Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [40,3,Mod(13,40)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(40, base_ring=CyclotomicField(4))
chi = DirichletCharacter(H, H._module([0, 2, 3]))
N = Newforms(chi, 3, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("40.13");
S:= CuspForms(chi, 3);
N := Newforms(S);
Level: | |||
Weight: | |||
Character orbit: | 40.i (of order , degree , minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Relative dimension: | over |
Coefficient field: | |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
|
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | yes |
Sato-Tate group: |
-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the -expansion are expressed in terms of a basis for the coefficient ring described below. We also show the integral -expansion of the trace form.
Basis of coefficient ring in terms of a root of
:
Character values
We give the values of on generators for .
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
13.1 |
|
−1.96423 | − | 0.376547i | 0.977390 | − | 0.977390i | 3.71643 | + | 1.47925i | −0.801246 | − | 4.93538i | −2.28785 | + | 1.55179i | 8.39950 | − | 8.39950i | −6.74292 | − | 4.30500i | 7.08942i | −0.284568 | + | 9.99595i | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
13.2 | −1.60823 | − | 1.18894i | −2.52630 | + | 2.52630i | 1.17282 | + | 3.82420i | 3.09141 | + | 3.92978i | 7.06650 | − | 1.05925i | −5.20520 | + | 5.20520i | 2.66059 | − | 7.54462i | − | 3.76437i | −0.299408 | − | 9.99552i | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
13.3 | −1.46837 | + | 1.35790i | −2.57493 | + | 2.57493i | 0.312234 | − | 3.98780i | −4.90427 | − | 0.973739i | 0.284467 | − | 7.27744i | −4.07624 | + | 4.07624i | 4.95654 | + | 6.27955i | − | 4.26050i | 8.52353 | − | 5.22967i | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
13.4 | −1.35790 | + | 1.46837i | 2.57493 | − | 2.57493i | −0.312234 | − | 3.98780i | 4.90427 | + | 0.973739i | 0.284467 | + | 7.27744i | −4.07624 | + | 4.07624i | 6.27955 | + | 4.95654i | − | 4.26050i | −8.08930 | + | 5.87905i | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
13.5 | −0.665418 | − | 1.88606i | 3.60765 | − | 3.60765i | −3.11444 | + | 2.51004i | −2.34539 | + | 4.41578i | −9.20485 | − | 4.40365i | 1.47907 | − | 1.47907i | 6.80648 | + | 4.20379i | − | 17.0303i | 9.88909 | + | 1.48520i | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
13.6 | 0.376547 | + | 1.96423i | −0.977390 | + | 0.977390i | −3.71643 | + | 1.47925i | 0.801246 | + | 4.93538i | −2.28785 | − | 1.55179i | 8.39950 | − | 8.39950i | −4.30500 | − | 6.74292i | 7.08942i | −9.39254 | + | 3.43224i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
13.7 | 0.764474 | − | 1.84813i | −0.130791 | + | 0.130791i | −2.83116 | − | 2.82569i | 4.38731 | − | 2.39823i | 0.141733 | + | 0.341706i | −1.59713 | + | 1.59713i | −7.38659 | + | 3.07218i | 8.96579i | −1.07825 | − | 9.94170i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
13.8 | 1.18894 | + | 1.60823i | 2.52630 | − | 2.52630i | −1.17282 | + | 3.82420i | −3.09141 | − | 3.92978i | 7.06650 | + | 1.05925i | −5.20520 | + | 5.20520i | −7.54462 | + | 2.66059i | − | 3.76437i | 2.64449 | − | 9.64400i | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
13.9 | 1.84813 | − | 0.764474i | 0.130791 | − | 0.130791i | 2.83116 | − | 2.82569i | −4.38731 | + | 2.39823i | 0.141733 | − | 0.341706i | −1.59713 | + | 1.59713i | 3.07218 | − | 7.38659i | 8.96579i | −6.27494 | + | 7.78621i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
13.10 | 1.88606 | + | 0.665418i | −3.60765 | + | 3.60765i | 3.11444 | + | 2.51004i | 2.34539 | − | 4.41578i | −9.20485 | + | 4.40365i | 1.47907 | − | 1.47907i | 4.20379 | + | 6.80648i | − | 17.0303i | 7.36189 | − | 6.76776i | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
37.1 | −1.96423 | + | 0.376547i | 0.977390 | + | 0.977390i | 3.71643 | − | 1.47925i | −0.801246 | + | 4.93538i | −2.28785 | − | 1.55179i | 8.39950 | + | 8.39950i | −6.74292 | + | 4.30500i | − | 7.08942i | −0.284568 | − | 9.99595i | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
37.2 | −1.60823 | + | 1.18894i | −2.52630 | − | 2.52630i | 1.17282 | − | 3.82420i | 3.09141 | − | 3.92978i | 7.06650 | + | 1.05925i | −5.20520 | − | 5.20520i | 2.66059 | + | 7.54462i | 3.76437i | −0.299408 | + | 9.99552i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
37.3 | −1.46837 | − | 1.35790i | −2.57493 | − | 2.57493i | 0.312234 | + | 3.98780i | −4.90427 | + | 0.973739i | 0.284467 | + | 7.27744i | −4.07624 | − | 4.07624i | 4.95654 | − | 6.27955i | 4.26050i | 8.52353 | + | 5.22967i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
37.4 | −1.35790 | − | 1.46837i | 2.57493 | + | 2.57493i | −0.312234 | + | 3.98780i | 4.90427 | − | 0.973739i | 0.284467 | − | 7.27744i | −4.07624 | − | 4.07624i | 6.27955 | − | 4.95654i | 4.26050i | −8.08930 | − | 5.87905i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
37.5 | −0.665418 | + | 1.88606i | 3.60765 | + | 3.60765i | −3.11444 | − | 2.51004i | −2.34539 | − | 4.41578i | −9.20485 | + | 4.40365i | 1.47907 | + | 1.47907i | 6.80648 | − | 4.20379i | 17.0303i | 9.88909 | − | 1.48520i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
37.6 | 0.376547 | − | 1.96423i | −0.977390 | − | 0.977390i | −3.71643 | − | 1.47925i | 0.801246 | − | 4.93538i | −2.28785 | + | 1.55179i | 8.39950 | + | 8.39950i | −4.30500 | + | 6.74292i | − | 7.08942i | −9.39254 | − | 3.43224i | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
37.7 | 0.764474 | + | 1.84813i | −0.130791 | − | 0.130791i | −2.83116 | + | 2.82569i | 4.38731 | + | 2.39823i | 0.141733 | − | 0.341706i | −1.59713 | − | 1.59713i | −7.38659 | − | 3.07218i | − | 8.96579i | −1.07825 | + | 9.94170i | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
37.8 | 1.18894 | − | 1.60823i | 2.52630 | + | 2.52630i | −1.17282 | − | 3.82420i | −3.09141 | + | 3.92978i | 7.06650 | − | 1.05925i | −5.20520 | − | 5.20520i | −7.54462 | − | 2.66059i | 3.76437i | 2.64449 | + | 9.64400i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
37.9 | 1.84813 | + | 0.764474i | 0.130791 | + | 0.130791i | 2.83116 | + | 2.82569i | −4.38731 | − | 2.39823i | 0.141733 | + | 0.341706i | −1.59713 | − | 1.59713i | 3.07218 | + | 7.38659i | − | 8.96579i | −6.27494 | − | 7.78621i | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
37.10 | 1.88606 | − | 0.665418i | −3.60765 | − | 3.60765i | 3.11444 | − | 2.51004i | 2.34539 | + | 4.41578i | −9.20485 | − | 4.40365i | 1.47907 | + | 1.47907i | 4.20379 | − | 6.80648i | 17.0303i | 7.36189 | + | 6.76776i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
5.c | odd | 4 | 1 | inner |
8.b | even | 2 | 1 | inner |
40.i | odd | 4 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 40.3.i.a | ✓ | 20 |
3.b | odd | 2 | 1 | 360.3.u.b | 20 | ||
4.b | odd | 2 | 1 | 160.3.m.a | 20 | ||
5.b | even | 2 | 1 | 200.3.i.b | 20 | ||
5.c | odd | 4 | 1 | inner | 40.3.i.a | ✓ | 20 |
5.c | odd | 4 | 1 | 200.3.i.b | 20 | ||
8.b | even | 2 | 1 | inner | 40.3.i.a | ✓ | 20 |
8.d | odd | 2 | 1 | 160.3.m.a | 20 | ||
15.e | even | 4 | 1 | 360.3.u.b | 20 | ||
20.d | odd | 2 | 1 | 800.3.m.b | 20 | ||
20.e | even | 4 | 1 | 160.3.m.a | 20 | ||
20.e | even | 4 | 1 | 800.3.m.b | 20 | ||
24.h | odd | 2 | 1 | 360.3.u.b | 20 | ||
40.e | odd | 2 | 1 | 800.3.m.b | 20 | ||
40.f | even | 2 | 1 | 200.3.i.b | 20 | ||
40.i | odd | 4 | 1 | inner | 40.3.i.a | ✓ | 20 |
40.i | odd | 4 | 1 | 200.3.i.b | 20 | ||
40.k | even | 4 | 1 | 160.3.m.a | 20 | ||
40.k | even | 4 | 1 | 800.3.m.b | 20 | ||
120.w | even | 4 | 1 | 360.3.u.b | 20 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
40.3.i.a | ✓ | 20 | 1.a | even | 1 | 1 | trivial |
40.3.i.a | ✓ | 20 | 5.c | odd | 4 | 1 | inner |
40.3.i.a | ✓ | 20 | 8.b | even | 2 | 1 | inner |
40.3.i.a | ✓ | 20 | 40.i | odd | 4 | 1 | inner |
160.3.m.a | 20 | 4.b | odd | 2 | 1 | ||
160.3.m.a | 20 | 8.d | odd | 2 | 1 | ||
160.3.m.a | 20 | 20.e | even | 4 | 1 | ||
160.3.m.a | 20 | 40.k | even | 4 | 1 | ||
200.3.i.b | 20 | 5.b | even | 2 | 1 | ||
200.3.i.b | 20 | 5.c | odd | 4 | 1 | ||
200.3.i.b | 20 | 40.f | even | 2 | 1 | ||
200.3.i.b | 20 | 40.i | odd | 4 | 1 | ||
360.3.u.b | 20 | 3.b | odd | 2 | 1 | ||
360.3.u.b | 20 | 15.e | even | 4 | 1 | ||
360.3.u.b | 20 | 24.h | odd | 2 | 1 | ||
360.3.u.b | 20 | 120.w | even | 4 | 1 | ||
800.3.m.b | 20 | 20.d | odd | 2 | 1 | ||
800.3.m.b | 20 | 20.e | even | 4 | 1 | ||
800.3.m.b | 20 | 40.e | odd | 2 | 1 | ||
800.3.m.b | 20 | 40.k | even | 4 | 1 |
Hecke kernels
This newform subspace is the entire newspace .