L(s) = 1 | + (−0.665 + 1.88i)2-s + (3.60 + 3.60i)3-s + (−3.11 − 2.51i)4-s + (−2.34 − 4.41i)5-s + (−9.20 + 4.40i)6-s + (1.47 + 1.47i)7-s + (6.80 − 4.20i)8-s + 17.0i·9-s + (9.88 − 1.48i)10-s − 11.3i·11-s + (−2.18 − 20.2i)12-s + (3.17 + 3.17i)13-s + (−3.77 + 1.80i)14-s + (7.46 − 24.3i)15-s + (3.39 + 15.6i)16-s + (−9.94 − 9.94i)17-s + ⋯ |
L(s) = 1 | + (−0.332 + 0.943i)2-s + (1.20 + 1.20i)3-s + (−0.778 − 0.627i)4-s + (−0.469 − 0.883i)5-s + (−1.53 + 0.733i)6-s + (0.211 + 0.211i)7-s + (0.850 − 0.525i)8-s + 1.89i·9-s + (0.988 − 0.148i)10-s − 1.02i·11-s + (−0.181 − 1.69i)12-s + (0.244 + 0.244i)13-s + (−0.269 + 0.128i)14-s + (0.497 − 1.62i)15-s + (0.212 + 0.977i)16-s + (−0.585 − 0.585i)17-s + ⋯ |
Λ(s)=(=(40s/2ΓC(s)L(s)(−0.0242−0.999i)Λ(3−s)
Λ(s)=(=(40s/2ΓC(s+1)L(s)(−0.0242−0.999i)Λ(1−s)
Degree: |
2 |
Conductor: |
40
= 23⋅5
|
Sign: |
−0.0242−0.999i
|
Analytic conductor: |
1.08992 |
Root analytic conductor: |
1.04399 |
Motivic weight: |
2 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ40(37,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 40, ( :1), −0.0242−0.999i)
|
Particular Values
L(23) |
≈ |
0.786780+0.806131i |
L(21) |
≈ |
0.786780+0.806131i |
L(2) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.665−1.88i)T |
| 5 | 1+(2.34+4.41i)T |
good | 3 | 1+(−3.60−3.60i)T+9iT2 |
| 7 | 1+(−1.47−1.47i)T+49iT2 |
| 11 | 1+11.3iT−121T2 |
| 13 | 1+(−3.17−3.17i)T+169iT2 |
| 17 | 1+(9.94+9.94i)T+289iT2 |
| 19 | 1−11.2T+361T2 |
| 23 | 1+(−1.67+1.67i)T−529iT2 |
| 29 | 1+41.1T+841T2 |
| 31 | 1+29.2T+961T2 |
| 37 | 1+(−8.60+8.60i)T−1.36e3iT2 |
| 41 | 1+19.6T+1.68e3T2 |
| 43 | 1+(−25.1−25.1i)T+1.84e3iT2 |
| 47 | 1+(−41.7−41.7i)T+2.20e3iT2 |
| 53 | 1+(2.16+2.16i)T+2.80e3iT2 |
| 59 | 1+38.9T+3.48e3T2 |
| 61 | 1−87.5iT−3.72e3T2 |
| 67 | 1+(−31.1+31.1i)T−4.48e3iT2 |
| 71 | 1−134.T+5.04e3T2 |
| 73 | 1+(26.1−26.1i)T−5.32e3iT2 |
| 79 | 1−23.1iT−6.24e3T2 |
| 83 | 1+(−68.3−68.3i)T+6.88e3iT2 |
| 89 | 1+75.2iT−7.92e3T2 |
| 97 | 1+(−57.5−57.5i)T+9.40e3iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−16.07777353959742085805095212288, −15.32592692504584982730084812473, −14.24741543844654770597697283314, −13.29553320211968589411967854502, −11.06176399351555750560206940570, −9.389167021615519454150414896763, −8.834995416467595895501065831178, −7.77381618285633683633626704079, −5.29856854435201720432563050925, −3.92726453302330650844516521120,
2.07995624338543992283468207048, 3.64595090523606552170010035148, 7.15236491757152050546986656613, 7.966376461843252639970224636735, 9.334764786167300139979279527993, 10.86454961618627660147231789022, 12.20440563218956398657937915630, 13.17982290420087956360123876789, 14.20594779635437694514919023627, 15.18962655491925691943892456207