Properties

Label 40.3.i.a.13.9
Level $40$
Weight $3$
Character 40.13
Analytic conductor $1.090$
Analytic rank $0$
Dimension $20$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [40,3,Mod(13,40)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(40, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([0, 2, 3]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("40.13");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 40 = 2^{3} \cdot 5 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 40.i (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.08992105744\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(10\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} - x^{18} - 3x^{16} + 11x^{14} + x^{12} - 40x^{10} + 4x^{8} + 176x^{6} - 192x^{4} - 256x^{2} + 1024 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 2^{20} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 13.9
Root \(-0.541828 - 1.30630i\) of defining polynomial
Character \(\chi\) \(=\) 40.13
Dual form 40.3.i.a.37.9

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.84813 - 0.764474i) q^{2} +(0.130791 - 0.130791i) q^{3} +(2.83116 - 2.82569i) q^{4} +(-4.38731 + 2.39823i) q^{5} +(0.141733 - 0.341706i) q^{6} +(-1.59713 + 1.59713i) q^{7} +(3.07218 - 7.38659i) q^{8} +8.96579i q^{9} +(-6.27494 + 7.78621i) q^{10} -11.9427i q^{11} +(0.000715350 - 0.739867i) q^{12} +(-9.59714 + 9.59714i) q^{13} +(-1.73074 + 4.17267i) q^{14} +(-0.260155 + 0.887490i) q^{15} +(0.0309396 - 16.0000i) q^{16} +(0.857288 - 0.857288i) q^{17} +(6.85411 + 16.5699i) q^{18} +20.5611 q^{19} +(-5.64454 + 19.1870i) q^{20} +0.417782i q^{21} +(-9.12986 - 22.0716i) q^{22} +(-22.1560 - 22.1560i) q^{23} +(-0.564287 - 1.36792i) q^{24} +(13.4970 - 21.0435i) q^{25} +(-10.4000 + 25.0735i) q^{26} +(2.34977 + 2.34977i) q^{27} +(-0.00873536 + 9.03474i) q^{28} +27.3404 q^{29} +(0.197662 + 1.83908i) q^{30} +40.0267 q^{31} +(-12.1744 - 29.5937i) q^{32} +(-1.56200 - 1.56200i) q^{33} +(0.929005 - 2.23975i) q^{34} +(3.17684 - 10.8374i) q^{35} +(25.3345 + 25.3836i) q^{36} +(1.57131 + 1.57131i) q^{37} +(37.9996 - 15.7184i) q^{38} +2.51044i q^{39} +(4.23607 + 39.7751i) q^{40} -37.5504 q^{41} +(0.319383 + 0.772115i) q^{42} +(-49.2602 + 49.2602i) q^{43} +(-33.7463 - 33.8116i) q^{44} +(-21.5020 - 39.3357i) q^{45} +(-57.8849 - 24.0095i) q^{46} +(-34.0876 + 34.0876i) q^{47} +(-2.08861 - 2.09670i) q^{48} +43.8983i q^{49} +(8.85703 - 49.2093i) q^{50} -0.224252i q^{51} +(-0.0524906 + 54.2896i) q^{52} +(28.8002 - 28.8002i) q^{53} +(6.13901 + 2.54634i) q^{54} +(28.6412 + 52.3962i) q^{55} +(6.89068 + 16.7040i) q^{56} +(2.68921 - 2.68921i) q^{57} +(50.5285 - 20.9010i) q^{58} -92.7071 q^{59} +(1.77123 + 3.24774i) q^{60} +4.82618i q^{61} +(73.9744 - 30.5993i) q^{62} +(-14.3196 - 14.3196i) q^{63} +(-45.1234 - 45.3859i) q^{64} +(19.0895 - 65.1217i) q^{65} +(-4.08088 - 1.69267i) q^{66} +(54.6048 + 54.6048i) q^{67} +(0.00468885 - 4.84955i) q^{68} -5.79564 q^{69} +(-2.41371 - 22.4575i) q^{70} +59.2198 q^{71} +(66.2266 + 27.5445i) q^{72} +(34.1124 + 34.1124i) q^{73} +(4.10520 + 1.70275i) q^{74} +(-0.987017 - 4.51761i) q^{75} +(58.2118 - 58.0993i) q^{76} +(19.0740 + 19.0740i) q^{77} +(1.91917 + 4.63963i) q^{78} -96.2455i q^{79} +(38.2358 + 70.2711i) q^{80} -80.0774 q^{81} +(-69.3980 + 28.7063i) q^{82} +(63.6959 - 63.6959i) q^{83} +(1.18052 + 1.18281i) q^{84} +(-1.70522 + 5.81716i) q^{85} +(-53.3810 + 128.697i) q^{86} +(3.57588 - 3.57588i) q^{87} +(-88.2156 - 36.6901i) q^{88} -3.68406i q^{89} +(-69.8095 - 56.2598i) q^{90} -30.6558i q^{91} +(-125.333 - 0.121180i) q^{92} +(5.23514 - 5.23514i) q^{93} +(-36.9392 + 89.0574i) q^{94} +(-90.2080 + 49.3101i) q^{95} +(-5.46290 - 2.27829i) q^{96} +(46.0410 - 46.0410i) q^{97} +(33.5591 + 81.1298i) q^{98} +107.075 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q - 2 q^{2} - 16 q^{6} - 4 q^{7} + 4 q^{8} + 6 q^{10} - 44 q^{12} - 4 q^{15} - 56 q^{16} - 12 q^{17} + 10 q^{18} - 24 q^{20} + 92 q^{22} - 4 q^{23} - 28 q^{25} + 100 q^{26} + 68 q^{28} + 100 q^{30} - 136 q^{31}+ \cdots + 546 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/40\mathbb{Z}\right)^\times\).

\(n\) \(17\) \(21\) \(31\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.84813 0.764474i 0.924064 0.382237i
\(3\) 0.130791 0.130791i 0.0435971 0.0435971i −0.684972 0.728569i \(-0.740186\pi\)
0.728569 + 0.684972i \(0.240186\pi\)
\(4\) 2.83116 2.82569i 0.707790 0.706423i
\(5\) −4.38731 + 2.39823i −0.877463 + 0.479645i
\(6\) 0.141733 0.341706i 0.0236221 0.0569510i
\(7\) −1.59713 + 1.59713i −0.228162 + 0.228162i −0.811924 0.583763i \(-0.801580\pi\)
0.583763 + 0.811924i \(0.301580\pi\)
\(8\) 3.07218 7.38659i 0.384023 0.923324i
\(9\) 8.96579i 0.996199i
\(10\) −6.27494 + 7.78621i −0.627494 + 0.778621i
\(11\) 11.9427i 1.08570i −0.839831 0.542849i \(-0.817346\pi\)
0.839831 0.542849i \(-0.182654\pi\)
\(12\) 0.000715350 0.739867i 5.96125e−5 0.0616556i
\(13\) −9.59714 + 9.59714i −0.738241 + 0.738241i −0.972238 0.233996i \(-0.924820\pi\)
0.233996 + 0.972238i \(0.424820\pi\)
\(14\) −1.73074 + 4.17267i −0.123624 + 0.298048i
\(15\) −0.260155 + 0.887490i −0.0173437 + 0.0591660i
\(16\) 0.0309396 16.0000i 0.00193372 0.999998i
\(17\) 0.857288 0.857288i 0.0504287 0.0504287i −0.681443 0.731871i \(-0.738647\pi\)
0.731871 + 0.681443i \(0.238647\pi\)
\(18\) 6.85411 + 16.5699i 0.380784 + 0.920552i
\(19\) 20.5611 1.08216 0.541082 0.840970i \(-0.318015\pi\)
0.541082 + 0.840970i \(0.318015\pi\)
\(20\) −5.64454 + 19.1870i −0.282227 + 0.959348i
\(21\) 0.417782i 0.0198944i
\(22\) −9.12986 22.0716i −0.414993 1.00325i
\(23\) −22.1560 22.1560i −0.963306 0.963306i 0.0360441 0.999350i \(-0.488524\pi\)
−0.999350 + 0.0360441i \(0.988524\pi\)
\(24\) −0.564287 1.36792i −0.0235119 0.0569965i
\(25\) 13.4970 21.0435i 0.539881 0.841741i
\(26\) −10.4000 + 25.0735i −0.400000 + 0.964366i
\(27\) 2.34977 + 2.34977i 0.0870285 + 0.0870285i
\(28\) −0.00873536 + 9.03474i −0.000311977 + 0.322669i
\(29\) 27.3404 0.942771 0.471385 0.881927i \(-0.343754\pi\)
0.471385 + 0.881927i \(0.343754\pi\)
\(30\) 0.197662 + 1.83908i 0.00658872 + 0.0613026i
\(31\) 40.0267 1.29118 0.645591 0.763683i \(-0.276611\pi\)
0.645591 + 0.763683i \(0.276611\pi\)
\(32\) −12.1744 29.5937i −0.380449 0.924802i
\(33\) −1.56200 1.56200i −0.0473333 0.0473333i
\(34\) 0.929005 2.23975i 0.0273237 0.0658751i
\(35\) 3.17684 10.8374i 0.0907668 0.309640i
\(36\) 25.3345 + 25.3836i 0.703737 + 0.705100i
\(37\) 1.57131 + 1.57131i 0.0424677 + 0.0424677i 0.728022 0.685554i \(-0.240440\pi\)
−0.685554 + 0.728022i \(0.740440\pi\)
\(38\) 37.9996 15.7184i 0.999988 0.413642i
\(39\) 2.51044i 0.0643704i
\(40\) 4.23607 + 39.7751i 0.105902 + 0.994377i
\(41\) −37.5504 −0.915864 −0.457932 0.888987i \(-0.651410\pi\)
−0.457932 + 0.888987i \(0.651410\pi\)
\(42\) 0.319383 + 0.772115i 0.00760437 + 0.0183837i
\(43\) −49.2602 + 49.2602i −1.14558 + 1.14558i −0.158174 + 0.987411i \(0.550561\pi\)
−0.987411 + 0.158174i \(0.949439\pi\)
\(44\) −33.7463 33.8116i −0.766961 0.768446i
\(45\) −21.5020 39.3357i −0.477822 0.874127i
\(46\) −57.8849 24.0095i −1.25837 0.521946i
\(47\) −34.0876 + 34.0876i −0.725268 + 0.725268i −0.969673 0.244405i \(-0.921407\pi\)
0.244405 + 0.969673i \(0.421407\pi\)
\(48\) −2.08861 2.09670i −0.0435127 0.0436813i
\(49\) 43.8983i 0.895884i
\(50\) 8.85703 49.2093i 0.177141 0.984186i
\(51\) 0.224252i 0.00439709i
\(52\) −0.0524906 + 54.2896i −0.00100943 + 1.04403i
\(53\) 28.8002 28.8002i 0.543401 0.543401i −0.381124 0.924524i \(-0.624463\pi\)
0.924524 + 0.381124i \(0.124463\pi\)
\(54\) 6.13901 + 2.54634i 0.113685 + 0.0471544i
\(55\) 28.6412 + 52.3962i 0.520749 + 0.952659i
\(56\) 6.89068 + 16.7040i 0.123048 + 0.298287i
\(57\) 2.68921 2.68921i 0.0471792 0.0471792i
\(58\) 50.5285 20.9010i 0.871181 0.360362i
\(59\) −92.7071 −1.57131 −0.785653 0.618667i \(-0.787673\pi\)
−0.785653 + 0.618667i \(0.787673\pi\)
\(60\) 1.77123 + 3.24774i 0.0295205 + 0.0541291i
\(61\) 4.82618i 0.0791176i 0.999217 + 0.0395588i \(0.0125952\pi\)
−0.999217 + 0.0395588i \(0.987405\pi\)
\(62\) 73.9744 30.5993i 1.19314 0.493537i
\(63\) −14.3196 14.3196i −0.227294 0.227294i
\(64\) −45.1234 45.3859i −0.705053 0.709155i
\(65\) 19.0895 65.1217i 0.293685 1.00187i
\(66\) −4.08088 1.69267i −0.0618315 0.0256465i
\(67\) 54.6048 + 54.6048i 0.814997 + 0.814997i 0.985378 0.170381i \(-0.0544998\pi\)
−0.170381 + 0.985378i \(0.554500\pi\)
\(68\) 0.00468885 4.84955i 6.89537e−5 0.0713169i
\(69\) −5.79564 −0.0839947
\(70\) −2.41371 22.4575i −0.0344815 0.320822i
\(71\) 59.2198 0.834082 0.417041 0.908888i \(-0.363067\pi\)
0.417041 + 0.908888i \(0.363067\pi\)
\(72\) 66.2266 + 27.5445i 0.919814 + 0.382563i
\(73\) 34.1124 + 34.1124i 0.467293 + 0.467293i 0.901037 0.433743i \(-0.142807\pi\)
−0.433743 + 0.901037i \(0.642807\pi\)
\(74\) 4.10520 + 1.70275i 0.0554756 + 0.0230102i
\(75\) −0.987017 4.51761i −0.0131602 0.0602347i
\(76\) 58.2118 58.0993i 0.765944 0.764465i
\(77\) 19.0740 + 19.0740i 0.247715 + 0.247715i
\(78\) 1.91917 + 4.63963i 0.0246047 + 0.0594824i
\(79\) 96.2455i 1.21830i −0.793056 0.609149i \(-0.791511\pi\)
0.793056 0.609149i \(-0.208489\pi\)
\(80\) 38.2358 + 70.2711i 0.477947 + 0.878388i
\(81\) −80.0774 −0.988610
\(82\) −69.3980 + 28.7063i −0.846317 + 0.350077i
\(83\) 63.6959 63.6959i 0.767421 0.767421i −0.210231 0.977652i \(-0.567422\pi\)
0.977652 + 0.210231i \(0.0674216\pi\)
\(84\) 1.18052 + 1.18281i 0.0140539 + 0.0140811i
\(85\) −1.70522 + 5.81716i −0.0200614 + 0.0684372i
\(86\) −53.3810 + 128.697i −0.620710 + 1.49648i
\(87\) 3.57588 3.57588i 0.0411021 0.0411021i
\(88\) −88.2156 36.6901i −1.00245 0.416933i
\(89\) 3.68406i 0.0413939i −0.999786 0.0206970i \(-0.993411\pi\)
0.999786 0.0206970i \(-0.00658852\pi\)
\(90\) −69.8095 56.2598i −0.775662 0.625109i
\(91\) 30.6558i 0.336877i
\(92\) −125.333 0.121180i −1.36232 0.00131718i
\(93\) 5.23514 5.23514i 0.0562918 0.0562918i
\(94\) −36.9392 + 89.0574i −0.392970 + 0.947419i
\(95\) −90.2080 + 49.3101i −0.949558 + 0.519054i
\(96\) −5.46290 2.27829i −0.0569052 0.0237322i
\(97\) 46.0410 46.0410i 0.474650 0.474650i −0.428766 0.903416i \(-0.641051\pi\)
0.903416 + 0.428766i \(0.141051\pi\)
\(98\) 33.5591 + 81.1298i 0.342440 + 0.827855i
\(99\) 107.075 1.08157
\(100\) −21.2503 97.7160i −0.212503 0.977160i
\(101\) 108.173i 1.07102i 0.844529 + 0.535510i \(0.179880\pi\)
−0.844529 + 0.535510i \(0.820120\pi\)
\(102\) −0.171434 0.414446i −0.00168073 0.00406320i
\(103\) −50.9112 50.9112i −0.494284 0.494284i 0.415369 0.909653i \(-0.363652\pi\)
−0.909653 + 0.415369i \(0.863652\pi\)
\(104\) 41.4059 + 100.374i 0.398134 + 0.965137i
\(105\) −1.00194 1.83294i −0.00954225 0.0174566i
\(106\) 31.2095 75.2435i 0.294429 0.709845i
\(107\) −95.4147 95.4147i −0.891726 0.891726i 0.102960 0.994686i \(-0.467169\pi\)
−0.994686 + 0.102960i \(0.967169\pi\)
\(108\) 13.2923 + 0.0128518i 0.123077 + 0.000118998i
\(109\) −46.5432 −0.427002 −0.213501 0.976943i \(-0.568487\pi\)
−0.213501 + 0.976943i \(0.568487\pi\)
\(110\) 92.9882 + 74.9395i 0.845347 + 0.681269i
\(111\) 0.411026 0.00370294
\(112\) 25.5047 + 25.6035i 0.227720 + 0.228603i
\(113\) 88.0400 + 88.0400i 0.779115 + 0.779115i 0.979680 0.200565i \(-0.0642779\pi\)
−0.200565 + 0.979680i \(0.564278\pi\)
\(114\) 2.91418 7.02585i 0.0255630 0.0616302i
\(115\) 150.341 + 44.0703i 1.30731 + 0.383220i
\(116\) 77.4049 77.2554i 0.667284 0.665995i
\(117\) −86.0459 86.0459i −0.735435 0.735435i
\(118\) −171.335 + 70.8721i −1.45199 + 0.600611i
\(119\) 2.73841i 0.0230118i
\(120\) 5.75628 + 4.64819i 0.0479690 + 0.0387349i
\(121\) −21.6274 −0.178739
\(122\) 3.68948 + 8.91939i 0.0302417 + 0.0731098i
\(123\) −4.91127 + 4.91127i −0.0399290 + 0.0399290i
\(124\) 113.322 113.103i 0.913886 0.912121i
\(125\) −8.74856 + 124.693i −0.0699885 + 0.997548i
\(126\) −37.4113 15.5175i −0.296915 0.123154i
\(127\) 44.3246 44.3246i 0.349012 0.349012i −0.510729 0.859742i \(-0.670625\pi\)
0.859742 + 0.510729i \(0.170625\pi\)
\(128\) −118.090 49.3834i −0.922579 0.385808i
\(129\) 12.8856i 0.0998884i
\(130\) −14.5039 134.947i −0.111569 1.03805i
\(131\) 82.8025i 0.632080i −0.948746 0.316040i \(-0.897647\pi\)
0.948746 0.316040i \(-0.102353\pi\)
\(132\) −8.83599 0.00854319i −0.0669393 6.47212e-5i
\(133\) −32.8388 + 32.8388i −0.246908 + 0.246908i
\(134\) 142.661 + 59.1728i 1.06463 + 0.441588i
\(135\) −15.9444 4.67390i −0.118107 0.0346215i
\(136\) −3.69869 8.96618i −0.0271962 0.0659278i
\(137\) 25.0030 25.0030i 0.182503 0.182503i −0.609942 0.792446i \(-0.708807\pi\)
0.792446 + 0.609942i \(0.208807\pi\)
\(138\) −10.7111 + 4.43061i −0.0776165 + 0.0321059i
\(139\) −104.684 −0.753121 −0.376561 0.926392i \(-0.622893\pi\)
−0.376561 + 0.926392i \(0.622893\pi\)
\(140\) −21.6290 39.6592i −0.154493 0.283280i
\(141\) 8.91673i 0.0632392i
\(142\) 109.446 45.2720i 0.770745 0.318817i
\(143\) 114.615 + 114.615i 0.801507 + 0.801507i
\(144\) 143.452 + 0.277398i 0.996197 + 0.00192637i
\(145\) −119.951 + 65.5683i −0.827246 + 0.452195i
\(146\) 89.1222 + 36.9661i 0.610426 + 0.253193i
\(147\) 5.74152 + 5.74152i 0.0390580 + 0.0390580i
\(148\) 8.88864 + 0.00859410i 0.0600584 + 5.80682e-5i
\(149\) 49.3481 0.331196 0.165598 0.986193i \(-0.447045\pi\)
0.165598 + 0.986193i \(0.447045\pi\)
\(150\) −5.27772 7.59457i −0.0351848 0.0506305i
\(151\) −22.1078 −0.146409 −0.0732047 0.997317i \(-0.523323\pi\)
−0.0732047 + 0.997317i \(0.523323\pi\)
\(152\) 63.1675 151.876i 0.415575 0.999187i
\(153\) 7.68626 + 7.68626i 0.0502370 + 0.0502370i
\(154\) 49.8329 + 20.6697i 0.323590 + 0.134219i
\(155\) −175.609 + 95.9930i −1.13296 + 0.619309i
\(156\) 7.09374 + 7.10747i 0.0454727 + 0.0455607i
\(157\) −64.7264 64.7264i −0.412270 0.412270i 0.470258 0.882529i \(-0.344161\pi\)
−0.882529 + 0.470258i \(0.844161\pi\)
\(158\) −73.5771 177.874i −0.465678 1.12579i
\(159\) 7.53364i 0.0473814i
\(160\) 124.385 + 100.640i 0.777407 + 0.628998i
\(161\) 70.7723 0.439579
\(162\) −147.993 + 61.2171i −0.913540 + 0.377883i
\(163\) 25.7888 25.7888i 0.158213 0.158213i −0.623561 0.781775i \(-0.714315\pi\)
0.781775 + 0.623561i \(0.214315\pi\)
\(164\) −106.311 + 106.106i −0.648240 + 0.646987i
\(165\) 10.5990 + 3.10695i 0.0642363 + 0.0188300i
\(166\) 69.0244 166.412i 0.415810 1.00248i
\(167\) −56.4754 + 56.4754i −0.338176 + 0.338176i −0.855681 0.517504i \(-0.826861\pi\)
0.517504 + 0.855681i \(0.326861\pi\)
\(168\) 3.08599 + 1.28350i 0.0183690 + 0.00763990i
\(169\) 15.2101i 0.0900005i
\(170\) 1.29560 + 12.0545i 0.00762116 + 0.0709086i
\(171\) 184.346i 1.07805i
\(172\) −0.269424 + 278.657i −0.00156642 + 1.62010i
\(173\) 135.496 135.496i 0.783216 0.783216i −0.197156 0.980372i \(-0.563171\pi\)
0.980372 + 0.197156i \(0.0631706\pi\)
\(174\) 3.87502 9.34236i 0.0222702 0.0536917i
\(175\) 12.0528 + 55.1659i 0.0688729 + 0.315233i
\(176\) −191.082 0.369501i −1.08570 0.00209944i
\(177\) −12.1253 + 12.1253i −0.0685044 + 0.0685044i
\(178\) −2.81636 6.80861i −0.0158223 0.0382506i
\(179\) 15.5036 0.0866121 0.0433061 0.999062i \(-0.486211\pi\)
0.0433061 + 0.999062i \(0.486211\pi\)
\(180\) −172.026 50.6078i −0.955701 0.281154i
\(181\) 263.672i 1.45675i −0.685179 0.728375i \(-0.740276\pi\)
0.685179 0.728375i \(-0.259724\pi\)
\(182\) −23.4355 56.6559i −0.128767 0.311296i
\(183\) 0.631222 + 0.631222i 0.00344930 + 0.00344930i
\(184\) −231.725 + 95.5901i −1.25937 + 0.519512i
\(185\) −10.6622 3.12546i −0.0576333 0.0168944i
\(186\) 5.67309 13.6773i 0.0305005 0.0735341i
\(187\) −10.2383 10.2383i −0.0547503 0.0547503i
\(188\) −0.186439 + 192.829i −0.000991696 + 1.02568i
\(189\) −7.50579 −0.0397132
\(190\) −129.020 + 160.093i −0.679051 + 0.842595i
\(191\) −120.714 −0.632010 −0.316005 0.948758i \(-0.602342\pi\)
−0.316005 + 0.948758i \(0.602342\pi\)
\(192\) −11.8378 0.0343368i −0.0616554 0.000178837i
\(193\) −182.404 182.404i −0.945098 0.945098i 0.0534716 0.998569i \(-0.482971\pi\)
−0.998569 + 0.0534716i \(0.982971\pi\)
\(194\) 49.8926 120.287i 0.257178 0.620036i
\(195\) −6.02061 11.0141i −0.0308749 0.0564826i
\(196\) 124.043 + 124.283i 0.632873 + 0.634098i
\(197\) 224.288 + 224.288i 1.13852 + 1.13852i 0.988716 + 0.149799i \(0.0478626\pi\)
0.149799 + 0.988716i \(0.452137\pi\)
\(198\) 197.889 81.8563i 0.999441 0.413416i
\(199\) 87.9089i 0.441753i 0.975302 + 0.220877i \(0.0708918\pi\)
−0.975302 + 0.220877i \(0.929108\pi\)
\(200\) −113.975 164.347i −0.569873 0.821733i
\(201\) 14.2837 0.0710631
\(202\) 82.6954 + 199.918i 0.409383 + 0.989691i
\(203\) −43.6662 + 43.6662i −0.215104 + 0.215104i
\(204\) −0.633666 0.634892i −0.00310621 0.00311222i
\(205\) 164.745 90.0544i 0.803636 0.439290i
\(206\) −133.011 55.1702i −0.645684 0.267817i
\(207\) 198.646 198.646i 0.959644 0.959644i
\(208\) 153.257 + 153.851i 0.736812 + 0.739667i
\(209\) 245.554i 1.17490i
\(210\) −3.25294 2.62156i −0.0154902 0.0124836i
\(211\) 119.117i 0.564534i 0.959336 + 0.282267i \(0.0910864\pi\)
−0.959336 + 0.282267i \(0.908914\pi\)
\(212\) 0.157520 162.919i 0.000743019 0.768484i
\(213\) 7.74544 7.74544i 0.0363636 0.0363636i
\(214\) −249.281 103.397i −1.16486 0.483162i
\(215\) 97.9828 334.257i 0.455734 1.55468i
\(216\) 24.5757 10.1379i 0.113776 0.0469345i
\(217\) −63.9279 + 63.9279i −0.294599 + 0.294599i
\(218\) −86.0179 + 35.5811i −0.394577 + 0.163216i
\(219\) 8.92322 0.0407453
\(220\) 229.143 + 67.4109i 1.04156 + 0.306413i
\(221\) 16.4550i 0.0744571i
\(222\) 0.759629 0.314219i 0.00342175 0.00141540i
\(223\) 111.993 + 111.993i 0.502212 + 0.502212i 0.912125 0.409913i \(-0.134441\pi\)
−0.409913 + 0.912125i \(0.634441\pi\)
\(224\) 66.7091 + 27.8209i 0.297808 + 0.124200i
\(225\) 188.672 + 121.011i 0.838541 + 0.537829i
\(226\) 230.013 + 95.4050i 1.01776 + 0.422146i
\(227\) 85.8837 + 85.8837i 0.378342 + 0.378342i 0.870504 0.492162i \(-0.163793\pi\)
−0.492162 + 0.870504i \(0.663793\pi\)
\(228\) 0.0147084 15.2125i 6.45105e−5 0.0667214i
\(229\) −26.5156 −0.115789 −0.0578943 0.998323i \(-0.518439\pi\)
−0.0578943 + 0.998323i \(0.518439\pi\)
\(230\) 311.540 33.4839i 1.35452 0.145582i
\(231\) 4.98944 0.0215993
\(232\) 83.9946 201.952i 0.362046 0.870482i
\(233\) −71.6569 71.6569i −0.307541 0.307541i 0.536414 0.843955i \(-0.319778\pi\)
−0.843955 + 0.536414i \(0.819778\pi\)
\(234\) −224.804 93.2441i −0.960700 0.398479i
\(235\) 67.8033 231.303i 0.288524 0.984267i
\(236\) −262.469 + 261.962i −1.11215 + 1.11001i
\(237\) −12.5881 12.5881i −0.0531143 0.0531143i
\(238\) 2.09344 + 5.06093i 0.00879596 + 0.0212644i
\(239\) 114.913i 0.480809i 0.970673 + 0.240405i \(0.0772801\pi\)
−0.970673 + 0.240405i \(0.922720\pi\)
\(240\) 14.1918 + 4.18994i 0.0591323 + 0.0174581i
\(241\) 219.080 0.909045 0.454522 0.890735i \(-0.349810\pi\)
0.454522 + 0.890735i \(0.349810\pi\)
\(242\) −39.9702 + 16.5336i −0.165166 + 0.0683205i
\(243\) −31.6214 + 31.6214i −0.130129 + 0.130129i
\(244\) 13.6373 + 13.6637i 0.0558905 + 0.0559987i
\(245\) −105.278 192.596i −0.429707 0.786105i
\(246\) −5.32212 + 12.8312i −0.0216347 + 0.0521593i
\(247\) −197.328 + 197.328i −0.798897 + 0.798897i
\(248\) 122.969 295.660i 0.495844 1.19218i
\(249\) 16.6618i 0.0669147i
\(250\) 79.1564 + 237.138i 0.316626 + 0.948551i
\(251\) 95.0552i 0.378706i −0.981909 0.189353i \(-0.939361\pi\)
0.981909 0.189353i \(-0.0606390\pi\)
\(252\) −81.0036 0.0783194i −0.321443 0.000310791i
\(253\) −264.602 + 264.602i −1.04586 + 1.04586i
\(254\) 48.0326 115.802i 0.189105 0.455915i
\(255\) 0.537806 + 0.983862i 0.00210904 + 0.00385828i
\(256\) −255.998 0.990065i −0.999993 0.00386744i
\(257\) −249.128 + 249.128i −0.969369 + 0.969369i −0.999545 0.0301755i \(-0.990393\pi\)
0.0301755 + 0.999545i \(0.490393\pi\)
\(258\) 9.85070 + 23.8143i 0.0381810 + 0.0923033i
\(259\) −5.01917 −0.0193790
\(260\) −129.968 238.311i −0.499878 0.916582i
\(261\) 245.128i 0.939187i
\(262\) −63.3003 153.030i −0.241604 0.584082i
\(263\) −85.6095 85.6095i −0.325511 0.325511i 0.525365 0.850877i \(-0.323929\pi\)
−0.850877 + 0.525365i \(0.823929\pi\)
\(264\) −16.3366 + 6.73909i −0.0618810 + 0.0255269i
\(265\) −57.2862 + 195.425i −0.216174 + 0.737453i
\(266\) −35.5859 + 85.7947i −0.133782 + 0.322537i
\(267\) −0.481843 0.481843i −0.00180465 0.00180465i
\(268\) 308.891 + 0.298656i 1.15258 + 0.00111439i
\(269\) −192.119 −0.714196 −0.357098 0.934067i \(-0.616234\pi\)
−0.357098 + 0.934067i \(0.616234\pi\)
\(270\) −33.0405 + 3.55115i −0.122372 + 0.0131524i
\(271\) −485.780 −1.79255 −0.896274 0.443501i \(-0.853736\pi\)
−0.896274 + 0.443501i \(0.853736\pi\)
\(272\) −13.6901 13.7431i −0.0503311 0.0505261i
\(273\) −4.00951 4.00951i −0.0146869 0.0146869i
\(274\) 27.0946 65.3228i 0.0988853 0.238404i
\(275\) −251.316 161.191i −0.913876 0.586148i
\(276\) −16.4084 + 16.3767i −0.0594506 + 0.0593358i
\(277\) −88.8551 88.8551i −0.320777 0.320777i 0.528288 0.849065i \(-0.322834\pi\)
−0.849065 + 0.528288i \(0.822834\pi\)
\(278\) −193.469 + 80.0280i −0.695933 + 0.287871i
\(279\) 358.871i 1.28627i
\(280\) −70.2916 56.7605i −0.251042 0.202716i
\(281\) 390.006 1.38792 0.693961 0.720012i \(-0.255864\pi\)
0.693961 + 0.720012i \(0.255864\pi\)
\(282\) 6.81660 + 16.4793i 0.0241724 + 0.0584371i
\(283\) 121.062 121.062i 0.427779 0.427779i −0.460092 0.887871i \(-0.652184\pi\)
0.887871 + 0.460092i \(0.152184\pi\)
\(284\) 167.661 167.337i 0.590355 0.589214i
\(285\) −5.34908 + 18.2478i −0.0187687 + 0.0640272i
\(286\) 299.445 + 124.204i 1.04701 + 0.434278i
\(287\) 59.9730 59.9730i 0.208965 0.208965i
\(288\) 265.330 109.153i 0.921286 0.379003i
\(289\) 287.530i 0.994914i
\(290\) −171.559 + 212.878i −0.591583 + 0.734061i
\(291\) 12.0435i 0.0413867i
\(292\) 192.969 + 0.186575i 0.660852 + 0.000638954i
\(293\) −244.956 + 244.956i −0.836026 + 0.836026i −0.988333 0.152307i \(-0.951330\pi\)
0.152307 + 0.988333i \(0.451330\pi\)
\(294\) 15.0003 + 6.22183i 0.0510215 + 0.0211627i
\(295\) 406.735 222.332i 1.37876 0.753669i
\(296\) 16.4339 6.77925i 0.0555200 0.0229029i
\(297\) 28.0625 28.0625i 0.0944866 0.0944866i
\(298\) 91.2017 37.7253i 0.306046 0.126595i
\(299\) 425.269 1.42230
\(300\) −15.5598 10.0011i −0.0518659 0.0333369i
\(301\) 157.350i 0.522757i
\(302\) −40.8581 + 16.9008i −0.135292 + 0.0559630i
\(303\) 14.1481 + 14.1481i 0.0466934 + 0.0466934i
\(304\) 0.636152 328.977i 0.00209260 1.08216i
\(305\) −11.5743 21.1739i −0.0379484 0.0694228i
\(306\) 20.0811 + 8.32926i 0.0656247 + 0.0272198i
\(307\) −135.324 135.324i −0.440796 0.440796i 0.451483 0.892280i \(-0.350895\pi\)
−0.892280 + 0.451483i \(0.850895\pi\)
\(308\) 107.899 + 0.104324i 0.350321 + 0.000338713i
\(309\) −13.3175 −0.0430987
\(310\) −251.165 + 311.656i −0.810209 + 1.00534i
\(311\) 225.951 0.726531 0.363266 0.931686i \(-0.381662\pi\)
0.363266 + 0.931686i \(0.381662\pi\)
\(312\) 18.5436 + 7.71255i 0.0594347 + 0.0247197i
\(313\) −230.622 230.622i −0.736812 0.736812i 0.235148 0.971960i \(-0.424443\pi\)
−0.971960 + 0.235148i \(0.924443\pi\)
\(314\) −169.104 70.1411i −0.538549 0.223379i
\(315\) 97.1659 + 28.4828i 0.308463 + 0.0904217i
\(316\) −271.960 272.486i −0.860633 0.862299i
\(317\) 221.563 + 221.563i 0.698938 + 0.698938i 0.964182 0.265243i \(-0.0854522\pi\)
−0.265243 + 0.964182i \(0.585452\pi\)
\(318\) −5.75927 13.9231i −0.0181109 0.0437835i
\(319\) 326.517i 1.02356i
\(320\) 306.816 + 90.9062i 0.958800 + 0.284082i
\(321\) −24.9588 −0.0777534
\(322\) 130.796 54.1035i 0.406200 0.168023i
\(323\) 17.6268 17.6268i 0.0545721 0.0545721i
\(324\) −226.712 + 226.274i −0.699729 + 0.698377i
\(325\) 72.4248 + 331.490i 0.222846 + 1.01997i
\(326\) 27.9462 67.3759i 0.0857244 0.206674i
\(327\) −6.08745 + 6.08745i −0.0186161 + 0.0186161i
\(328\) −115.362 + 277.370i −0.351713 + 0.845639i
\(329\) 108.885i 0.330957i
\(330\) 21.9635 2.36061i 0.0665560 0.00715336i
\(331\) 141.212i 0.426624i −0.976984 0.213312i \(-0.931575\pi\)
0.976984 0.213312i \(-0.0684250\pi\)
\(332\) 0.348379 360.318i 0.00104933 1.08530i
\(333\) −14.0880 + 14.0880i −0.0423063 + 0.0423063i
\(334\) −61.1999 + 147.548i −0.183233 + 0.441760i
\(335\) −370.523 108.614i −1.10604 0.324220i
\(336\) 6.68450 + 0.0129260i 0.0198944 + 3.84703e-5i
\(337\) 225.465 225.465i 0.669035 0.669035i −0.288458 0.957493i \(-0.593142\pi\)
0.957493 + 0.288458i \(0.0931424\pi\)
\(338\) −11.6277 28.1102i −0.0344015 0.0831663i
\(339\) 23.0297 0.0679343
\(340\) 11.6097 + 21.2877i 0.0341463 + 0.0626110i
\(341\) 478.025i 1.40183i
\(342\) 140.928 + 340.696i 0.412070 + 0.996187i
\(343\) −148.371 148.371i −0.432568 0.432568i
\(344\) 212.528 + 515.201i 0.617815 + 1.49768i
\(345\) 25.4273 13.8992i 0.0737022 0.0402877i
\(346\) 146.831 353.998i 0.424368 1.02312i
\(347\) 346.013 + 346.013i 0.997155 + 0.997155i 0.999996 0.00284067i \(-0.000904214\pi\)
−0.00284067 + 0.999996i \(0.500904\pi\)
\(348\) 0.0195579 20.2282i 5.62009e−5 0.0581271i
\(349\) 428.411 1.22754 0.613769 0.789486i \(-0.289653\pi\)
0.613769 + 0.789486i \(0.289653\pi\)
\(350\) 64.4479 + 92.7396i 0.184137 + 0.264970i
\(351\) −45.1021 −0.128496
\(352\) −353.427 + 145.395i −1.00405 + 0.413053i
\(353\) 25.9724 + 25.9724i 0.0735762 + 0.0735762i 0.742937 0.669361i \(-0.233432\pi\)
−0.669361 + 0.742937i \(0.733432\pi\)
\(354\) −13.1396 + 31.6785i −0.0371176 + 0.0894874i
\(355\) −259.816 + 142.022i −0.731876 + 0.400063i
\(356\) −10.4100 10.4302i −0.0292416 0.0292982i
\(357\) 0.358160 + 0.358160i 0.00100325 + 0.00100325i
\(358\) 28.6526 11.8521i 0.0800352 0.0331063i
\(359\) 288.043i 0.802348i 0.916002 + 0.401174i \(0.131398\pi\)
−0.916002 + 0.401174i \(0.868602\pi\)
\(360\) −356.615 + 37.9797i −0.990597 + 0.105499i
\(361\) 61.7587 0.171077
\(362\) −201.570 487.299i −0.556823 1.34613i
\(363\) −2.82868 + 2.82868i −0.00779249 + 0.00779249i
\(364\) −86.6238 86.7915i −0.237978 0.238438i
\(365\) −231.471 67.8526i −0.634168 0.185898i
\(366\) 1.64913 + 0.684027i 0.00450583 + 0.00186893i
\(367\) 160.854 160.854i 0.438295 0.438295i −0.453143 0.891438i \(-0.649697\pi\)
0.891438 + 0.453143i \(0.149697\pi\)
\(368\) −355.181 + 353.810i −0.965167 + 0.961442i
\(369\) 336.669i 0.912382i
\(370\) −22.0944 + 2.37467i −0.0597145 + 0.00641804i
\(371\) 91.9956i 0.247966i
\(372\) 0.0286331 29.6144i 7.69706e−5 0.0796086i
\(373\) 360.121 360.121i 0.965471 0.965471i −0.0339529 0.999423i \(-0.510810\pi\)
0.999423 + 0.0339529i \(0.0108096\pi\)
\(374\) −26.7486 11.0948i −0.0715204 0.0296652i
\(375\) 15.1646 + 17.4531i 0.0404389 + 0.0465415i
\(376\) 147.068 + 356.515i 0.391138 + 0.948177i
\(377\) −262.389 + 262.389i −0.695992 + 0.695992i
\(378\) −13.8717 + 5.73797i −0.0366975 + 0.0151798i
\(379\) 64.1572 0.169280 0.0846402 0.996412i \(-0.473026\pi\)
0.0846402 + 0.996412i \(0.473026\pi\)
\(380\) −116.058 + 394.505i −0.305416 + 1.03817i
\(381\) 11.5945i 0.0304319i
\(382\) −223.095 + 92.2826i −0.584018 + 0.241577i
\(383\) 376.877 + 376.877i 0.984014 + 0.984014i 0.999874 0.0158604i \(-0.00504875\pi\)
−0.0158604 + 0.999874i \(0.505049\pi\)
\(384\) −21.9041 + 8.98625i −0.0570419 + 0.0234017i
\(385\) −129.428 37.9399i −0.336175 0.0985452i
\(386\) −476.549 197.663i −1.23458 0.512080i
\(387\) −441.656 441.656i −1.14123 1.14123i
\(388\) 0.251817 260.447i 0.000649013 0.671256i
\(389\) −10.3794 −0.0266823 −0.0133411 0.999911i \(-0.504247\pi\)
−0.0133411 + 0.999911i \(0.504247\pi\)
\(390\) −19.5469 15.7529i −0.0501202 0.0403920i
\(391\) −37.9882 −0.0971566
\(392\) 324.259 + 134.864i 0.827191 + 0.344040i
\(393\) −10.8298 10.8298i −0.0275569 0.0275569i
\(394\) 585.974 + 243.050i 1.48724 + 0.616879i
\(395\) 230.818 + 422.259i 0.584350 + 1.06901i
\(396\) 303.148 302.562i 0.765525 0.764046i
\(397\) −184.458 184.458i −0.464630 0.464630i 0.435540 0.900169i \(-0.356558\pi\)
−0.900169 + 0.435540i \(0.856558\pi\)
\(398\) 67.2040 + 162.467i 0.168854 + 0.408208i
\(399\) 8.59006i 0.0215290i
\(400\) −336.278 216.603i −0.840696 0.541508i
\(401\) −262.943 −0.655719 −0.327859 0.944727i \(-0.606327\pi\)
−0.327859 + 0.944727i \(0.606327\pi\)
\(402\) 26.3981 10.9195i 0.0656669 0.0271629i
\(403\) −384.141 + 384.141i −0.953204 + 0.953204i
\(404\) 305.663 + 306.255i 0.756593 + 0.758057i
\(405\) 351.325 192.044i 0.867468 0.474182i
\(406\) −47.3191 + 114.082i −0.116549 + 0.280991i
\(407\) 18.7656 18.7656i 0.0461071 0.0461071i
\(408\) −1.65645 0.688942i −0.00405994 0.00168858i
\(409\) 245.618i 0.600532i 0.953855 + 0.300266i \(0.0970755\pi\)
−0.953855 + 0.300266i \(0.902925\pi\)
\(410\) 235.627 292.376i 0.574699 0.713111i
\(411\) 6.54034i 0.0159132i
\(412\) −287.997 0.278454i −0.699023 0.000675859i
\(413\) 148.065 148.065i 0.358512 0.358512i
\(414\) 215.264 518.984i 0.519962 1.25358i
\(415\) −126.697 + 432.211i −0.305293 + 1.04147i
\(416\) 400.854 + 167.175i 0.963590 + 0.401864i
\(417\) −13.6917 + 13.6917i −0.0328339 + 0.0328339i
\(418\) −187.720 453.816i −0.449091 1.08568i
\(419\) −673.011 −1.60623 −0.803116 0.595823i \(-0.796826\pi\)
−0.803116 + 0.595823i \(0.796826\pi\)
\(420\) −8.01597 2.35819i −0.0190856 0.00561474i
\(421\) 701.227i 1.66562i 0.553557 + 0.832811i \(0.313270\pi\)
−0.553557 + 0.832811i \(0.686730\pi\)
\(422\) 91.0615 + 220.143i 0.215786 + 0.521666i
\(423\) −305.622 305.622i −0.722511 0.722511i
\(424\) −124.256 301.215i −0.293056 0.710413i
\(425\) −6.46952 29.6112i −0.0152224 0.0696734i
\(426\) 8.39339 20.2358i 0.0197028 0.0475018i
\(427\) −7.70804 7.70804i −0.0180516 0.0180516i
\(428\) −539.747 0.521861i −1.26109 0.00121930i
\(429\) 29.9814 0.0698868
\(430\) −74.4456 692.655i −0.173129 1.61082i
\(431\) 405.559 0.940973 0.470486 0.882407i \(-0.344078\pi\)
0.470486 + 0.882407i \(0.344078\pi\)
\(432\) 37.6689 37.5235i 0.0871966 0.0868600i
\(433\) 145.764 + 145.764i 0.336638 + 0.336638i 0.855100 0.518462i \(-0.173495\pi\)
−0.518462 + 0.855100i \(0.673495\pi\)
\(434\) −69.2758 + 167.018i −0.159622 + 0.384834i
\(435\) −7.11274 + 24.2643i −0.0163511 + 0.0557800i
\(436\) −131.771 + 131.517i −0.302228 + 0.301644i
\(437\) −455.553 455.553i −1.04245 1.04245i
\(438\) 16.4913 6.82156i 0.0376513 0.0155743i
\(439\) 62.3888i 0.142116i −0.997472 0.0710579i \(-0.977362\pi\)
0.997472 0.0710579i \(-0.0226375\pi\)
\(440\) 475.020 50.5900i 1.07959 0.114977i
\(441\) −393.583 −0.892479
\(442\) 12.5794 + 30.4110i 0.0284602 + 0.0688032i
\(443\) 169.632 169.632i 0.382918 0.382918i −0.489235 0.872152i \(-0.662724\pi\)
0.872152 + 0.489235i \(0.162724\pi\)
\(444\) 1.16368 1.16143i 0.00262090 0.00261584i
\(445\) 8.83520 + 16.1631i 0.0198544 + 0.0363216i
\(446\) 292.594 + 121.362i 0.656040 + 0.272112i
\(447\) 6.45431 6.45431i 0.0144392 0.0144392i
\(448\) 144.555 + 0.419297i 0.322668 + 0.000935930i
\(449\) 17.0056i 0.0378743i −0.999821 0.0189371i \(-0.993972\pi\)
0.999821 0.0189371i \(-0.00602824\pi\)
\(450\) 441.200 + 79.4102i 0.980444 + 0.176467i
\(451\) 448.452i 0.994351i
\(452\) 498.029 + 0.481526i 1.10183 + 0.00106532i
\(453\) −2.89151 + 2.89151i −0.00638303 + 0.00638303i
\(454\) 224.380 + 93.0683i 0.494229 + 0.204996i
\(455\) 73.5195 + 134.497i 0.161581 + 0.295597i
\(456\) −11.6024 28.1259i −0.0254438 0.0616795i
\(457\) 559.163 559.163i 1.22355 1.22355i 0.257191 0.966360i \(-0.417203\pi\)
0.966360 0.257191i \(-0.0827971\pi\)
\(458\) −49.0042 + 20.2705i −0.106996 + 0.0442586i
\(459\) 4.02886 0.00877747
\(460\) 550.168 300.046i 1.19602 0.652274i
\(461\) 327.625i 0.710683i −0.934737 0.355341i \(-0.884365\pi\)
0.934737 0.355341i \(-0.115635\pi\)
\(462\) 9.22112 3.81429i 0.0199591 0.00825604i
\(463\) 605.934 + 605.934i 1.30871 + 1.30871i 0.922345 + 0.386367i \(0.126270\pi\)
0.386367 + 0.922345i \(0.373730\pi\)
\(464\) 0.845899 437.445i 0.00182306 0.942769i
\(465\) −10.4132 + 35.5232i −0.0223939 + 0.0763941i
\(466\) −187.211 77.6514i −0.401741 0.166634i
\(467\) 83.9231 + 83.9231i 0.179707 + 0.179707i 0.791228 0.611521i \(-0.209442\pi\)
−0.611521 + 0.791228i \(0.709442\pi\)
\(468\) −486.749 0.470619i −1.04006 0.00100560i
\(469\) −174.422 −0.371903
\(470\) −51.5157 479.311i −0.109608 1.01981i
\(471\) −16.9313 −0.0359476
\(472\) −284.813 + 684.789i −0.603418 + 1.45082i
\(473\) 588.298 + 588.298i 1.24376 + 1.24376i
\(474\) −32.8876 13.6411i −0.0693832 0.0287788i
\(475\) 277.514 432.678i 0.584239 0.910901i
\(476\) 7.73789 + 7.75286i 0.0162561 + 0.0162875i
\(477\) 258.217 + 258.217i 0.541335 + 0.541335i
\(478\) 87.8483 + 212.375i 0.183783 + 0.444299i
\(479\) 831.992i 1.73694i −0.495746 0.868468i \(-0.665105\pi\)
0.495746 0.868468i \(-0.334895\pi\)
\(480\) 29.4313 3.10568i 0.0613152 0.00647017i
\(481\) −30.1601 −0.0627028
\(482\) 404.888 167.481i 0.840016 0.347470i
\(483\) 9.25640 9.25640i 0.0191644 0.0191644i
\(484\) −61.2306 + 61.1123i −0.126510 + 0.126265i
\(485\) −91.5797 + 312.413i −0.188824 + 0.644151i
\(486\) −34.2667 + 82.6140i −0.0705075 + 0.169988i
\(487\) −373.676 + 373.676i −0.767301 + 0.767301i −0.977631 0.210329i \(-0.932546\pi\)
0.210329 + 0.977631i \(0.432546\pi\)
\(488\) 35.6490 + 14.8269i 0.0730512 + 0.0303830i
\(489\) 6.74590i 0.0137953i
\(490\) −341.802 275.459i −0.697555 0.562162i
\(491\) 42.8051i 0.0871795i 0.999050 + 0.0435898i \(0.0138794\pi\)
−0.999050 + 0.0435898i \(0.986121\pi\)
\(492\) −0.0268617 + 27.7823i −5.45970e−5 + 0.0564681i
\(493\) 23.4386 23.4386i 0.0475427 0.0475427i
\(494\) −213.835 + 515.539i −0.432865 + 1.04360i
\(495\) −469.773 + 256.791i −0.949037 + 0.518770i
\(496\) 1.23841 640.425i 0.00249679 1.29118i
\(497\) −94.5819 + 94.5819i −0.190306 + 0.190306i
\(498\) −12.7375 30.7931i −0.0255772 0.0618335i
\(499\) −485.100 −0.972143 −0.486072 0.873919i \(-0.661571\pi\)
−0.486072 + 0.873919i \(0.661571\pi\)
\(500\) 327.577 + 377.748i 0.655153 + 0.755496i
\(501\) 14.7730i 0.0294870i
\(502\) −72.6672 175.674i −0.144755 0.349949i
\(503\) −666.926 666.926i −1.32590 1.32590i −0.908916 0.416980i \(-0.863088\pi\)
−0.416980 0.908916i \(-0.636912\pi\)
\(504\) −149.765 + 61.7803i −0.297153 + 0.122580i
\(505\) −259.423 474.589i −0.513709 0.939780i
\(506\) −286.738 + 691.301i −0.566675 + 1.36621i
\(507\) −1.98935 1.98935i −0.00392376 0.00392376i
\(508\) 0.242429 250.738i 0.000477222 0.493578i
\(509\) −779.971 −1.53236 −0.766180 0.642626i \(-0.777845\pi\)
−0.766180 + 0.642626i \(0.777845\pi\)
\(510\) 1.74607 + 1.40717i 0.00342367 + 0.00275915i
\(511\) −108.964 −0.213237
\(512\) −473.874 + 193.874i −0.925536 + 0.378660i
\(513\) 48.3138 + 48.3138i 0.0941790 + 0.0941790i
\(514\) −269.969 + 650.872i −0.525231 + 1.26629i
\(515\) 345.460 + 101.267i 0.670796 + 0.196635i
\(516\) 36.4107 + 36.4812i 0.0705634 + 0.0707000i
\(517\) 407.097 + 407.097i 0.787422 + 0.787422i
\(518\) −9.27606 + 3.83702i −0.0179075 + 0.00740737i
\(519\) 35.4435i 0.0682919i
\(520\) −422.381 341.073i −0.812271 0.655909i
\(521\) −736.972 −1.41453 −0.707267 0.706947i \(-0.750072\pi\)
−0.707267 + 0.706947i \(0.750072\pi\)
\(522\) 187.394 + 453.028i 0.358992 + 0.867869i
\(523\) 671.690 671.690i 1.28430 1.28430i 0.346108 0.938195i \(-0.387503\pi\)
0.938195 0.346108i \(-0.112497\pi\)
\(524\) −233.974 234.427i −0.446516 0.447380i
\(525\) 8.79161 + 5.63882i 0.0167459 + 0.0107406i
\(526\) −223.664 92.7712i −0.425216 0.176371i
\(527\) 34.3144 34.3144i 0.0651127 0.0651127i
\(528\) −25.0402 + 24.9436i −0.0474247 + 0.0472417i
\(529\) 452.780i 0.855917i
\(530\) 43.5250 + 404.964i 0.0821227 + 0.764084i
\(531\) 831.192i 1.56533i
\(532\) −0.179609 + 185.764i −0.000337610 + 0.349181i
\(533\) 360.377 360.377i 0.676129 0.676129i
\(534\) −1.25886 0.522152i −0.00235742 0.000977812i
\(535\) 647.440 + 189.788i 1.21017 + 0.354744i
\(536\) 571.099 235.587i 1.06548 0.439529i
\(537\) 2.02773 2.02773i 0.00377604 0.00377604i
\(538\) −355.060 + 146.870i −0.659963 + 0.272992i
\(539\) 524.263 0.972659
\(540\) −58.3483 + 31.8215i −0.108052 + 0.0589288i
\(541\) 1039.61i 1.92164i 0.277168 + 0.960822i \(0.410604\pi\)
−0.277168 + 0.960822i \(0.589396\pi\)
\(542\) −897.785 + 371.366i −1.65643 + 0.685177i
\(543\) −34.4860 34.4860i −0.0635101 0.0635101i
\(544\) −35.8072 14.9333i −0.0658221 0.0274510i
\(545\) 204.200 111.621i 0.374678 0.204809i
\(546\) −10.4753 4.34493i −0.0191855 0.00795775i
\(547\) 238.506 + 238.506i 0.436026 + 0.436026i 0.890672 0.454646i \(-0.150234\pi\)
−0.454646 + 0.890672i \(0.650234\pi\)
\(548\) 0.136751 141.438i 0.000249546 0.258099i
\(549\) −43.2705 −0.0788169
\(550\) −587.690 105.777i −1.06853 0.192321i
\(551\) 562.148 1.02023
\(552\) −17.8053 + 42.8100i −0.0322559 + 0.0775543i
\(553\) 153.717 + 153.717i 0.277969 + 0.277969i
\(554\) −232.143 96.2883i −0.419031 0.173806i
\(555\) −1.80330 + 0.985734i −0.00324919 + 0.00177610i
\(556\) −296.377 + 295.804i −0.533052 + 0.532022i
\(557\) −263.387 263.387i −0.472867 0.472867i 0.429974 0.902841i \(-0.358523\pi\)
−0.902841 + 0.429974i \(0.858523\pi\)
\(558\) 274.347 + 663.239i 0.491661 + 1.18860i
\(559\) 945.513i 1.69144i
\(560\) −173.300 51.1646i −0.309464 0.0913653i
\(561\) −2.67816 −0.00477391
\(562\) 720.782 298.149i 1.28253 0.530515i
\(563\) 160.698 160.698i 0.285431 0.285431i −0.549839 0.835270i \(-0.685311\pi\)
0.835270 + 0.549839i \(0.185311\pi\)
\(564\) 25.1959 + 25.2447i 0.0446736 + 0.0447601i
\(565\) −597.399 175.119i −1.05734 0.309946i
\(566\) 131.189 316.286i 0.231783 0.558809i
\(567\) 127.894 127.894i 0.225563 0.225563i
\(568\) 181.934 437.432i 0.320307 0.770127i
\(569\) 407.195i 0.715633i −0.933792 0.357817i \(-0.883521\pi\)
0.933792 0.357817i \(-0.116479\pi\)
\(570\) 4.06414 + 37.8134i 0.00713007 + 0.0663394i
\(571\) 131.146i 0.229678i 0.993384 + 0.114839i \(0.0366351\pi\)
−0.993384 + 0.114839i \(0.963365\pi\)
\(572\) 648.363 + 0.626878i 1.13350 + 0.00109594i
\(573\) −15.7883 + 15.7883i −0.0275538 + 0.0275538i
\(574\) 64.9901 156.686i 0.113223 0.272971i
\(575\) −765.282 + 167.201i −1.33093 + 0.290784i
\(576\) 406.920 404.567i 0.706459 0.702373i
\(577\) 417.933 417.933i 0.724321 0.724321i −0.245162 0.969482i \(-0.578841\pi\)
0.969482 + 0.245162i \(0.0788410\pi\)
\(578\) 219.809 + 531.393i 0.380293 + 0.919365i
\(579\) −47.7137 −0.0824071
\(580\) −154.324 + 524.578i −0.266075 + 0.904445i
\(581\) 203.462i 0.350192i
\(582\) −9.20697 22.2580i −0.0158195 0.0382440i
\(583\) −343.952 343.952i −0.589969 0.589969i
\(584\) 356.774 147.175i 0.610914 0.252012i
\(585\) 583.868 + 171.153i 0.998064 + 0.292569i
\(586\) −265.448 + 639.972i −0.452982 + 1.09210i
\(587\) 212.882 + 212.882i 0.362660 + 0.362660i 0.864791 0.502131i \(-0.167451\pi\)
−0.502131 + 0.864791i \(0.667451\pi\)
\(588\) 32.4789 + 0.0314027i 0.0552363 + 5.34059e-5i
\(589\) 822.992 1.39727
\(590\) 581.731 721.837i 0.985985 1.22345i
\(591\) 58.6697 0.0992720
\(592\) 25.1895 25.0922i 0.0425498 0.0423855i
\(593\) 97.2530 + 97.2530i 0.164002 + 0.164002i 0.784337 0.620335i \(-0.213003\pi\)
−0.620335 + 0.784337i \(0.713003\pi\)
\(594\) 30.4101 73.3162i 0.0511955 0.123428i
\(595\) −6.56731 12.0142i −0.0110375 0.0201920i
\(596\) 139.712 139.443i 0.234417 0.233964i
\(597\) 11.4977 + 11.4977i 0.0192592 + 0.0192592i
\(598\) 785.952 325.107i 1.31430 0.543657i
\(599\) 712.479i 1.18945i 0.803930 + 0.594723i \(0.202738\pi\)
−0.803930 + 0.594723i \(0.797262\pi\)
\(600\) −36.4020 6.58823i −0.0606700 0.0109804i
\(601\) 217.550 0.361980 0.180990 0.983485i \(-0.442070\pi\)
0.180990 + 0.983485i \(0.442070\pi\)
\(602\) −120.290 290.803i −0.199817 0.483062i
\(603\) −489.575 + 489.575i −0.811899 + 0.811899i
\(604\) −62.5908 + 62.4699i −0.103627 + 0.103427i
\(605\) 94.8861 51.8674i 0.156837 0.0857312i
\(606\) 36.9633 + 15.3317i 0.0609956 + 0.0252998i
\(607\) 12.6560 12.6560i 0.0208501 0.0208501i −0.696605 0.717455i \(-0.745307\pi\)
0.717455 + 0.696605i \(0.245307\pi\)
\(608\) −250.318 608.478i −0.411708 1.00079i
\(609\) 11.4223i 0.0187558i
\(610\) −37.5776 30.2840i −0.0616027 0.0496458i
\(611\) 654.287i 1.07085i
\(612\) 43.4800 + 0.0420392i 0.0710458 + 6.86916e-5i
\(613\) −523.841 + 523.841i −0.854552 + 0.854552i −0.990690 0.136138i \(-0.956531\pi\)
0.136138 + 0.990690i \(0.456531\pi\)
\(614\) −353.549 146.645i −0.575813 0.238836i
\(615\) 9.76895 33.3256i 0.0158845 0.0541880i
\(616\) 199.491 82.2931i 0.323849 0.133593i
\(617\) −331.035 + 331.035i −0.536523 + 0.536523i −0.922506 0.385983i \(-0.873862\pi\)
0.385983 + 0.922506i \(0.373862\pi\)
\(618\) −24.6125 + 10.1809i −0.0398260 + 0.0164739i
\(619\) −277.907 −0.448961 −0.224481 0.974479i \(-0.572069\pi\)
−0.224481 + 0.974479i \(0.572069\pi\)
\(620\) −225.932 + 767.990i −0.364407 + 1.23869i
\(621\) 104.123i 0.167670i
\(622\) 417.587 172.734i 0.671361 0.277707i
\(623\) 5.88393 + 5.88393i 0.00944451 + 0.00944451i
\(624\) 40.1670 + 0.0776721i 0.0643703 + 0.000124475i
\(625\) −260.660 568.050i −0.417057 0.908881i
\(626\) −602.524 249.915i −0.962498 0.399225i
\(627\) −32.1164 32.1164i −0.0512223 0.0512223i
\(628\) −366.148 0.354015i −0.583038 0.000563718i
\(629\) 2.69412 0.00428318
\(630\) 201.349 21.6408i 0.319602 0.0343504i
\(631\) 425.237 0.673910 0.336955 0.941521i \(-0.390603\pi\)
0.336955 + 0.941521i \(0.390603\pi\)
\(632\) −710.926 295.684i −1.12488 0.467854i
\(633\) 15.5794 + 15.5794i 0.0246121 + 0.0246121i
\(634\) 578.857 + 240.098i 0.913024 + 0.378704i
\(635\) −88.1655 + 300.766i −0.138843 + 0.473647i
\(636\) −21.2877 21.3289i −0.0334713 0.0335361i
\(637\) −421.298 421.298i −0.661379 0.661379i
\(638\) −249.613 603.445i −0.391244 0.945839i
\(639\) 530.952i 0.830911i
\(640\) 636.531 66.5464i 0.994580 0.103979i
\(641\) −474.056 −0.739558 −0.369779 0.929120i \(-0.620567\pi\)
−0.369779 + 0.929120i \(0.620567\pi\)
\(642\) −46.1271 + 19.0804i −0.0718491 + 0.0297202i
\(643\) −490.408 + 490.408i −0.762687 + 0.762687i −0.976807 0.214121i \(-0.931311\pi\)
0.214121 + 0.976807i \(0.431311\pi\)
\(644\) 200.368 199.981i 0.311130 0.310529i
\(645\) −30.9026 56.5332i −0.0479110 0.0876483i
\(646\) 19.1014 46.0518i 0.0295687 0.0712876i
\(647\) −319.187 + 319.187i −0.493334 + 0.493334i −0.909355 0.416021i \(-0.863424\pi\)
0.416021 + 0.909355i \(0.363424\pi\)
\(648\) −246.013 + 591.499i −0.379649 + 0.912807i
\(649\) 1107.17i 1.70596i
\(650\) 387.266 + 557.270i 0.595794 + 0.857339i
\(651\) 16.7224i 0.0256873i
\(652\) 0.141049 145.883i 0.000216333 0.223747i
\(653\) 95.6351 95.6351i 0.146455 0.146455i −0.630077 0.776532i \(-0.716977\pi\)
0.776532 + 0.630077i \(0.216977\pi\)
\(654\) −6.59670 + 15.9041i −0.0100867 + 0.0243182i
\(655\) 198.579 + 363.280i 0.303174 + 0.554626i
\(656\) −1.16179 + 600.806i −0.00177103 + 0.915862i
\(657\) −305.845 + 305.845i −0.465517 + 0.465517i
\(658\) −83.2396 201.233i −0.126504 0.305826i
\(659\) 295.703 0.448715 0.224358 0.974507i \(-0.427972\pi\)
0.224358 + 0.974507i \(0.427972\pi\)
\(660\) 38.7867 21.1532i 0.0587678 0.0320503i
\(661\) 1223.87i 1.85154i −0.378088 0.925770i \(-0.623418\pi\)
0.378088 0.925770i \(-0.376582\pi\)
\(662\) −107.953 260.979i −0.163071 0.394228i
\(663\) 2.15217 + 2.15217i 0.00324611 + 0.00324611i
\(664\) −274.810 666.181i −0.413871 1.00328i
\(665\) 65.3192 222.829i 0.0982244 0.335081i
\(666\) −15.2665 + 36.8063i −0.0229227 + 0.0552647i
\(667\) −605.754 605.754i −0.908177 0.908177i
\(668\) −0.308887 + 319.473i −0.000462405 + 0.478253i
\(669\) 29.2955 0.0437900
\(670\) −767.807 + 82.5229i −1.14598 + 0.123168i
\(671\) 57.6374 0.0858978
\(672\) 12.3637 5.08624i 0.0183984 0.00756880i
\(673\) −95.3663 95.3663i −0.141703 0.141703i 0.632697 0.774400i \(-0.281948\pi\)
−0.774400 + 0.632697i \(0.781948\pi\)
\(674\) 244.326 589.050i 0.362502 0.873961i
\(675\) 81.1623 17.7325i 0.120241 0.0262704i
\(676\) −42.9790 43.0622i −0.0635784 0.0637015i
\(677\) 208.006 + 208.006i 0.307247 + 0.307247i 0.843841 0.536594i \(-0.180289\pi\)
−0.536594 + 0.843841i \(0.680289\pi\)
\(678\) 42.5619 17.6056i 0.0627757 0.0259670i
\(679\) 147.067i 0.216594i
\(680\) 37.7302 + 30.4671i 0.0554856 + 0.0448046i
\(681\) 22.4657 0.0329892
\(682\) −365.438 883.452i −0.535832 1.29538i
\(683\) −704.881 + 704.881i −1.03204 + 1.03204i −0.0325668 + 0.999470i \(0.510368\pi\)
−0.999470 + 0.0325668i \(0.989632\pi\)
\(684\) 520.906 + 521.914i 0.761559 + 0.763033i
\(685\) −49.7331 + 169.658i −0.0726030 + 0.247677i
\(686\) −387.634 160.783i −0.565065 0.234378i
\(687\) −3.46801 + 3.46801i −0.00504805 + 0.00504805i
\(688\) 786.637 + 789.685i 1.14337 + 1.14780i
\(689\) 552.800i 0.802321i
\(690\) 36.3673 45.1261i 0.0527062 0.0654001i
\(691\) 814.437i 1.17864i 0.807901 + 0.589318i \(0.200603\pi\)
−0.807901 + 0.589318i \(0.799397\pi\)
\(692\) 0.741084 766.483i 0.00107093 1.10763i
\(693\) −171.014 + 171.014i −0.246773 + 0.246773i
\(694\) 903.994 + 374.959i 1.30259 + 0.540286i
\(695\) 459.281 251.056i 0.660836 0.361231i
\(696\) −15.4278 37.3993i −0.0221664 0.0537347i
\(697\) −32.1915 + 32.1915i −0.0461858 + 0.0461858i
\(698\) 791.758 327.509i 1.13432 0.469210i
\(699\) −18.7442 −0.0268158
\(700\) 190.005 + 122.126i 0.271436 + 0.174466i
\(701\) 39.4607i 0.0562920i −0.999604 0.0281460i \(-0.991040\pi\)
0.999604 0.0281460i \(-0.00896033\pi\)
\(702\) −83.3545 + 34.4794i −0.118739 + 0.0491159i
\(703\) 32.3078 + 32.3078i 0.0459570 + 0.0459570i
\(704\) −542.029 + 538.894i −0.769928 + 0.765474i
\(705\) −21.3843 39.1205i −0.0303324 0.0554900i
\(706\) 67.8556 + 28.1451i 0.0961127 + 0.0398656i
\(707\) −172.767 172.767i −0.244366 0.244366i
\(708\) −0.0663180 + 68.5909i −9.36695e−5 + 0.0968798i
\(709\) 1177.86 1.66130 0.830648 0.556798i \(-0.187970\pi\)
0.830648 + 0.556798i \(0.187970\pi\)
\(710\) −371.601 + 461.098i −0.523381 + 0.649434i
\(711\) 862.917 1.21367
\(712\) −27.2126 11.3181i −0.0382200 0.0158962i
\(713\) −886.832 886.832i −1.24380 1.24380i
\(714\) 0.935729 + 0.388122i 0.00131054 + 0.000543588i
\(715\) −777.728 227.980i −1.08773 0.318853i
\(716\) 43.8931 43.8083i 0.0613032 0.0611848i
\(717\) 15.0297 + 15.0297i 0.0209619 + 0.0209619i
\(718\) 220.201 + 532.341i 0.306687 + 0.741422i
\(719\) 242.835i 0.337740i −0.985638 0.168870i \(-0.945988\pi\)
0.985638 0.168870i \(-0.0540119\pi\)
\(720\) −630.036 + 342.814i −0.875049 + 0.476131i
\(721\) 162.624 0.225553
\(722\) 114.138 47.2129i 0.158086 0.0653918i
\(723\) 28.6537 28.6537i 0.0396317 0.0396317i
\(724\) −745.054 746.497i −1.02908 1.03107i
\(725\) 369.014 575.338i 0.508984 0.793569i
\(726\) −3.06531 + 7.39020i −0.00422219 + 0.0101793i
\(727\) −619.622 + 619.622i −0.852300 + 0.852300i −0.990416 0.138116i \(-0.955895\pi\)
0.138116 + 0.990416i \(0.455895\pi\)
\(728\) −226.442 94.1802i −0.311046 0.129368i
\(729\) 712.425i 0.977264i
\(730\) −479.660 + 51.5532i −0.657069 + 0.0706209i
\(731\) 84.4603i 0.115541i
\(732\) 3.57073 + 0.00345241i 0.00487804 + 4.71640e-6i
\(733\) 281.127 281.127i 0.383529 0.383529i −0.488843 0.872372i \(-0.662581\pi\)
0.872372 + 0.488843i \(0.162581\pi\)
\(734\) 174.310 420.248i 0.237480 0.572545i
\(735\) −38.9593 11.4204i −0.0530059 0.0155379i
\(736\) −385.942 + 925.414i −0.524378 + 1.25736i
\(737\) 652.127 652.127i 0.884841 0.884841i
\(738\) −257.375 622.208i −0.348746 0.843100i
\(739\) 1109.74 1.50168 0.750839 0.660485i \(-0.229649\pi\)
0.750839 + 0.660485i \(0.229649\pi\)
\(740\) −39.0179 + 21.2793i −0.0527268 + 0.0287558i
\(741\) 51.6175i 0.0696592i
\(742\) 70.3282 + 170.020i 0.0947819 + 0.229137i
\(743\) −339.850 339.850i −0.457403 0.457403i 0.440399 0.897802i \(-0.354837\pi\)
−0.897802 + 0.440399i \(0.854837\pi\)
\(744\) −22.5865 54.7531i −0.0303582 0.0735929i
\(745\) −216.506 + 118.348i −0.290612 + 0.158856i
\(746\) 390.247 940.852i 0.523119 1.26120i
\(747\) 571.084 + 571.084i 0.764504 + 0.764504i
\(748\) −57.9166 0.0559974i −0.0774286 7.48629e-5i
\(749\) 304.780 0.406916
\(750\) 41.3685 + 20.6626i 0.0551580 + 0.0275501i
\(751\) −980.557 −1.30567 −0.652834 0.757501i \(-0.726420\pi\)
−0.652834 + 0.757501i \(0.726420\pi\)
\(752\) 544.346 + 546.455i 0.723865 + 0.726670i
\(753\) −12.4324 12.4324i −0.0165105 0.0165105i
\(754\) −284.339 + 685.518i −0.377108 + 0.909176i
\(755\) 96.9939 53.0195i 0.128469 0.0702245i
\(756\) −21.2501 + 21.2090i −0.0281086 + 0.0280543i
\(757\) −101.564 101.564i −0.134166 0.134166i 0.636834 0.771001i \(-0.280243\pi\)
−0.771001 + 0.636834i \(0.780243\pi\)
\(758\) 118.571 49.0465i 0.156426 0.0647052i
\(759\) 69.2154i 0.0911929i
\(760\) 87.0983 + 817.819i 0.114603 + 1.07608i
\(761\) 767.675 1.00877 0.504386 0.863478i \(-0.331719\pi\)
0.504386 + 0.863478i \(0.331719\pi\)
\(762\) −8.86372 21.4282i −0.0116322 0.0281210i
\(763\) 74.3357 74.3357i 0.0974256 0.0974256i
\(764\) −341.760 + 341.100i −0.447330 + 0.446466i
\(765\) −52.1554 15.2886i −0.0681770 0.0199852i
\(766\) 984.630 + 408.405i 1.28542 + 0.533166i
\(767\) 889.722 889.722i 1.16000 1.16000i
\(768\) −33.6118 + 33.3528i −0.0437654 + 0.0434282i
\(769\) 331.840i 0.431522i −0.976446 0.215761i \(-0.930777\pi\)
0.976446 0.215761i \(-0.0692232\pi\)
\(770\) −268.203 + 28.8261i −0.348315 + 0.0374365i
\(771\) 65.1675i 0.0845234i
\(772\) −1031.83 0.997640i −1.33657 0.00129228i
\(773\) −180.328 + 180.328i −0.233283 + 0.233283i −0.814061 0.580779i \(-0.802748\pi\)
0.580779 + 0.814061i \(0.302748\pi\)
\(774\) −1153.87 478.603i −1.49079 0.618350i
\(775\) 540.241 842.302i 0.697085 1.08684i
\(776\) −198.640 481.533i −0.255979 0.620532i
\(777\) −0.656463 + 0.656463i −0.000844869 + 0.000844869i
\(778\) −19.1825 + 7.93478i −0.0246561 + 0.0101989i
\(779\) −772.078 −0.991114
\(780\) −48.1678 14.1703i −0.0617536 0.0181671i
\(781\) 707.243i 0.905561i
\(782\) −70.2071 + 29.0410i −0.0897789 + 0.0371368i
\(783\) 64.2435 + 64.2435i 0.0820479 + 0.0820479i
\(784\) 702.372 + 1.35820i 0.895883 + 0.00173239i
\(785\) 439.204 + 128.747i 0.559495 + 0.164008i
\(786\) −28.2941 11.7358i −0.0359976 0.0149311i
\(787\) 945.029 + 945.029i 1.20080 + 1.20080i 0.973924 + 0.226876i \(0.0728513\pi\)
0.226876 + 0.973924i \(0.427149\pi\)
\(788\) 1268.76 + 1.22672i 1.61010 + 0.00155675i
\(789\) −22.3940 −0.0283827
\(790\) 749.388 + 603.935i 0.948593 + 0.764474i
\(791\) −281.223 −0.355529
\(792\) 328.955 790.922i 0.415348 0.998639i
\(793\) −46.3175 46.3175i −0.0584079 0.0584079i
\(794\) −481.915 199.889i −0.606946 0.251749i
\(795\) 18.0674 + 33.0524i 0.0227263 + 0.0415754i
\(796\) 248.403 + 248.884i 0.312065 + 0.312669i
\(797\) 680.774 + 680.774i 0.854171 + 0.854171i 0.990644 0.136473i \(-0.0435766\pi\)
−0.136473 + 0.990644i \(0.543577\pi\)
\(798\) 6.56687 + 15.8755i 0.00822917 + 0.0198942i
\(799\) 58.4458i 0.0731487i
\(800\) −787.073 143.235i −0.983841 0.179043i
\(801\) 33.0305 0.0412366
\(802\) −485.953 + 201.013i −0.605926 + 0.250640i
\(803\) 407.393 407.393i 0.507339 0.507339i
\(804\) 40.4394 40.3613i 0.0502977 0.0502006i
\(805\) −310.500 + 169.728i −0.385714 + 0.210842i
\(806\) −416.277 + 1003.61i −0.516472 + 1.24517i
\(807\) −25.1275 + 25.1275i −0.0311369 + 0.0311369i
\(808\) 799.029 + 332.327i 0.988898 + 0.411296i
\(809\) 427.952i 0.528989i −0.964387 0.264495i \(-0.914795\pi\)
0.964387 0.264495i \(-0.0852051\pi\)
\(810\) 502.481 623.500i 0.620347 0.769753i
\(811\) 1222.46i 1.50735i −0.657245 0.753677i \(-0.728278\pi\)
0.657245 0.753677i \(-0.271722\pi\)
\(812\) −0.238828 + 247.013i −0.000294123 + 0.304203i
\(813\) −63.5359 + 63.5359i −0.0781499 + 0.0781499i
\(814\) 20.3354 49.0270i 0.0249821 0.0602297i
\(815\) −51.2962 + 174.991i −0.0629401 + 0.214713i
\(816\) −3.58802 0.00693825i −0.00439708 8.50276e-6i
\(817\) −1012.84 + 1012.84i −1.23971 + 1.23971i
\(818\) 187.768 + 453.933i 0.229545 + 0.554930i
\(819\) 274.853 0.335596
\(820\) 211.955 720.478i 0.258482 0.878632i
\(821\) 1019.26i 1.24148i 0.784015 + 0.620742i \(0.213169\pi\)
−0.784015 + 0.620742i \(0.786831\pi\)
\(822\) −4.99992 12.0874i −0.00608262 0.0147049i
\(823\) −158.477 158.477i −0.192560 0.192560i 0.604241 0.796801i \(-0.293476\pi\)
−0.796801 + 0.604241i \(0.793476\pi\)
\(824\) −532.469 + 219.652i −0.646200 + 0.266568i
\(825\) −53.9523 + 11.7876i −0.0653967 + 0.0142880i
\(826\) 160.452 386.836i 0.194252 0.468325i
\(827\) −573.534 573.534i −0.693511 0.693511i 0.269492 0.963003i \(-0.413144\pi\)
−0.963003 + 0.269492i \(0.913144\pi\)
\(828\) 1.08648 1123.71i 0.00131217 1.35714i
\(829\) −1133.71 −1.36756 −0.683782 0.729686i \(-0.739666\pi\)
−0.683782 + 0.729686i \(0.739666\pi\)
\(830\) 96.2620 + 895.638i 0.115978 + 1.07908i
\(831\) −23.2430 −0.0279699
\(832\) 868.630 + 2.51955i 1.04403 + 0.00302830i
\(833\) 37.6335 + 37.6335i 0.0451783 + 0.0451783i
\(834\) −14.8371 + 35.7711i −0.0177903 + 0.0428910i
\(835\) 112.335 383.216i 0.134532 0.458941i
\(836\) −693.861 695.204i −0.829977 0.831584i
\(837\) 94.0534 + 94.0534i 0.112370 + 0.112370i
\(838\) −1243.81 + 514.499i −1.48426 + 0.613961i
\(839\) 1109.49i 1.32240i 0.750212 + 0.661198i \(0.229952\pi\)
−0.750212 + 0.661198i \(0.770048\pi\)
\(840\) −16.6173 + 1.76976i −0.0197825 + 0.00210685i
\(841\) −93.5052 −0.111183
\(842\) 536.070 + 1295.96i 0.636662 + 1.53914i
\(843\) 51.0094 51.0094i 0.0605094 0.0605094i
\(844\) 336.587 + 337.238i 0.398800 + 0.399572i
\(845\) 36.4772 + 66.7314i 0.0431683 + 0.0789721i
\(846\) −798.470 331.189i −0.943817 0.391477i
\(847\) 34.5418 34.5418i 0.0407814 0.0407814i
\(848\) −459.912 461.694i −0.542349 0.544450i
\(849\) 31.6676i 0.0372999i
\(850\) −34.5935 49.7795i −0.0406982 0.0585642i
\(851\) 69.6278i 0.0818188i
\(852\) 0.0423629 43.8148i 4.97217e−5 0.0514258i
\(853\) −1.51055 + 1.51055i −0.00177087 + 0.00177087i −0.707992 0.706221i \(-0.750399\pi\)
0.706221 + 0.707992i \(0.250399\pi\)
\(854\) −20.1380 8.35286i −0.0235809 0.00978087i
\(855\) −442.104 808.785i −0.517081 0.945948i
\(856\) −997.920 + 411.658i −1.16579 + 0.480908i
\(857\) −396.892 + 396.892i −0.463118 + 0.463118i −0.899676 0.436558i \(-0.856197\pi\)
0.436558 + 0.899676i \(0.356197\pi\)
\(858\) 55.4095 22.9200i 0.0645799 0.0267133i
\(859\) −941.956 −1.09657 −0.548286 0.836291i \(-0.684720\pi\)
−0.548286 + 0.836291i \(0.684720\pi\)
\(860\) −667.101 1223.20i −0.775699 1.42233i
\(861\) 15.6879i 0.0182206i
\(862\) 749.526 310.039i 0.869520 0.359674i
\(863\) 833.800 + 833.800i 0.966164 + 0.966164i 0.999446 0.0332818i \(-0.0105959\pi\)
−0.0332818 + 0.999446i \(0.510596\pi\)
\(864\) 40.9313 98.1452i 0.0473742 0.113594i
\(865\) −269.514 + 919.416i −0.311577 + 1.06291i
\(866\) 380.824 + 157.958i 0.439751 + 0.182400i
\(867\) 37.6064 + 37.6064i 0.0433754 + 0.0433754i
\(868\) −0.349647 + 361.631i −0.000402819 + 0.416625i
\(869\) −1149.43 −1.32270
\(870\) 5.40414 + 50.2810i 0.00621165 + 0.0577943i
\(871\) −1048.10 −1.20333
\(872\) −142.989 + 343.796i −0.163979 + 0.394261i
\(873\) 412.794 + 412.794i 0.472846 + 0.472846i
\(874\) −1190.18 493.662i −1.36176 0.564831i
\(875\) −185.179 213.125i −0.211634 0.243571i
\(876\) 25.2631 25.2143i 0.0288391 0.0287834i
\(877\) −33.6015 33.6015i −0.0383142 0.0383142i 0.687690 0.726004i \(-0.258625\pi\)
−0.726004 + 0.687690i \(0.758625\pi\)
\(878\) −47.6946 115.303i −0.0543219 0.131324i
\(879\) 64.0762i 0.0728967i
\(880\) 839.224 456.638i 0.953664 0.518906i
\(881\) 1084.55 1.23104 0.615521 0.788121i \(-0.288946\pi\)
0.615521 + 0.788121i \(0.288946\pi\)
\(882\) −727.392 + 300.884i −0.824708 + 0.341138i
\(883\) 1165.53 1165.53i 1.31997 1.31997i 0.406174 0.913796i \(-0.366863\pi\)
0.913796 0.406174i \(-0.133137\pi\)
\(884\) 46.4968 + 46.5868i 0.0525982 + 0.0527000i
\(885\) 24.1182 82.2765i 0.0272523 0.0929679i
\(886\) 183.823 443.182i 0.207475 0.500206i
\(887\) −381.705 + 381.705i −0.430333 + 0.430333i −0.888742 0.458409i \(-0.848420\pi\)
0.458409 + 0.888742i \(0.348420\pi\)
\(888\) 1.26275 3.03608i 0.00142201 0.00341901i
\(889\) 141.584i 0.159263i
\(890\) 28.6849 + 23.1172i 0.0322302 + 0.0259744i
\(891\) 956.338i 1.07333i
\(892\) 633.529 + 0.612536i 0.710234 + 0.000686699i
\(893\) −700.879 + 700.879i −0.784859 + 0.784859i
\(894\) 6.99425 16.8625i 0.00782354 0.0188619i
\(895\) −68.0190 + 37.1811i −0.0759989 + 0.0415431i
\(896\) 267.477 109.734i 0.298524 0.122471i
\(897\) 55.6215 55.6215i 0.0620084 0.0620084i
\(898\) −13.0003 31.4285i −0.0144769 0.0349983i
\(899\) 1094.34 1.21729
\(900\) 876.101 190.525i 0.973446 0.211695i
\(901\) 49.3802i 0.0548060i
\(902\) 342.830 + 828.798i 0.380078 + 0.918845i
\(903\) −20.5800 20.5800i −0.0227907 0.0227907i
\(904\) 920.790 379.840i 1.01857 0.420177i
\(905\) 632.344 + 1156.81i 0.698723 + 1.27824i
\(906\) −3.13340 + 7.55437i −0.00345850 + 0.00833815i
\(907\) −457.511 457.511i −0.504422 0.504422i 0.408387 0.912809i \(-0.366092\pi\)
−0.912809 + 0.408387i \(0.866092\pi\)
\(908\) 485.831 + 0.469732i 0.535056 + 0.000517326i
\(909\) −969.856 −1.06695
\(910\) 238.693 + 192.363i 0.262300 + 0.211388i
\(911\) −620.530 −0.681152 −0.340576 0.940217i \(-0.610622\pi\)
−0.340576 + 0.940217i \(0.610622\pi\)
\(912\) −42.9441 43.1105i −0.0470879 0.0472703i
\(913\) −760.699 760.699i −0.833187 0.833187i
\(914\) 605.940 1460.87i 0.662954 1.59833i
\(915\) −4.28318 1.25556i −0.00468107 0.00137219i
\(916\) −75.0699 + 74.9248i −0.0819540 + 0.0817957i
\(917\) 132.247 + 132.247i 0.144216 + 0.144216i
\(918\) 7.44585 3.07996i 0.00811095 0.00335507i
\(919\) 981.064i 1.06753i −0.845631 0.533767i \(-0.820776\pi\)
0.845631 0.533767i \(-0.179224\pi\)
\(920\) 787.403 975.113i 0.855873 1.05990i
\(921\) −35.3985 −0.0384349
\(922\) −250.460 605.493i −0.271649 0.656717i
\(923\) −568.341 + 568.341i −0.615754 + 0.615754i
\(924\) 14.1259 14.0986i 0.0152878 0.0152582i
\(925\) 54.2738 11.8579i 0.0586743 0.0128193i
\(926\) 1583.06 + 656.623i 1.70957 + 0.709096i
\(927\) 456.459 456.459i 0.492405 0.492405i
\(928\) −332.852 809.101i −0.358676 0.871876i
\(929\) 776.484i 0.835827i −0.908487 0.417914i \(-0.862761\pi\)
0.908487 0.417914i \(-0.137239\pi\)
\(930\) 7.91173 + 73.6121i 0.00850724 + 0.0791528i
\(931\) 902.598i 0.969493i
\(932\) −405.353 0.391921i −0.434928 0.000420516i
\(933\) 29.5525 29.5525i 0.0316747 0.0316747i
\(934\) 219.258 + 90.9437i 0.234751 + 0.0973701i
\(935\) 69.4724 + 20.3649i 0.0743021 + 0.0217806i
\(936\) −899.934 + 371.237i −0.961468 + 0.396621i
\(937\) 759.800 759.800i 0.810885 0.810885i −0.173881 0.984767i \(-0.555631\pi\)
0.984767 + 0.173881i \(0.0556309\pi\)
\(938\) −322.355 + 133.341i −0.343662 + 0.142155i
\(939\) −60.3267 −0.0642457
\(940\) −461.628 846.446i −0.491094 0.900475i
\(941\) 759.500i 0.807120i 0.914953 + 0.403560i \(0.132227\pi\)
−0.914953 + 0.403560i \(0.867773\pi\)
\(942\) −31.2912 + 12.9435i −0.0332179 + 0.0137405i
\(943\) 831.969 + 831.969i 0.882257 + 0.882257i
\(944\) −2.86832 + 1483.31i −0.00303847 + 1.57130i
\(945\) 32.9302 18.0006i 0.0348468 0.0190482i
\(946\) 1536.99 + 637.512i 1.62472 + 0.673903i
\(947\) −822.618 822.618i −0.868657 0.868657i 0.123667 0.992324i \(-0.460535\pi\)
−0.992324 + 0.123667i \(0.960535\pi\)
\(948\) −71.2089 0.0688492i −0.0751149 7.26258e-5i
\(949\) −654.763 −0.689951
\(950\) 182.110 1011.80i 0.191695 1.06505i
\(951\) 57.9572 0.0609434
\(952\) 20.2275 + 8.41288i 0.0212473 + 0.00883706i
\(953\) 659.139 + 659.139i 0.691647 + 0.691647i 0.962594 0.270947i \(-0.0873369\pi\)
−0.270947 + 0.962594i \(0.587337\pi\)
\(954\) 674.618 + 279.818i 0.707146 + 0.293310i
\(955\) 529.610 289.499i 0.554565 0.303140i
\(956\) 324.710 + 325.338i 0.339655 + 0.340312i
\(957\) −42.7056 42.7056i −0.0446244 0.0446244i
\(958\) −636.036 1537.63i −0.663920 1.60504i
\(959\) 79.8661i 0.0832806i
\(960\) 52.0186 28.2391i 0.0541861 0.0294158i
\(961\) 641.133 0.667152
\(962\) −55.7397 + 23.0566i −0.0579415 + 0.0239673i
\(963\) 855.468 855.468i 0.888336 0.888336i
\(964\) 620.250 619.052i 0.643413 0.642170i
\(965\) 1237.71 + 362.817i 1.28260 + 0.375976i
\(966\) 10.0307 24.1833i 0.0103838 0.0250345i
\(967\) 332.005 332.005i 0.343335 0.343335i −0.514284 0.857620i \(-0.671942\pi\)
0.857620 + 0.514284i \(0.171942\pi\)
\(968\) −66.4433 + 159.753i −0.0686398 + 0.165034i
\(969\) 4.61086i 0.00475837i
\(970\) 69.5807 + 647.390i 0.0717326 + 0.667413i
\(971\) 960.961i 0.989661i 0.868989 + 0.494831i \(0.164770\pi\)
−0.868989 + 0.494831i \(0.835230\pi\)
\(972\) −0.172950 + 178.877i −0.000177932 + 0.184030i
\(973\) 167.194 167.194i 0.171834 0.171834i
\(974\) −404.936 + 976.266i −0.415745 + 1.00233i
\(975\) 52.8286 + 33.8835i 0.0541832 + 0.0347524i
\(976\) 77.2187 + 0.149320i 0.0791175 + 0.000152992i
\(977\) 69.4628 69.4628i 0.0710980 0.0710980i −0.670664 0.741762i \(-0.733991\pi\)
0.741762 + 0.670664i \(0.233991\pi\)
\(978\) −5.15706 12.4673i −0.00527307 0.0127477i
\(979\) −43.9975 −0.0449413
\(980\) −842.275 247.786i −0.859465 0.252843i
\(981\) 417.297i 0.425379i
\(982\) 32.7234 + 79.1094i 0.0333232 + 0.0805595i
\(983\) 234.943 + 234.943i 0.239006 + 0.239006i 0.816438 0.577433i \(-0.195945\pi\)
−0.577433 + 0.816438i \(0.695945\pi\)
\(984\) 21.1892 + 51.3659i 0.0215338 + 0.0522011i
\(985\) −1521.91 446.128i −1.54509 0.452921i
\(986\) 25.3993 61.2356i 0.0257600 0.0621051i
\(987\) −14.2412 14.2412i −0.0144288 0.0144288i
\(988\) −1.07926 + 1116.25i −0.00109237 + 1.12981i
\(989\) 2182.82 2.20710
\(990\) −671.892 + 833.712i −0.678679 + 0.842134i
\(991\) −919.592 −0.927944 −0.463972 0.885850i \(-0.653576\pi\)
−0.463972 + 0.885850i \(0.653576\pi\)
\(992\) −487.299 1184.54i −0.491229 1.19409i
\(993\) −18.4694 18.4694i −0.0185996 0.0185996i
\(994\) −102.494 + 247.105i −0.103113 + 0.248596i
\(995\) −210.825 385.684i −0.211885 0.387622i
\(996\) −47.0810 47.1721i −0.0472700 0.0473615i
\(997\) −835.935 835.935i −0.838450 0.838450i 0.150205 0.988655i \(-0.452007\pi\)
−0.988655 + 0.150205i \(0.952007\pi\)
\(998\) −896.526 + 370.846i −0.898323 + 0.371589i
\(999\) 7.38441i 0.00739180i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 40.3.i.a.13.9 yes 20
3.2 odd 2 360.3.u.b.253.2 20
4.3 odd 2 160.3.m.a.113.5 20
5.2 odd 4 inner 40.3.i.a.37.7 yes 20
5.3 odd 4 200.3.i.b.157.4 20
5.4 even 2 200.3.i.b.93.2 20
8.3 odd 2 160.3.m.a.113.6 20
8.5 even 2 inner 40.3.i.a.13.7 20
15.2 even 4 360.3.u.b.37.4 20
20.3 even 4 800.3.m.b.657.5 20
20.7 even 4 160.3.m.a.17.6 20
20.19 odd 2 800.3.m.b.593.6 20
24.5 odd 2 360.3.u.b.253.4 20
40.3 even 4 800.3.m.b.657.6 20
40.13 odd 4 200.3.i.b.157.2 20
40.19 odd 2 800.3.m.b.593.5 20
40.27 even 4 160.3.m.a.17.5 20
40.29 even 2 200.3.i.b.93.4 20
40.37 odd 4 inner 40.3.i.a.37.9 yes 20
120.77 even 4 360.3.u.b.37.2 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
40.3.i.a.13.7 20 8.5 even 2 inner
40.3.i.a.13.9 yes 20 1.1 even 1 trivial
40.3.i.a.37.7 yes 20 5.2 odd 4 inner
40.3.i.a.37.9 yes 20 40.37 odd 4 inner
160.3.m.a.17.5 20 40.27 even 4
160.3.m.a.17.6 20 20.7 even 4
160.3.m.a.113.5 20 4.3 odd 2
160.3.m.a.113.6 20 8.3 odd 2
200.3.i.b.93.2 20 5.4 even 2
200.3.i.b.93.4 20 40.29 even 2
200.3.i.b.157.2 20 40.13 odd 4
200.3.i.b.157.4 20 5.3 odd 4
360.3.u.b.37.2 20 120.77 even 4
360.3.u.b.37.4 20 15.2 even 4
360.3.u.b.253.2 20 3.2 odd 2
360.3.u.b.253.4 20 24.5 odd 2
800.3.m.b.593.5 20 40.19 odd 2
800.3.m.b.593.6 20 20.19 odd 2
800.3.m.b.657.5 20 20.3 even 4
800.3.m.b.657.6 20 40.3 even 4