802 0.440399i \(-0.145163\pi\)
−0.440399 + 0.897802i \(0.645163\pi\)
\(744\) 0 0
\(745\) −216.506 + 118.348i −0.290612 + 0.158856i
\(746\) 0 0
\(747\) −571.084 571.084i −0.764504 0.764504i
\(748\) 0 0
\(749\) 304.780 0.406916
\(750\) 0 0
\(751\) 980.557 1.30567 0.652834 0.757501i \(-0.273580\pi\)
0.652834 + 0.757501i \(0.273580\pi\)
\(752\) 0 0
\(753\) −12.4324 12.4324i −0.0165105 0.0165105i
\(754\) 0 0
\(755\) −96.9939 + 53.0195i −0.128469 + 0.0702245i
\(756\) 0 0
\(757\) −101.564 101.564i −0.134166 0.134166i 0.636834 0.771001i \(-0.280243\pi\)
−0.771001 + 0.636834i \(0.780243\pi\)
\(758\) 0 0
\(759\) 69.2154i 0.0911929i
\(760\) 0 0
\(761\) 767.675 1.00877 0.504386 0.863478i \(-0.331719\pi\)
0.504386 + 0.863478i \(0.331719\pi\)
\(762\) 0 0
\(763\) −74.3357 + 74.3357i −0.0974256 + 0.0974256i
\(764\) 0 0
\(765\) −52.1554 15.2886i −0.0681770 0.0199852i
\(766\) 0 0
\(767\) −889.722 + 889.722i −1.16000 + 1.16000i
\(768\) 0 0
\(769\) 331.840i 0.431522i −0.976446 0.215761i \(-0.930777\pi\)
0.976446 0.215761i \(-0.0692232\pi\)
\(770\) 0 0
\(771\) 65.1675i 0.0845234i
\(772\) 0 0
\(773\) −180.328 + 180.328i −0.233283 + 0.233283i −0.814061 0.580779i \(-0.802748\pi\)
0.580779 + 0.814061i \(0.302748\pi\)
\(774\) 0 0
\(775\) −540.241 + 842.302i −0.697085 + 1.08684i
\(776\) 0 0
\(777\) −0.656463 + 0.656463i −0.000844869 + 0.000844869i
\(778\) 0 0
\(779\) 772.078 0.991114
\(780\) 0 0
\(781\) 707.243i 0.905561i
\(782\) 0 0
\(783\) −64.2435 64.2435i −0.0820479 0.0820479i
\(784\) 0 0
\(785\) 439.204 + 128.747i 0.559495 + 0.164008i
\(786\) 0 0
\(787\) −945.029 945.029i −1.20080 1.20080i −0.973924 0.226876i \(-0.927149\pi\)
−0.226876 0.973924i \(-0.572851\pi\)
\(788\) 0 0
\(789\) −22.3940 −0.0283827
\(790\) 0 0
\(791\) 281.223 0.355529
\(792\) 0 0
\(793\) −46.3175 46.3175i −0.0584079 0.0584079i
\(794\) 0 0
\(795\) −18.0674 33.0524i −0.0227263 0.0415754i
\(796\) 0 0
\(797\) 680.774 + 680.774i 0.854171 + 0.854171i 0.990644 0.136473i \(-0.0435766\pi\)
−0.136473 + 0.990644i \(0.543577\pi\)
\(798\) 0 0
\(799\) 58.4458i 0.0731487i
\(800\) 0 0
\(801\) 33.0305 0.0412366
\(802\) 0 0
\(803\) −407.393 + 407.393i −0.507339 + 0.507339i
\(804\) 0 0
\(805\) −310.500 + 169.728i −0.385714 + 0.210842i
\(806\) 0 0
\(807\) 25.1275 25.1275i 0.0311369 0.0311369i
\(808\) 0 0
\(809\) 427.952i 0.528989i −0.964387 0.264495i \(-0.914795\pi\)
0.964387 0.264495i \(-0.0852051\pi\)
\(810\) 0 0
\(811\) 1222.46i 1.50735i 0.657245 + 0.753677i \(0.271722\pi\)
−0.657245 + 0.753677i \(0.728278\pi\)
\(812\) 0 0
\(813\) −63.5359 + 63.5359i −0.0781499 + 0.0781499i
\(814\) 0 0
\(815\) 51.2962 174.991i 0.0629401 0.214713i
\(816\) 0 0
\(817\) −1012.84 + 1012.84i −1.23971 + 1.23971i
\(818\) 0 0
\(819\) −274.853 −0.335596
\(820\) 0 0
\(821\) 1019.26i 1.24148i 0.784015 + 0.620742i \(0.213169\pi\)
−0.784015 + 0.620742i \(0.786831\pi\)
\(822\) 0 0
\(823\) 158.477 + 158.477i 0.192560 + 0.192560i 0.796801 0.604241i \(-0.206524\pi\)
−0.604241 + 0.796801i \(0.706524\pi\)
\(824\) 0 0
\(825\) −53.9523 + 11.7876i −0.0653967 + 0.0142880i
\(826\) 0 0
\(827\) 573.534 + 573.534i 0.693511 + 0.693511i 0.963003 0.269492i \(-0.0868557\pi\)
−0.269492 + 0.963003i \(0.586856\pi\)
\(828\) 0 0
\(829\) −1133.71 −1.36756 −0.683782 0.729686i \(-0.739666\pi\)
−0.683782 + 0.729686i \(0.739666\pi\)
\(830\) 0 0
\(831\) 23.2430 0.0279699
\(832\) 0 0
\(833\) 37.6335 + 37.6335i 0.0451783 + 0.0451783i
\(834\) 0 0
\(835\) −112.335 + 383.216i −0.134532 + 0.458941i
\(836\) 0 0
\(837\) 94.0534 + 94.0534i 0.112370 + 0.112370i
\(838\) 0 0
\(839\) 1109.49i 1.32240i −0.750212 0.661198i \(-0.770048\pi\)
0.750212 0.661198i \(-0.229952\pi\)
\(840\) 0 0
\(841\) −93.5052 −0.111183
\(842\) 0 0
\(843\) −51.0094 + 51.0094i −0.0605094 + 0.0605094i
\(844\) 0 0
\(845\) 36.4772 + 66.7314i 0.0431683 + 0.0789721i
\(846\) 0 0
\(847\) −34.5418 + 34.5418i −0.0407814 + 0.0407814i
\(848\) 0 0
\(849\) 31.6676i 0.0372999i
\(850\) 0 0
\(851\) 69.6278i 0.0818188i
\(852\) 0 0
\(853\) −1.51055 + 1.51055i −0.00177087 + 0.00177087i −0.707992 0.706221i \(-0.750399\pi\)
0.706221 + 0.707992i \(0.250399\pi\)
\(854\) 0 0
\(855\) 442.104 + 808.785i 0.517081 + 0.945948i
\(856\) 0 0
\(857\) −396.892 + 396.892i −0.463118 + 0.463118i −0.899676 0.436558i \(-0.856197\pi\)
0.436558 + 0.899676i \(0.356197\pi\)
\(858\) 0 0
\(859\) 941.956 1.09657 0.548286 0.836291i \(-0.315280\pi\)
0.548286 + 0.836291i \(0.315280\pi\)
\(860\) 0 0
\(861\) 15.6879i 0.0182206i
\(862\) 0 0
\(863\) −833.800 833.800i −0.966164 0.966164i 0.0332818 0.999446i \(-0.489404\pi\)
−0.999446 + 0.0332818i \(0.989404\pi\)
\(864\) 0 0
\(865\) −269.514 + 919.416i −0.311577 + 1.06291i
\(866\) 0 0
\(867\) −37.6064 37.6064i −0.0433754 0.0433754i
\(868\) 0 0
\(869\) −1149.43 −1.32270
\(870\) 0 0
\(871\) 1048.10 1.20333
\(872\) 0 0
\(873\) 412.794 + 412.794i 0.472846 + 0.472846i
\(874\) 0 0
\(875\) 185.179 + 213.125i 0.211634 + 0.243571i
\(876\) 0 0
\(877\) −33.6015 33.6015i −0.0383142 0.0383142i 0.687690 0.726004i \(-0.258625\pi\)
−0.726004 + 0.687690i \(0.758625\pi\)
\(878\) 0 0
\(879\) 64.0762i 0.0728967i
\(880\) 0 0
\(881\) 1084.55 1.23104 0.615521 0.788121i \(-0.288946\pi\)
0.615521 + 0.788121i \(0.288946\pi\)
\(882\) 0 0
\(883\) −1165.53 + 1165.53i −1.31997 + 1.31997i −0.406174 + 0.913796i \(0.633137\pi\)
−0.913796 + 0.406174i \(0.866863\pi\)
\(884\) 0 0
\(885\) 24.1182 82.2765i 0.0272523 0.0929679i
\(886\) 0 0
\(887\) 381.705 381.705i 0.430333 0.430333i −0.458409 0.888742i \(-0.651580\pi\)
0.888742 + 0.458409i \(0.151580\pi\)
\(888\) 0 0
\(889\) 141.584i 0.159263i
\(890\) 0 0
\(891\) 956.338i 1.07333i
\(892\) 0 0
\(893\) −700.879 + 700.879i −0.784859 + 0.784859i
\(894\) 0 0
\(895\) 68.0190 37.1811i 0.0759989 0.0415431i
\(896\) 0 0
\(897\) 55.6215 55.6215i 0.0620084 0.0620084i
\(898\) 0 0
\(899\) −1094.34 −1.21729
\(900\) 0 0
\(901\) 49.3802i 0.0548060i
\(902\) 0 0
\(903\) 20.5800 + 20.5800i 0.0227907 + 0.0227907i
\(904\) 0 0
\(905\) 632.344 + 1156.81i 0.698723 + 1.27824i
\(906\) 0 0
\(907\) 457.511 + 457.511i 0.504422 + 0.504422i 0.912809 0.408387i \(-0.133908\pi\)
−0.408387 + 0.912809i \(0.633908\pi\)
\(908\) 0 0
\(909\) −969.856 −1.06695
\(910\) 0 0
\(911\) 620.530 0.681152 0.340576 0.940217i \(-0.389378\pi\)
0.340576 + 0.940217i \(0.389378\pi\)
\(912\) 0 0
\(913\) −760.699 760.699i −0.833187 0.833187i
\(914\) 0 0
\(915\) 4.28318 + 1.25556i 0.00468107 + 0.00137219i
\(916\) 0 0
\(917\) 132.247 + 132.247i 0.144216 + 0.144216i
\(918\) 0 0
\(919\) 981.064i 1.06753i 0.845631 + 0.533767i \(0.179224\pi\)
−0.845631 + 0.533767i \(0.820776\pi\)
\(920\) 0 0
\(921\) −35.3985 −0.0384349
\(922\) 0 0
\(923\) 568.341 568.341i 0.615754 0.615754i
\(924\) 0 0
\(925\) 54.2738 11.8579i 0.0586743 0.0128193i
\(926\) 0 0
\(927\) −456.459 + 456.459i −0.492405 + 0.492405i
\(928\) 0 0
\(929\) 776.484i 0.835827i −0.908487 0.417914i \(-0.862761\pi\)
0.908487 0.417914i \(-0.137239\pi\)
\(930\) 0 0
\(931\) 902.598i 0.969493i
\(932\) 0 0
\(933\) 29.5525 29.5525i 0.0316747 0.0316747i
\(934\) 0 0
\(935\) −69.4724 20.3649i −0.0743021 0.0217806i
\(936\) 0 0
\(937\) 759.800 759.800i 0.810885 0.810885i −0.173881 0.984767i \(-0.555631\pi\)
0.984767 + 0.173881i \(0.0556309\pi\)
\(938\) 0 0
\(939\) 60.3267 0.0642457
\(940\) 0 0
\(941\) 759.500i 0.807120i 0.914953 + 0.403560i \(0.132227\pi\)
−0.914953 + 0.403560i \(0.867773\pi\)
\(942\) 0 0
\(943\) −831.969 831.969i −0.882257 0.882257i
\(944\) 0 0
\(945\) 32.9302 18.0006i 0.0348468 0.0190482i
\(946\) 0 0
\(947\) 822.618 + 822.618i 0.868657 + 0.868657i 0.992324 0.123667i \(-0.0394653\pi\)
−0.123667 + 0.992324i \(0.539465\pi\)
\(948\) 0 0
\(949\) −654.763 −0.689951
\(950\) 0 0
\(951\) −57.9572 −0.0609434
\(952\) 0 0
\(953\) 659.139 + 659.139i 0.691647 + 0.691647i 0.962594 0.270947i \(-0.0873369\pi\)
−0.270947 + 0.962594i \(0.587337\pi\)
\(954\) 0 0
\(955\) −529.610 + 289.499i −0.554565 + 0.303140i
\(956\) 0 0
\(957\) −42.7056 42.7056i −0.0446244 0.0446244i
\(958\) 0 0
\(959\) 79.8661i 0.0832806i
\(960\) 0 0
\(961\) 641.133 0.667152
\(962\) 0 0
\(963\) −855.468 + 855.468i −0.888336 + 0.888336i
\(964\) 0 0
\(965\) 1237.71 + 362.817i 1.28260 + 0.375976i
\(966\) 0 0
\(967\) −332.005 + 332.005i −0.343335 + 0.343335i −0.857620 0.514284i \(-0.828058\pi\)
0.514284 + 0.857620i \(0.328058\pi\)
\(968\) 0 0
\(969\) 4.61086i 0.00475837i
\(970\) 0 0
\(971\) 960.961i 0.989661i −0.868989 0.494831i \(-0.835230\pi\)
0.868989 0.494831i \(-0.164770\pi\)
\(972\) 0 0
\(973\) 167.194 167.194i 0.171834 0.171834i
\(974\) 0 0
\(975\) −52.8286 33.8835i −0.0541832 0.0347524i
\(976\) 0 0
\(977\) 69.4628 69.4628i 0.0710980 0.0710980i −0.670664 0.741762i \(-0.733991\pi\)
0.741762 + 0.670664i \(0.233991\pi\)
\(978\) 0 0
\(979\) 43.9975 0.0449413
\(980\) 0 0
\(981\) 417.297i 0.425379i
\(982\) 0 0
\(983\) −234.943 234.943i −0.239006 0.239006i 0.577433 0.816438i \(-0.304055\pi\)
−0.816438 + 0.577433i \(0.804055\pi\)
\(984\) 0 0
\(985\) −1521.91 446.128i −1.54509 0.452921i
\(986\) 0 0
\(987\) 14.2412 + 14.2412i 0.0144288 + 0.0144288i
\(988\) 0 0
\(989\) 2182.82 2.20710
\(990\) 0 0
\(991\) 919.592 0.927944 0.463972 0.885850i \(-0.346424\pi\)
0.463972 + 0.885850i \(0.346424\pi\)
\(992\) 0 0
\(993\) −18.4694 18.4694i −0.0185996 0.0185996i
\(994\) 0 0
\(995\) 210.825 + 385.684i 0.211885 + 0.387622i
\(996\) 0 0
\(997\) −835.935 835.935i −0.838450 0.838450i 0.150205 0.988655i \(-0.452007\pi\)
−0.988655 + 0.150205i \(0.952007\pi\)
\(998\) 0 0
\(999\) 7.38441i 0.00739180i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 160.3.m.a.113.5 20
4.3 odd 2 40.3.i.a.13.9 yes 20
5.2 odd 4 inner 160.3.m.a.17.6 20
5.3 odd 4 800.3.m.b.657.5 20
5.4 even 2 800.3.m.b.593.6 20
8.3 odd 2 40.3.i.a.13.7 20
8.5 even 2 inner 160.3.m.a.113.6 20
12.11 even 2 360.3.u.b.253.2 20
20.3 even 4 200.3.i.b.157.4 20
20.7 even 4 40.3.i.a.37.7 yes 20
20.19 odd 2 200.3.i.b.93.2 20
24.11 even 2 360.3.u.b.253.4 20
40.3 even 4 200.3.i.b.157.2 20
40.13 odd 4 800.3.m.b.657.6 20
40.19 odd 2 200.3.i.b.93.4 20
40.27 even 4 40.3.i.a.37.9 yes 20
40.29 even 2 800.3.m.b.593.5 20
40.37 odd 4 inner 160.3.m.a.17.5 20
60.47 odd 4 360.3.u.b.37.4 20
120.107 odd 4 360.3.u.b.37.2 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
40.3.i.a.13.7 20 8.3 odd 2
40.3.i.a.13.9 yes 20 4.3 odd 2
40.3.i.a.37.7 yes 20 20.7 even 4
40.3.i.a.37.9 yes 20 40.27 even 4
160.3.m.a.17.5 20 40.37 odd 4 inner
160.3.m.a.17.6 20 5.2 odd 4 inner
160.3.m.a.113.5 20 1.1 even 1 trivial
160.3.m.a.113.6 20 8.5 even 2 inner
200.3.i.b.93.2 20 20.19 odd 2
200.3.i.b.93.4 20 40.19 odd 2
200.3.i.b.157.2 20 40.3 even 4
200.3.i.b.157.4 20 20.3 even 4
360.3.u.b.37.2 20 120.107 odd 4
360.3.u.b.37.4 20 60.47 odd 4
360.3.u.b.253.2 20 12.11 even 2
360.3.u.b.253.4 20 24.11 even 2
800.3.m.b.593.5 20 40.29 even 2
800.3.m.b.593.6 20 5.4 even 2
800.3.m.b.657.5 20 5.3 odd 4
800.3.m.b.657.6 20 40.13 odd 4