Properties

Label 40.3.i.a
Level $40$
Weight $3$
Character orbit 40.i
Analytic conductor $1.090$
Analytic rank $0$
Dimension $20$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [40,3,Mod(13,40)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(40, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([0, 2, 3]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("40.13");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 40 = 2^{3} \cdot 5 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 40.i (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.08992105744\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(10\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} - x^{18} - 3x^{16} + 11x^{14} + x^{12} - 40x^{10} + 4x^{8} + 176x^{6} - 192x^{4} - 256x^{2} + 1024 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 2^{20} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{19}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_{4} q^{2} + \beta_{16} q^{3} + \beta_{3} q^{4} + \beta_{8} q^{5} + ( - \beta_{15} - 1) q^{6} - \beta_{10} q^{7} + ( - \beta_{18} - \beta_{17} + \cdots - \beta_{7}) q^{8} + ( - \beta_{19} + 2 \beta_{18} + \cdots + \beta_{2}) q^{9}+ \cdots + (\beta_{19} - 7 \beta_{17} + \cdots - 2 \beta_{3}) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q - 2 q^{2} - 16 q^{6} - 4 q^{7} + 4 q^{8} + 6 q^{10} - 44 q^{12} - 4 q^{15} - 56 q^{16} - 12 q^{17} + 10 q^{18} - 24 q^{20} + 92 q^{22} - 4 q^{23} - 28 q^{25} + 100 q^{26} + 68 q^{28} + 100 q^{30} - 136 q^{31}+ \cdots + 546 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{20} - x^{18} - 3x^{16} + 11x^{14} + x^{12} - 40x^{10} + 4x^{8} + 176x^{6} - 192x^{4} - 256x^{2} + 1024 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( 4\nu^{2} \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( - 2 \nu^{19} + 19 \nu^{17} - 7 \nu^{15} - 93 \nu^{13} - 35 \nu^{11} - 35 \nu^{9} + 132 \nu^{7} + \cdots + 1408 \nu ) / 9600 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( 11 \nu^{19} + 5 \nu^{17} - 185 \nu^{15} + 177 \nu^{13} + 755 \nu^{11} - 160 \nu^{9} + \cdots - 13312 \nu ) / 9600 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( 75 \nu^{19} - 16 \nu^{18} - 75 \nu^{17} + 152 \nu^{16} - 225 \nu^{15} - 56 \nu^{14} + 825 \nu^{13} + \cdots + 11264 ) / 38400 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( 75 \nu^{19} + 16 \nu^{18} - 75 \nu^{17} - 152 \nu^{16} - 225 \nu^{15} + 56 \nu^{14} + 825 \nu^{13} + \cdots - 11264 ) / 38400 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( - 17 \nu^{18} + 13 \nu^{16} + 71 \nu^{14} + 33 \nu^{12} + 115 \nu^{10} - 140 \nu^{8} + 972 \nu^{6} + \cdots - 2048 ) / 4800 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( - 17 \nu^{18} + 13 \nu^{16} + 71 \nu^{14} + 33 \nu^{12} + 115 \nu^{10} - 140 \nu^{8} + 972 \nu^{6} + \cdots - 2048 ) / 4800 \) Copy content Toggle raw display
\(\beta_{8}\)\(=\) \( ( 105 \nu^{19} - 122 \nu^{18} - 489 \nu^{17} + 250 \nu^{16} + 357 \nu^{15} + 590 \nu^{14} + \cdots + 54784 ) / 38400 \) Copy content Toggle raw display
\(\beta_{9}\)\(=\) \( ( - 5 \nu^{19} + 234 \nu^{18} - 215 \nu^{17} + 246 \nu^{16} - 805 \nu^{15} - 1278 \nu^{14} + \cdots - 118272 ) / 38400 \) Copy content Toggle raw display
\(\beta_{10}\)\(=\) \( ( - 5 \nu^{19} - 234 \nu^{18} - 215 \nu^{17} - 246 \nu^{16} - 805 \nu^{15} + 1278 \nu^{14} + \cdots + 118272 ) / 38400 \) Copy content Toggle raw display
\(\beta_{11}\)\(=\) \( ( - 105 \nu^{19} - 122 \nu^{18} + 489 \nu^{17} + 250 \nu^{16} - 357 \nu^{15} + 590 \nu^{14} + \cdots + 54784 ) / 38400 \) Copy content Toggle raw display
\(\beta_{12}\)\(=\) \( ( - 25 \nu^{19} + 82 \nu^{18} + 45 \nu^{17} - 50 \nu^{16} - 185 \nu^{15} + 10 \nu^{14} - 95 \nu^{13} + \cdots + 16896 ) / 12800 \) Copy content Toggle raw display
\(\beta_{13}\)\(=\) \( ( - 165 \nu^{19} + 166 \nu^{18} - 183 \nu^{17} - 950 \nu^{16} + 1179 \nu^{15} + 830 \nu^{14} + \cdots + 130048 ) / 38400 \) Copy content Toggle raw display
\(\beta_{14}\)\(=\) \( ( \nu^{18} - \nu^{16} - 3\nu^{14} + 11\nu^{12} + \nu^{10} - 40\nu^{8} + 4\nu^{6} + 176\nu^{4} - 192\nu^{2} - 256 ) / 128 \) Copy content Toggle raw display
\(\beta_{15}\)\(=\) \( ( 5 \nu^{18} - 9 \nu^{16} + 37 \nu^{14} + 19 \nu^{12} - 55 \nu^{10} - 60 \nu^{8} + 100 \nu^{6} + \cdots + 3456 ) / 640 \) Copy content Toggle raw display
\(\beta_{16}\)\(=\) \( ( 25 \nu^{19} + 82 \nu^{18} - 45 \nu^{17} - 50 \nu^{16} + 185 \nu^{15} + 10 \nu^{14} + 95 \nu^{13} + \cdots + 16896 ) / 12800 \) Copy content Toggle raw display
\(\beta_{17}\)\(=\) \( ( 165 \nu^{19} + 166 \nu^{18} + 183 \nu^{17} - 950 \nu^{16} - 1179 \nu^{15} + 830 \nu^{14} + \cdots + 130048 ) / 38400 \) Copy content Toggle raw display
\(\beta_{18}\)\(=\) \( ( - 95 \nu^{19} + 553 \nu^{17} + 11 \nu^{15} - 843 \nu^{13} + 775 \nu^{11} + 5290 \nu^{9} + \cdots - 8192 \nu ) / 19200 \) Copy content Toggle raw display
\(\beta_{19}\)\(=\) \( ( - 17 \nu^{19} + 13 \nu^{17} + 71 \nu^{15} + 33 \nu^{13} + 115 \nu^{11} - 140 \nu^{9} + \cdots - 2048 \nu ) / 2400 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( -\beta_{7} + \beta_{6} ) / 4 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( \beta_1 ) / 4 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( - \beta_{19} + 2 \beta_{18} - \beta_{17} + \beta_{16} + \beta_{13} - \beta_{12} - \beta_{11} + \cdots + 2 \beta_{3} ) / 4 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( ( - \beta_{17} + \beta_{16} - \beta_{13} + \beta_{12} - \beta_{11} + \beta_{10} - \beta_{9} - \beta_{8} + \cdots + 2 ) / 4 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( ( \beta_{18} - \beta_{16} + \beta_{12} - \beta_{11} + \beta_{8} + \beta_{5} + \beta_{4} - \beta_{3} - 3\beta_{2} ) / 2 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( ( 2 \beta_{17} + 4 \beta_{16} - 4 \beta_{15} + 2 \beta_{13} + 4 \beta_{12} + 2 \beta_{11} + 2 \beta_{8} + \cdots - 8 ) / 4 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( ( \beta_{19} - 2 \beta_{17} - 2 \beta_{16} + 2 \beta_{13} + 2 \beta_{12} - 2 \beta_{11} + \cdots + 20 \beta_{2} ) / 4 \) Copy content Toggle raw display
\(\nu^{8}\)\(=\) \( ( - \beta_{17} + 3 \beta_{16} - 2 \beta_{15} - 2 \beta_{14} - \beta_{13} + 3 \beta_{12} + 5 \beta_{11} + \cdots - 12 ) / 4 \) Copy content Toggle raw display
\(\nu^{9}\)\(=\) \( ( - 2 \beta_{19} - 4 \beta_{18} + \beta_{17} - 5 \beta_{16} - \beta_{13} + 5 \beta_{12} + \cdots - 50 \beta_{2} ) / 4 \) Copy content Toggle raw display
\(\nu^{10}\)\(=\) \( ( 4 \beta_{17} + 8 \beta_{16} - 7 \beta_{15} - 9 \beta_{14} + 4 \beta_{13} + 8 \beta_{12} + \beta_{11} + \cdots + 11 ) / 2 \) Copy content Toggle raw display
\(\nu^{11}\)\(=\) \( ( 14 \beta_{19} - 4 \beta_{18} + 12 \beta_{17} + 6 \beta_{16} - 12 \beta_{13} - 6 \beta_{12} + \cdots - 28 \beta_{2} ) / 4 \) Copy content Toggle raw display
\(\nu^{12}\)\(=\) \( ( - 8 \beta_{17} - 28 \beta_{16} + 16 \beta_{15} + 48 \beta_{14} - 8 \beta_{13} - 28 \beta_{12} + \cdots + 96 ) / 4 \) Copy content Toggle raw display
\(\nu^{13}\)\(=\) \( ( 5 \beta_{19} - 2 \beta_{18} - 11 \beta_{17} + 15 \beta_{16} + 11 \beta_{13} - 15 \beta_{12} + \cdots - 184 \beta_{2} ) / 4 \) Copy content Toggle raw display
\(\nu^{14}\)\(=\) \( ( - 31 \beta_{17} + 7 \beta_{16} + 64 \beta_{15} - 16 \beta_{14} - 31 \beta_{13} + 7 \beta_{12} + \cdots - 162 ) / 4 \) Copy content Toggle raw display
\(\nu^{15}\)\(=\) \( ( 4 \beta_{19} + 51 \beta_{18} - 6 \beta_{17} + 51 \beta_{16} + 6 \beta_{13} - 51 \beta_{12} + \cdots - 85 \beta_{2} ) / 2 \) Copy content Toggle raw display
\(\nu^{16}\)\(=\) \( ( - 122 \beta_{17} - 36 \beta_{16} + 108 \beta_{15} + 200 \beta_{14} - 122 \beta_{13} - 36 \beta_{12} + \cdots + 208 ) / 4 \) Copy content Toggle raw display
\(\nu^{17}\)\(=\) \( ( 87 \beta_{19} + 40 \beta_{18} + 46 \beta_{17} - 34 \beta_{16} - 46 \beta_{13} + 34 \beta_{12} + \cdots + 460 \beta_{2} ) / 4 \) Copy content Toggle raw display
\(\nu^{18}\)\(=\) \( ( - 7 \beta_{17} + 205 \beta_{16} + 74 \beta_{15} + 74 \beta_{14} - 7 \beta_{13} + 205 \beta_{12} + \cdots - 1132 ) / 4 \) Copy content Toggle raw display
\(\nu^{19}\)\(=\) \( ( - 234 \beta_{19} + 244 \beta_{18} - 25 \beta_{17} + 453 \beta_{16} + 25 \beta_{13} + \cdots + 978 \beta_{2} ) / 4 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/40\mathbb{Z}\right)^\times\).

\(n\) \(17\) \(21\) \(31\)
\(\chi(n)\) \(\beta_{2}\) \(-1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
13.1
1.17039 + 0.793843i
1.39859 + 0.209644i
0.0552378 + 1.41313i
−0.0552378 + 1.41313i
1.27574 0.610320i
−1.17039 + 0.793843i
0.541828 1.30630i
−1.39859 + 0.209644i
−0.541828 1.30630i
−1.27574 0.610320i
1.17039 0.793843i
1.39859 0.209644i
0.0552378 1.41313i
−0.0552378 1.41313i
1.27574 + 0.610320i
−1.17039 0.793843i
0.541828 + 1.30630i
−1.39859 0.209644i
−0.541828 + 1.30630i
−1.27574 + 0.610320i
−1.96423 0.376547i 0.977390 0.977390i 3.71643 + 1.47925i −0.801246 4.93538i −2.28785 + 1.55179i 8.39950 8.39950i −6.74292 4.30500i 7.08942i −0.284568 + 9.99595i
13.2 −1.60823 1.18894i −2.52630 + 2.52630i 1.17282 + 3.82420i 3.09141 + 3.92978i 7.06650 1.05925i −5.20520 + 5.20520i 2.66059 7.54462i 3.76437i −0.299408 9.99552i
13.3 −1.46837 + 1.35790i −2.57493 + 2.57493i 0.312234 3.98780i −4.90427 0.973739i 0.284467 7.27744i −4.07624 + 4.07624i 4.95654 + 6.27955i 4.26050i 8.52353 5.22967i
13.4 −1.35790 + 1.46837i 2.57493 2.57493i −0.312234 3.98780i 4.90427 + 0.973739i 0.284467 + 7.27744i −4.07624 + 4.07624i 6.27955 + 4.95654i 4.26050i −8.08930 + 5.87905i
13.5 −0.665418 1.88606i 3.60765 3.60765i −3.11444 + 2.51004i −2.34539 + 4.41578i −9.20485 4.40365i 1.47907 1.47907i 6.80648 + 4.20379i 17.0303i 9.88909 + 1.48520i
13.6 0.376547 + 1.96423i −0.977390 + 0.977390i −3.71643 + 1.47925i 0.801246 + 4.93538i −2.28785 1.55179i 8.39950 8.39950i −4.30500 6.74292i 7.08942i −9.39254 + 3.43224i
13.7 0.764474 1.84813i −0.130791 + 0.130791i −2.83116 2.82569i 4.38731 2.39823i 0.141733 + 0.341706i −1.59713 + 1.59713i −7.38659 + 3.07218i 8.96579i −1.07825 9.94170i
13.8 1.18894 + 1.60823i 2.52630 2.52630i −1.17282 + 3.82420i −3.09141 3.92978i 7.06650 + 1.05925i −5.20520 + 5.20520i −7.54462 + 2.66059i 3.76437i 2.64449 9.64400i
13.9 1.84813 0.764474i 0.130791 0.130791i 2.83116 2.82569i −4.38731 + 2.39823i 0.141733 0.341706i −1.59713 + 1.59713i 3.07218 7.38659i 8.96579i −6.27494 + 7.78621i
13.10 1.88606 + 0.665418i −3.60765 + 3.60765i 3.11444 + 2.51004i 2.34539 4.41578i −9.20485 + 4.40365i 1.47907 1.47907i 4.20379 + 6.80648i 17.0303i 7.36189 6.76776i
37.1 −1.96423 + 0.376547i 0.977390 + 0.977390i 3.71643 1.47925i −0.801246 + 4.93538i −2.28785 1.55179i 8.39950 + 8.39950i −6.74292 + 4.30500i 7.08942i −0.284568 9.99595i
37.2 −1.60823 + 1.18894i −2.52630 2.52630i 1.17282 3.82420i 3.09141 3.92978i 7.06650 + 1.05925i −5.20520 5.20520i 2.66059 + 7.54462i 3.76437i −0.299408 + 9.99552i
37.3 −1.46837 1.35790i −2.57493 2.57493i 0.312234 + 3.98780i −4.90427 + 0.973739i 0.284467 + 7.27744i −4.07624 4.07624i 4.95654 6.27955i 4.26050i 8.52353 + 5.22967i
37.4 −1.35790 1.46837i 2.57493 + 2.57493i −0.312234 + 3.98780i 4.90427 0.973739i 0.284467 7.27744i −4.07624 4.07624i 6.27955 4.95654i 4.26050i −8.08930 5.87905i
37.5 −0.665418 + 1.88606i 3.60765 + 3.60765i −3.11444 2.51004i −2.34539 4.41578i −9.20485 + 4.40365i 1.47907 + 1.47907i 6.80648 4.20379i 17.0303i 9.88909 1.48520i
37.6 0.376547 1.96423i −0.977390 0.977390i −3.71643 1.47925i 0.801246 4.93538i −2.28785 + 1.55179i 8.39950 + 8.39950i −4.30500 + 6.74292i 7.08942i −9.39254 3.43224i
37.7 0.764474 + 1.84813i −0.130791 0.130791i −2.83116 + 2.82569i 4.38731 + 2.39823i 0.141733 0.341706i −1.59713 1.59713i −7.38659 3.07218i 8.96579i −1.07825 + 9.94170i
37.8 1.18894 1.60823i 2.52630 + 2.52630i −1.17282 3.82420i −3.09141 + 3.92978i 7.06650 1.05925i −5.20520 5.20520i −7.54462 2.66059i 3.76437i 2.64449 + 9.64400i
37.9 1.84813 + 0.764474i 0.130791 + 0.130791i 2.83116 + 2.82569i −4.38731 2.39823i 0.141733 + 0.341706i −1.59713 1.59713i 3.07218 + 7.38659i 8.96579i −6.27494 7.78621i
37.10 1.88606 0.665418i −3.60765 3.60765i 3.11444 2.51004i 2.34539 + 4.41578i −9.20485 4.40365i 1.47907 + 1.47907i 4.20379 6.80648i 17.0303i 7.36189 + 6.76776i
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 13.10
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.c odd 4 1 inner
8.b even 2 1 inner
40.i odd 4 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 40.3.i.a 20
3.b odd 2 1 360.3.u.b 20
4.b odd 2 1 160.3.m.a 20
5.b even 2 1 200.3.i.b 20
5.c odd 4 1 inner 40.3.i.a 20
5.c odd 4 1 200.3.i.b 20
8.b even 2 1 inner 40.3.i.a 20
8.d odd 2 1 160.3.m.a 20
15.e even 4 1 360.3.u.b 20
20.d odd 2 1 800.3.m.b 20
20.e even 4 1 160.3.m.a 20
20.e even 4 1 800.3.m.b 20
24.h odd 2 1 360.3.u.b 20
40.e odd 2 1 800.3.m.b 20
40.f even 2 1 200.3.i.b 20
40.i odd 4 1 inner 40.3.i.a 20
40.i odd 4 1 200.3.i.b 20
40.k even 4 1 160.3.m.a 20
40.k even 4 1 800.3.m.b 20
120.w even 4 1 360.3.u.b 20
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
40.3.i.a 20 1.a even 1 1 trivial
40.3.i.a 20 5.c odd 4 1 inner
40.3.i.a 20 8.b even 2 1 inner
40.3.i.a 20 40.i odd 4 1 inner
160.3.m.a 20 4.b odd 2 1
160.3.m.a 20 8.d odd 2 1
160.3.m.a 20 20.e even 4 1
160.3.m.a 20 40.k even 4 1
200.3.i.b 20 5.b even 2 1
200.3.i.b 20 5.c odd 4 1
200.3.i.b 20 40.f even 2 1
200.3.i.b 20 40.i odd 4 1
360.3.u.b 20 3.b odd 2 1
360.3.u.b 20 15.e even 4 1
360.3.u.b 20 24.h odd 2 1
360.3.u.b 20 120.w even 4 1
800.3.m.b 20 20.d odd 2 1
800.3.m.b 20 20.e even 4 1
800.3.m.b 20 40.e odd 2 1
800.3.m.b 20 40.k even 4 1

Hecke kernels

This newform subspace is the entire newspace \(S_{3}^{\mathrm{new}}(40, [\chi])\).

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{20} + 2 T^{19} + \cdots + 1048576 \) Copy content Toggle raw display
$3$ \( T^{20} + 1020 T^{16} + \cdots + 82944 \) Copy content Toggle raw display
$5$ \( T^{20} + \cdots + 95367431640625 \) Copy content Toggle raw display
$7$ \( (T^{10} + 2 T^{9} + \cdots + 5671712)^{2} \) Copy content Toggle raw display
$11$ \( (T^{10} + 552 T^{8} + \cdots + 473497600)^{2} \) Copy content Toggle raw display
$13$ \( T^{20} + \cdots + 23\!\cdots\!00 \) Copy content Toggle raw display
$17$ \( (T^{10} + 6 T^{9} + \cdots + 2344207392)^{2} \) Copy content Toggle raw display
$19$ \( (T^{10} + \cdots - 384717505536)^{2} \) Copy content Toggle raw display
$23$ \( (T^{10} + 2 T^{9} + \cdots + 415411488)^{2} \) Copy content Toggle raw display
$29$ \( (T^{10} - 2548 T^{8} + \cdots - 31360000)^{2} \) Copy content Toggle raw display
$31$ \( (T^{5} + 34 T^{4} + \cdots - 1252704)^{4} \) Copy content Toggle raw display
$37$ \( T^{20} + \cdots + 59\!\cdots\!44 \) Copy content Toggle raw display
$41$ \( (T^{5} + 2 T^{4} + \cdots + 74680800)^{4} \) Copy content Toggle raw display
$43$ \( T^{20} + \cdots + 81\!\cdots\!64 \) Copy content Toggle raw display
$47$ \( (T^{10} + \cdots + 418650446283552)^{2} \) Copy content Toggle raw display
$53$ \( T^{20} + \cdots + 30\!\cdots\!84 \) Copy content Toggle raw display
$59$ \( (T^{10} + \cdots - 26\!\cdots\!16)^{2} \) Copy content Toggle raw display
$61$ \( (T^{10} + \cdots + 26\!\cdots\!00)^{2} \) Copy content Toggle raw display
$67$ \( T^{20} + \cdots + 23\!\cdots\!44 \) Copy content Toggle raw display
$71$ \( (T^{5} - 62 T^{4} + \cdots + 423110304)^{4} \) Copy content Toggle raw display
$73$ \( (T^{10} + \cdots + 37\!\cdots\!88)^{2} \) Copy content Toggle raw display
$79$ \( (T^{10} + \cdots + 66\!\cdots\!00)^{2} \) Copy content Toggle raw display
$83$ \( T^{20} + \cdots + 23\!\cdots\!64 \) Copy content Toggle raw display
$89$ \( (T^{10} + \cdots + 51\!\cdots\!00)^{2} \) Copy content Toggle raw display
$97$ \( (T^{10} + \cdots + 90\!\cdots\!32)^{2} \) Copy content Toggle raw display
show more
show less