Properties

Label 800.3.m.b.657.6
Level $800$
Weight $3$
Character 800.657
Analytic conductor $21.798$
Analytic rank $0$
Dimension $20$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [800,3,Mod(593,800)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(800, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([0, 2, 3]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("800.593");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 800 = 2^{5} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 800.m (of order \(4\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(21.7984211488\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(10\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} - x^{18} - 3x^{16} + 11x^{14} + x^{12} - 40x^{10} + 4x^{8} + 176x^{6} - 192x^{4} - 256x^{2} + 1024 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{36} \)
Twist minimal: no (minimal twist has level 40)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 657.6
Root \(0.541828 - 1.30630i\) of defining polynomial
Character \(\chi\) \(=\) 800.657
Dual form 800.3.m.b.593.6

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.130791 + 0.130791i) q^{3} +(-1.59713 - 1.59713i) q^{7} -8.96579i q^{9} -11.9427i q^{11} +(9.59714 + 9.59714i) q^{13} +(-0.857288 - 0.857288i) q^{17} -20.5611 q^{19} -0.417782i q^{21} +(-22.1560 + 22.1560i) q^{23} +(2.34977 - 2.34977i) q^{27} +27.3404 q^{29} -40.0267 q^{31} +(1.56200 - 1.56200i) q^{33} +(-1.57131 + 1.57131i) q^{37} +2.51044i q^{39} -37.5504 q^{41} +(-49.2602 - 49.2602i) q^{43} +(-34.0876 - 34.0876i) q^{47} -43.8983i q^{49} -0.224252i q^{51} +(-28.8002 - 28.8002i) q^{53} +(-2.68921 - 2.68921i) q^{57} +92.7071 q^{59} -4.82618i q^{61} +(-14.3196 + 14.3196i) q^{63} +(54.6048 - 54.6048i) q^{67} -5.79564 q^{69} -59.2198 q^{71} +(-34.1124 + 34.1124i) q^{73} +(-19.0740 + 19.0740i) q^{77} -96.2455i q^{79} -80.0774 q^{81} +(63.6959 + 63.6959i) q^{83} +(3.57588 + 3.57588i) q^{87} +3.68406i q^{89} -30.6558i q^{91} +(-5.23514 - 5.23514i) q^{93} +(-46.0410 - 46.0410i) q^{97} -107.075 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q - 4 q^{7} + 12 q^{17} - 4 q^{23} + 136 q^{31} - 32 q^{33} - 8 q^{41} + 188 q^{47} + 40 q^{57} + 228 q^{63} - 248 q^{71} + 124 q^{73} + 132 q^{81} - 488 q^{87} - 100 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/800\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(351\) \(577\)
\(\chi(n)\) \(-1\) \(1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.130791 + 0.130791i 0.0435971 + 0.0435971i 0.728569 0.684972i \(-0.240186\pi\)
−0.684972 + 0.728569i \(0.740186\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) −1.59713 1.59713i −0.228162 0.228162i 0.583763 0.811924i \(-0.301580\pi\)
−0.811924 + 0.583763i \(0.801580\pi\)
\(8\) 0 0
\(9\) 8.96579i 0.996199i
\(10\) 0 0
\(11\) 11.9427i 1.08570i −0.839831 0.542849i \(-0.817346\pi\)
0.839831 0.542849i \(-0.182654\pi\)
\(12\) 0 0
\(13\) 9.59714 + 9.59714i 0.738241 + 0.738241i 0.972238 0.233996i \(-0.0751803\pi\)
−0.233996 + 0.972238i \(0.575180\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −0.857288 0.857288i −0.0504287 0.0504287i 0.681443 0.731871i \(-0.261353\pi\)
−0.731871 + 0.681443i \(0.761353\pi\)
\(18\) 0 0
\(19\) −20.5611 −1.08216 −0.541082 0.840970i \(-0.681985\pi\)
−0.541082 + 0.840970i \(0.681985\pi\)
\(20\) 0 0
\(21\) 0.417782i 0.0198944i
\(22\) 0 0
\(23\) −22.1560 + 22.1560i −0.963306 + 0.963306i −0.999350 0.0360441i \(-0.988524\pi\)
0.0360441 + 0.999350i \(0.488524\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 2.34977 2.34977i 0.0870285 0.0870285i
\(28\) 0 0
\(29\) 27.3404 0.942771 0.471385 0.881927i \(-0.343754\pi\)
0.471385 + 0.881927i \(0.343754\pi\)
\(30\) 0 0
\(31\) −40.0267 −1.29118 −0.645591 0.763683i \(-0.723389\pi\)
−0.645591 + 0.763683i \(0.723389\pi\)
\(32\) 0 0
\(33\) 1.56200 1.56200i 0.0473333 0.0473333i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −1.57131 + 1.57131i −0.0424677 + 0.0424677i −0.728022 0.685554i \(-0.759560\pi\)
0.685554 + 0.728022i \(0.259560\pi\)
\(38\) 0 0
\(39\) 2.51044i 0.0643704i
\(40\) 0 0
\(41\) −37.5504 −0.915864 −0.457932 0.888987i \(-0.651410\pi\)
−0.457932 + 0.888987i \(0.651410\pi\)
\(42\) 0 0
\(43\) −49.2602 49.2602i −1.14558 1.14558i −0.987411 0.158174i \(-0.949439\pi\)
−0.158174 0.987411i \(-0.550561\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −34.0876 34.0876i −0.725268 0.725268i 0.244405 0.969673i \(-0.421407\pi\)
−0.969673 + 0.244405i \(0.921407\pi\)
\(48\) 0 0
\(49\) 43.8983i 0.895884i
\(50\) 0 0
\(51\) 0.224252i 0.00439709i
\(52\) 0 0
\(53\) −28.8002 28.8002i −0.543401 0.543401i 0.381124 0.924524i \(-0.375537\pi\)
−0.924524 + 0.381124i \(0.875537\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) −2.68921 2.68921i −0.0471792 0.0471792i
\(58\) 0 0
\(59\) 92.7071 1.57131 0.785653 0.618667i \(-0.212327\pi\)
0.785653 + 0.618667i \(0.212327\pi\)
\(60\) 0 0
\(61\) 4.82618i 0.0791176i −0.999217 0.0395588i \(-0.987405\pi\)
0.999217 0.0395588i \(-0.0125952\pi\)
\(62\) 0 0
\(63\) −14.3196 + 14.3196i −0.227294 + 0.227294i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 54.6048 54.6048i 0.814997 0.814997i −0.170381 0.985378i \(-0.554500\pi\)
0.985378 + 0.170381i \(0.0544998\pi\)
\(68\) 0 0
\(69\) −5.79564 −0.0839947
\(70\) 0 0
\(71\) −59.2198 −0.834082 −0.417041 0.908888i \(-0.636933\pi\)
−0.417041 + 0.908888i \(0.636933\pi\)
\(72\) 0 0
\(73\) −34.1124 + 34.1124i −0.467293 + 0.467293i −0.901037 0.433743i \(-0.857193\pi\)
0.433743 + 0.901037i \(0.357193\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −19.0740 + 19.0740i −0.247715 + 0.247715i
\(78\) 0 0
\(79\) 96.2455i 1.21830i −0.793056 0.609149i \(-0.791511\pi\)
0.793056 0.609149i \(-0.208489\pi\)
\(80\) 0 0
\(81\) −80.0774 −0.988610
\(82\) 0 0
\(83\) 63.6959 + 63.6959i 0.767421 + 0.767421i 0.977652 0.210231i \(-0.0674216\pi\)
−0.210231 + 0.977652i \(0.567422\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 3.57588 + 3.57588i 0.0411021 + 0.0411021i
\(88\) 0 0
\(89\) 3.68406i 0.0413939i 0.999786 + 0.0206970i \(0.00658852\pi\)
−0.999786 + 0.0206970i \(0.993411\pi\)
\(90\) 0 0
\(91\) 30.6558i 0.336877i
\(92\) 0 0
\(93\) −5.23514 5.23514i −0.0562918 0.0562918i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −46.0410 46.0410i −0.474650 0.474650i 0.428766 0.903416i \(-0.358949\pi\)
−0.903416 + 0.428766i \(0.858949\pi\)
\(98\) 0 0
\(99\) −107.075 −1.08157
\(100\) 0 0
\(101\) 108.173i 1.07102i −0.844529 0.535510i \(-0.820120\pi\)
0.844529 0.535510i \(-0.179880\pi\)
\(102\) 0 0
\(103\) −50.9112 + 50.9112i −0.494284 + 0.494284i −0.909653 0.415369i \(-0.863652\pi\)
0.415369 + 0.909653i \(0.363652\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −95.4147 + 95.4147i −0.891726 + 0.891726i −0.994686 0.102960i \(-0.967169\pi\)
0.102960 + 0.994686i \(0.467169\pi\)
\(108\) 0 0
\(109\) −46.5432 −0.427002 −0.213501 0.976943i \(-0.568487\pi\)
−0.213501 + 0.976943i \(0.568487\pi\)
\(110\) 0 0
\(111\) −0.411026 −0.00370294
\(112\) 0 0
\(113\) −88.0400 + 88.0400i −0.779115 + 0.779115i −0.979680 0.200565i \(-0.935722\pi\)
0.200565 + 0.979680i \(0.435722\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 86.0459 86.0459i 0.735435 0.735435i
\(118\) 0 0
\(119\) 2.73841i 0.0230118i
\(120\) 0 0
\(121\) −21.6274 −0.178739
\(122\) 0 0
\(123\) −4.91127 4.91127i −0.0399290 0.0399290i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 44.3246 + 44.3246i 0.349012 + 0.349012i 0.859742 0.510729i \(-0.170625\pi\)
−0.510729 + 0.859742i \(0.670625\pi\)
\(128\) 0 0
\(129\) 12.8856i 0.0998884i
\(130\) 0 0
\(131\) 82.8025i 0.632080i −0.948746 0.316040i \(-0.897647\pi\)
0.948746 0.316040i \(-0.102353\pi\)
\(132\) 0 0
\(133\) 32.8388 + 32.8388i 0.246908 + 0.246908i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −25.0030 25.0030i −0.182503 0.182503i 0.609942 0.792446i \(-0.291193\pi\)
−0.792446 + 0.609942i \(0.791193\pi\)
\(138\) 0 0
\(139\) 104.684 0.753121 0.376561 0.926392i \(-0.377107\pi\)
0.376561 + 0.926392i \(0.377107\pi\)
\(140\) 0 0
\(141\) 8.91673i 0.0632392i
\(142\) 0 0
\(143\) 114.615 114.615i 0.801507 0.801507i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 5.74152 5.74152i 0.0390580 0.0390580i
\(148\) 0 0
\(149\) 49.3481 0.331196 0.165598 0.986193i \(-0.447045\pi\)
0.165598 + 0.986193i \(0.447045\pi\)
\(150\) 0 0
\(151\) 22.1078 0.146409 0.0732047 0.997317i \(-0.476677\pi\)
0.0732047 + 0.997317i \(0.476677\pi\)
\(152\) 0 0
\(153\) −7.68626 + 7.68626i −0.0502370 + 0.0502370i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 64.7264 64.7264i 0.412270 0.412270i −0.470258 0.882529i \(-0.655839\pi\)
0.882529 + 0.470258i \(0.155839\pi\)
\(158\) 0 0
\(159\) 7.53364i 0.0473814i
\(160\) 0 0
\(161\) 70.7723 0.439579
\(162\) 0 0
\(163\) 25.7888 + 25.7888i 0.158213 + 0.158213i 0.781775 0.623561i \(-0.214315\pi\)
−0.623561 + 0.781775i \(0.714315\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −56.4754 56.4754i −0.338176 0.338176i 0.517504 0.855681i \(-0.326861\pi\)
−0.855681 + 0.517504i \(0.826861\pi\)
\(168\) 0 0
\(169\) 15.2101i 0.0900005i
\(170\) 0 0
\(171\) 184.346i 1.07805i
\(172\) 0 0
\(173\) −135.496 135.496i −0.783216 0.783216i 0.197156 0.980372i \(-0.436829\pi\)
−0.980372 + 0.197156i \(0.936829\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 12.1253 + 12.1253i 0.0685044 + 0.0685044i
\(178\) 0 0
\(179\) −15.5036 −0.0866121 −0.0433061 0.999062i \(-0.513789\pi\)
−0.0433061 + 0.999062i \(0.513789\pi\)
\(180\) 0 0
\(181\) 263.672i 1.45675i 0.685179 + 0.728375i \(0.259724\pi\)
−0.685179 + 0.728375i \(0.740276\pi\)
\(182\) 0 0
\(183\) 0.631222 0.631222i 0.00344930 0.00344930i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) −10.2383 + 10.2383i −0.0547503 + 0.0547503i
\(188\) 0 0
\(189\) −7.50579 −0.0397132
\(190\) 0 0
\(191\) 120.714 0.632010 0.316005 0.948758i \(-0.397658\pi\)
0.316005 + 0.948758i \(0.397658\pi\)
\(192\) 0 0
\(193\) 182.404 182.404i 0.945098 0.945098i −0.0534716 0.998569i \(-0.517029\pi\)
0.998569 + 0.0534716i \(0.0170287\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −224.288 + 224.288i −1.13852 + 1.13852i −0.149799 + 0.988716i \(0.547863\pi\)
−0.988716 + 0.149799i \(0.952137\pi\)
\(198\) 0 0
\(199\) 87.9089i 0.441753i 0.975302 + 0.220877i \(0.0708918\pi\)
−0.975302 + 0.220877i \(0.929108\pi\)
\(200\) 0 0
\(201\) 14.2837 0.0710631
\(202\) 0 0
\(203\) −43.6662 43.6662i −0.215104 0.215104i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 198.646 + 198.646i 0.959644 + 0.959644i
\(208\) 0 0
\(209\) 245.554i 1.17490i
\(210\) 0 0
\(211\) 119.117i 0.564534i 0.959336 + 0.282267i \(0.0910864\pi\)
−0.959336 + 0.282267i \(0.908914\pi\)
\(212\) 0 0
\(213\) −7.74544 7.74544i −0.0363636 0.0363636i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 63.9279 + 63.9279i 0.294599 + 0.294599i
\(218\) 0 0
\(219\) −8.92322 −0.0407453
\(220\) 0 0
\(221\) 16.4550i 0.0744571i
\(222\) 0 0
\(223\) 111.993 111.993i 0.502212 0.502212i −0.409913 0.912125i \(-0.634441\pi\)
0.912125 + 0.409913i \(0.134441\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 85.8837 85.8837i 0.378342 0.378342i −0.492162 0.870504i \(-0.663793\pi\)
0.870504 + 0.492162i \(0.163793\pi\)
\(228\) 0 0
\(229\) −26.5156 −0.115789 −0.0578943 0.998323i \(-0.518439\pi\)
−0.0578943 + 0.998323i \(0.518439\pi\)
\(230\) 0 0
\(231\) −4.98944 −0.0215993
\(232\) 0 0
\(233\) 71.6569 71.6569i 0.307541 0.307541i −0.536414 0.843955i \(-0.680222\pi\)
0.843955 + 0.536414i \(0.180222\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 12.5881 12.5881i 0.0531143 0.0531143i
\(238\) 0 0
\(239\) 114.913i 0.480809i 0.970673 + 0.240405i \(0.0772801\pi\)
−0.970673 + 0.240405i \(0.922720\pi\)
\(240\) 0 0
\(241\) 219.080 0.909045 0.454522 0.890735i \(-0.349810\pi\)
0.454522 + 0.890735i \(0.349810\pi\)
\(242\) 0 0
\(243\) −31.6214 31.6214i −0.130129 0.130129i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −197.328 197.328i −0.798897 0.798897i
\(248\) 0 0
\(249\) 16.6618i 0.0669147i
\(250\) 0 0
\(251\) 95.0552i 0.378706i −0.981909 0.189353i \(-0.939361\pi\)
0.981909 0.189353i \(-0.0606390\pi\)
\(252\) 0 0
\(253\) 264.602 + 264.602i 1.04586 + 1.04586i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 249.128 + 249.128i 0.969369 + 0.969369i 0.999545 0.0301755i \(-0.00960661\pi\)
−0.0301755 + 0.999545i \(0.509607\pi\)
\(258\) 0 0
\(259\) 5.01917 0.0193790
\(260\) 0 0
\(261\) 245.128i 0.939187i
\(262\) 0 0
\(263\) −85.6095 + 85.6095i −0.325511 + 0.325511i −0.850877 0.525365i \(-0.823929\pi\)
0.525365 + 0.850877i \(0.323929\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) −0.481843 + 0.481843i −0.00180465 + 0.00180465i
\(268\) 0 0
\(269\) −192.119 −0.714196 −0.357098 0.934067i \(-0.616234\pi\)
−0.357098 + 0.934067i \(0.616234\pi\)
\(270\) 0 0
\(271\) 485.780 1.79255 0.896274 0.443501i \(-0.146264\pi\)
0.896274 + 0.443501i \(0.146264\pi\)
\(272\) 0 0
\(273\) 4.00951 4.00951i 0.0146869 0.0146869i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 88.8551 88.8551i 0.320777 0.320777i −0.528288 0.849065i \(-0.677166\pi\)
0.849065 + 0.528288i \(0.177166\pi\)
\(278\) 0 0
\(279\) 358.871i 1.28627i
\(280\) 0 0
\(281\) 390.006 1.38792 0.693961 0.720012i \(-0.255864\pi\)
0.693961 + 0.720012i \(0.255864\pi\)
\(282\) 0 0
\(283\) 121.062 + 121.062i 0.427779 + 0.427779i 0.887871 0.460092i \(-0.152184\pi\)
−0.460092 + 0.887871i \(0.652184\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 59.9730 + 59.9730i 0.208965 + 0.208965i
\(288\) 0 0
\(289\) 287.530i 0.994914i
\(290\) 0 0
\(291\) 12.0435i 0.0413867i
\(292\) 0 0
\(293\) 244.956 + 244.956i 0.836026 + 0.836026i 0.988333 0.152307i \(-0.0486702\pi\)
−0.152307 + 0.988333i \(0.548670\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) −28.0625 28.0625i −0.0944866 0.0944866i
\(298\) 0 0
\(299\) −425.269 −1.42230
\(300\) 0 0
\(301\) 157.350i 0.522757i
\(302\) 0 0
\(303\) 14.1481 14.1481i 0.0466934 0.0466934i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) −135.324 + 135.324i −0.440796 + 0.440796i −0.892280 0.451483i \(-0.850895\pi\)
0.451483 + 0.892280i \(0.350895\pi\)
\(308\) 0 0
\(309\) −13.3175 −0.0430987
\(310\) 0 0
\(311\) −225.951 −0.726531 −0.363266 0.931686i \(-0.618338\pi\)
−0.363266 + 0.931686i \(0.618338\pi\)
\(312\) 0 0
\(313\) 230.622 230.622i 0.736812 0.736812i −0.235148 0.971960i \(-0.575557\pi\)
0.971960 + 0.235148i \(0.0755575\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −221.563 + 221.563i −0.698938 + 0.698938i −0.964182 0.265243i \(-0.914548\pi\)
0.265243 + 0.964182i \(0.414548\pi\)
\(318\) 0 0
\(319\) 326.517i 1.02356i
\(320\) 0 0
\(321\) −24.9588 −0.0777534
\(322\) 0 0
\(323\) 17.6268 + 17.6268i 0.0545721 + 0.0545721i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) −6.08745 6.08745i −0.0186161 0.0186161i
\(328\) 0 0
\(329\) 108.885i 0.330957i
\(330\) 0 0
\(331\) 141.212i 0.426624i −0.976984 0.213312i \(-0.931575\pi\)
0.976984 0.213312i \(-0.0684250\pi\)
\(332\) 0 0
\(333\) 14.0880 + 14.0880i 0.0423063 + 0.0423063i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −225.465 225.465i −0.669035 0.669035i 0.288458 0.957493i \(-0.406858\pi\)
−0.957493 + 0.288458i \(0.906858\pi\)
\(338\) 0 0
\(339\) −23.0297 −0.0679343
\(340\) 0 0
\(341\) 478.025i 1.40183i
\(342\) 0 0
\(343\) −148.371 + 148.371i −0.432568 + 0.432568i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 346.013 346.013i 0.997155 0.997155i −0.00284067 0.999996i \(-0.500904\pi\)
0.999996 + 0.00284067i \(0.000904214\pi\)
\(348\) 0 0
\(349\) 428.411 1.22754 0.613769 0.789486i \(-0.289653\pi\)
0.613769 + 0.789486i \(0.289653\pi\)
\(350\) 0 0
\(351\) 45.1021 0.128496
\(352\) 0 0
\(353\) −25.9724 + 25.9724i −0.0735762 + 0.0735762i −0.742937 0.669361i \(-0.766568\pi\)
0.669361 + 0.742937i \(0.266568\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) −0.358160 + 0.358160i −0.00100325 + 0.00100325i
\(358\) 0 0
\(359\) 288.043i 0.802348i 0.916002 + 0.401174i \(0.131398\pi\)
−0.916002 + 0.401174i \(0.868602\pi\)
\(360\) 0 0
\(361\) 61.7587 0.171077
\(362\) 0 0
\(363\) −2.82868 2.82868i −0.00779249 0.00779249i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 160.854 + 160.854i 0.438295 + 0.438295i 0.891438 0.453143i \(-0.149697\pi\)
−0.453143 + 0.891438i \(0.649697\pi\)
\(368\) 0 0
\(369\) 336.669i 0.912382i
\(370\) 0 0
\(371\) 91.9956i 0.247966i
\(372\) 0 0
\(373\) −360.121 360.121i −0.965471 0.965471i 0.0339529 0.999423i \(-0.489190\pi\)
−0.999423 + 0.0339529i \(0.989190\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 262.389 + 262.389i 0.695992 + 0.695992i
\(378\) 0 0
\(379\) −64.1572 −0.169280 −0.0846402 0.996412i \(-0.526974\pi\)
−0.0846402 + 0.996412i \(0.526974\pi\)
\(380\) 0 0
\(381\) 11.5945i 0.0304319i
\(382\) 0 0
\(383\) 376.877 376.877i 0.984014 0.984014i −0.0158604 0.999874i \(-0.505049\pi\)
0.999874 + 0.0158604i \(0.00504875\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −441.656 + 441.656i −1.14123 + 1.14123i
\(388\) 0 0
\(389\) −10.3794 −0.0266823 −0.0133411 0.999911i \(-0.504247\pi\)
−0.0133411 + 0.999911i \(0.504247\pi\)
\(390\) 0 0
\(391\) 37.9882 0.0971566
\(392\) 0 0
\(393\) 10.8298 10.8298i 0.0275569 0.0275569i
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 184.458 184.458i 0.464630 0.464630i −0.435540 0.900169i \(-0.643442\pi\)
0.900169 + 0.435540i \(0.143442\pi\)
\(398\) 0 0
\(399\) 8.59006i 0.0215290i
\(400\) 0 0
\(401\) −262.943 −0.655719 −0.327859 0.944727i \(-0.606327\pi\)
−0.327859 + 0.944727i \(0.606327\pi\)
\(402\) 0 0
\(403\) −384.141 384.141i −0.953204 0.953204i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 18.7656 + 18.7656i 0.0461071 + 0.0461071i
\(408\) 0 0
\(409\) 245.618i 0.600532i −0.953855 0.300266i \(-0.902925\pi\)
0.953855 0.300266i \(-0.0970755\pi\)
\(410\) 0 0
\(411\) 6.54034i 0.0159132i
\(412\) 0 0
\(413\) −148.065 148.065i −0.358512 0.358512i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 13.6917 + 13.6917i 0.0328339 + 0.0328339i
\(418\) 0 0
\(419\) 673.011 1.60623 0.803116 0.595823i \(-0.203174\pi\)
0.803116 + 0.595823i \(0.203174\pi\)
\(420\) 0 0
\(421\) 701.227i 1.66562i −0.553557 0.832811i \(-0.686730\pi\)
0.553557 0.832811i \(-0.313270\pi\)
\(422\) 0 0
\(423\) −305.622 + 305.622i −0.722511 + 0.722511i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) −7.70804 + 7.70804i −0.0180516 + 0.0180516i
\(428\) 0 0
\(429\) 29.9814 0.0698868
\(430\) 0 0
\(431\) −405.559 −0.940973 −0.470486 0.882407i \(-0.655922\pi\)
−0.470486 + 0.882407i \(0.655922\pi\)
\(432\) 0 0
\(433\) −145.764 + 145.764i −0.336638 + 0.336638i −0.855100 0.518462i \(-0.826505\pi\)
0.518462 + 0.855100i \(0.326505\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 455.553 455.553i 1.04245 1.04245i
\(438\) 0 0
\(439\) 62.3888i 0.142116i −0.997472 0.0710579i \(-0.977362\pi\)
0.997472 0.0710579i \(-0.0226375\pi\)
\(440\) 0 0
\(441\) −393.583 −0.892479
\(442\) 0 0
\(443\) 169.632 + 169.632i 0.382918 + 0.382918i 0.872152 0.489235i \(-0.162724\pi\)
−0.489235 + 0.872152i \(0.662724\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 6.45431 + 6.45431i 0.0144392 + 0.0144392i
\(448\) 0 0
\(449\) 17.0056i 0.0378743i 0.999821 + 0.0189371i \(0.00602824\pi\)
−0.999821 + 0.0189371i \(0.993972\pi\)
\(450\) 0 0
\(451\) 448.452i 0.994351i
\(452\) 0 0
\(453\) 2.89151 + 2.89151i 0.00638303 + 0.00638303i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −559.163 559.163i −1.22355 1.22355i −0.966360 0.257191i \(-0.917203\pi\)
−0.257191 0.966360i \(-0.582797\pi\)
\(458\) 0 0
\(459\) −4.02886 −0.00877747
\(460\) 0 0
\(461\) 327.625i 0.710683i 0.934737 + 0.355341i \(0.115635\pi\)
−0.934737 + 0.355341i \(0.884365\pi\)
\(462\) 0 0
\(463\) 605.934 605.934i 1.30871 1.30871i 0.386367 0.922345i \(-0.373730\pi\)
0.922345 0.386367i \(-0.126270\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 83.9231 83.9231i 0.179707 0.179707i −0.611521 0.791228i \(-0.709442\pi\)
0.791228 + 0.611521i \(0.209442\pi\)
\(468\) 0 0
\(469\) −174.422 −0.371903
\(470\) 0 0
\(471\) 16.9313 0.0359476
\(472\) 0 0
\(473\) −588.298 + 588.298i −1.24376 + 1.24376i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) −258.217 + 258.217i −0.541335 + 0.541335i
\(478\) 0 0
\(479\) 831.992i 1.73694i −0.495746 0.868468i \(-0.665105\pi\)
0.495746 0.868468i \(-0.334895\pi\)
\(480\) 0 0
\(481\) −30.1601 −0.0627028
\(482\) 0 0
\(483\) 9.25640 + 9.25640i 0.0191644 + 0.0191644i
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) −373.676 373.676i −0.767301 0.767301i 0.210329 0.977631i \(-0.432546\pi\)
−0.977631 + 0.210329i \(0.932546\pi\)
\(488\) 0 0
\(489\) 6.74590i 0.0137953i
\(490\) 0 0
\(491\) 42.8051i 0.0871795i 0.999050 + 0.0435898i \(0.0138794\pi\)
−0.999050 + 0.0435898i \(0.986121\pi\)
\(492\) 0 0
\(493\) −23.4386 23.4386i −0.0475427 0.0475427i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 94.5819 + 94.5819i 0.190306 + 0.190306i
\(498\) 0 0
\(499\) 485.100 0.972143 0.486072 0.873919i \(-0.338429\pi\)
0.486072 + 0.873919i \(0.338429\pi\)
\(500\) 0 0
\(501\) 14.7730i 0.0294870i
\(502\) 0 0
\(503\) −666.926 + 666.926i −1.32590 + 1.32590i −0.416980 + 0.908916i \(0.636912\pi\)
−0.908916 + 0.416980i \(0.863088\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) −1.98935 + 1.98935i −0.00392376 + 0.00392376i
\(508\) 0 0
\(509\) −779.971 −1.53236 −0.766180 0.642626i \(-0.777845\pi\)
−0.766180 + 0.642626i \(0.777845\pi\)
\(510\) 0 0
\(511\) 108.964 0.213237
\(512\) 0 0
\(513\) −48.3138 + 48.3138i −0.0941790 + 0.0941790i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) −407.097 + 407.097i −0.787422 + 0.787422i
\(518\) 0 0
\(519\) 35.4435i 0.0682919i
\(520\) 0 0
\(521\) −736.972 −1.41453 −0.707267 0.706947i \(-0.750072\pi\)
−0.707267 + 0.706947i \(0.750072\pi\)
\(522\) 0 0
\(523\) 671.690 + 671.690i 1.28430 + 1.28430i 0.938195 + 0.346108i \(0.112497\pi\)
0.346108 + 0.938195i \(0.387503\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 34.3144 + 34.3144i 0.0651127 + 0.0651127i
\(528\) 0 0
\(529\) 452.780i 0.855917i
\(530\) 0 0
\(531\) 831.192i 1.56533i
\(532\) 0 0
\(533\) −360.377 360.377i −0.676129 0.676129i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) −2.02773 2.02773i −0.00377604 0.00377604i
\(538\) 0 0
\(539\) −524.263 −0.972659
\(540\) 0 0
\(541\) 1039.61i 1.92164i −0.277168 0.960822i \(-0.589396\pi\)
0.277168 0.960822i \(-0.410604\pi\)
\(542\) 0 0
\(543\) −34.4860 + 34.4860i −0.0635101 + 0.0635101i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 238.506 238.506i 0.436026 0.436026i −0.454646 0.890672i \(-0.650234\pi\)
0.890672 + 0.454646i \(0.150234\pi\)
\(548\) 0 0
\(549\) −43.2705 −0.0788169
\(550\) 0 0
\(551\) −562.148 −1.02023
\(552\) 0 0
\(553\) −153.717 + 153.717i −0.277969 + 0.277969i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 263.387 263.387i 0.472867 0.472867i −0.429974 0.902841i \(-0.641477\pi\)
0.902841 + 0.429974i \(0.141477\pi\)
\(558\) 0 0
\(559\) 945.513i 1.69144i
\(560\) 0 0
\(561\) −2.67816 −0.00477391
\(562\) 0 0
\(563\) 160.698 + 160.698i 0.285431 + 0.285431i 0.835270 0.549839i \(-0.185311\pi\)
−0.549839 + 0.835270i \(0.685311\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 127.894 + 127.894i 0.225563 + 0.225563i
\(568\) 0 0
\(569\) 407.195i 0.715633i 0.933792 + 0.357817i \(0.116479\pi\)
−0.933792 + 0.357817i \(0.883521\pi\)
\(570\) 0 0
\(571\) 131.146i 0.229678i 0.993384 + 0.114839i \(0.0366351\pi\)
−0.993384 + 0.114839i \(0.963365\pi\)
\(572\) 0 0
\(573\) 15.7883 + 15.7883i 0.0275538 + 0.0275538i
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) −417.933 417.933i −0.724321 0.724321i 0.245162 0.969482i \(-0.421159\pi\)
−0.969482 + 0.245162i \(0.921159\pi\)
\(578\) 0 0
\(579\) 47.7137 0.0824071
\(580\) 0 0
\(581\) 203.462i 0.350192i
\(582\) 0 0
\(583\) −343.952 + 343.952i −0.589969 + 0.589969i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 212.882 212.882i 0.362660 0.362660i −0.502131 0.864791i \(-0.667451\pi\)
0.864791 + 0.502131i \(0.167451\pi\)
\(588\) 0 0
\(589\) 822.992 1.39727
\(590\) 0 0
\(591\) −58.6697 −0.0992720
\(592\) 0 0
\(593\) −97.2530 + 97.2530i −0.164002 + 0.164002i −0.784337 0.620335i \(-0.786997\pi\)
0.620335 + 0.784337i \(0.286997\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −11.4977 + 11.4977i −0.0192592 + 0.0192592i
\(598\) 0 0
\(599\) 712.479i 1.18945i 0.803930 + 0.594723i \(0.202738\pi\)
−0.803930 + 0.594723i \(0.797262\pi\)
\(600\) 0 0
\(601\) 217.550 0.361980 0.180990 0.983485i \(-0.442070\pi\)
0.180990 + 0.983485i \(0.442070\pi\)
\(602\) 0 0
\(603\) −489.575 489.575i −0.811899 0.811899i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 12.6560 + 12.6560i 0.0208501 + 0.0208501i 0.717455 0.696605i \(-0.245307\pi\)
−0.696605 + 0.717455i \(0.745307\pi\)
\(608\) 0 0
\(609\) 11.4223i 0.0187558i
\(610\) 0 0
\(611\) 654.287i 1.07085i
\(612\) 0 0
\(613\) 523.841 + 523.841i 0.854552 + 0.854552i 0.990690 0.136138i \(-0.0434689\pi\)
−0.136138 + 0.990690i \(0.543469\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 331.035 + 331.035i 0.536523 + 0.536523i 0.922506 0.385983i \(-0.126138\pi\)
−0.385983 + 0.922506i \(0.626138\pi\)
\(618\) 0 0
\(619\) 277.907 0.448961 0.224481 0.974479i \(-0.427931\pi\)
0.224481 + 0.974479i \(0.427931\pi\)
\(620\) 0 0
\(621\) 104.123i 0.167670i
\(622\) 0 0
\(623\) 5.88393 5.88393i 0.00944451 0.00944451i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) −32.1164 + 32.1164i −0.0512223 + 0.0512223i
\(628\) 0 0
\(629\) 2.69412 0.00428318
\(630\) 0 0
\(631\) −425.237 −0.673910 −0.336955 0.941521i \(-0.609397\pi\)
−0.336955 + 0.941521i \(0.609397\pi\)
\(632\) 0 0
\(633\) −15.5794 + 15.5794i −0.0246121 + 0.0246121i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 421.298 421.298i 0.661379 0.661379i
\(638\) 0 0
\(639\) 530.952i 0.830911i
\(640\) 0 0
\(641\) −474.056 −0.739558 −0.369779 0.929120i \(-0.620567\pi\)
−0.369779 + 0.929120i \(0.620567\pi\)
\(642\) 0 0
\(643\) −490.408 490.408i −0.762687 0.762687i 0.214121 0.976807i \(-0.431311\pi\)
−0.976807 + 0.214121i \(0.931311\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −319.187 319.187i −0.493334 0.493334i 0.416021 0.909355i \(-0.363424\pi\)
−0.909355 + 0.416021i \(0.863424\pi\)
\(648\) 0 0
\(649\) 1107.17i 1.70596i
\(650\) 0 0
\(651\) 16.7224i 0.0256873i
\(652\) 0 0
\(653\) −95.6351 95.6351i −0.146455 0.146455i 0.630077 0.776532i \(-0.283023\pi\)
−0.776532 + 0.630077i \(0.783023\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 305.845 + 305.845i 0.465517 + 0.465517i
\(658\) 0 0
\(659\) −295.703 −0.448715 −0.224358 0.974507i \(-0.572028\pi\)
−0.224358 + 0.974507i \(0.572028\pi\)
\(660\) 0 0
\(661\) 1223.87i 1.85154i 0.378088 + 0.925770i \(0.376582\pi\)
−0.378088 + 0.925770i \(0.623418\pi\)
\(662\) 0 0
\(663\) 2.15217 2.15217i 0.00324611 0.00324611i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −605.754 + 605.754i −0.908177 + 0.908177i
\(668\) 0 0
\(669\) 29.2955 0.0437900
\(670\) 0 0
\(671\) −57.6374 −0.0858978
\(672\) 0 0
\(673\) 95.3663 95.3663i 0.141703 0.141703i −0.632697 0.774400i \(-0.718052\pi\)
0.774400 + 0.632697i \(0.218052\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −208.006 + 208.006i −0.307247 + 0.307247i −0.843841 0.536594i \(-0.819711\pi\)
0.536594 + 0.843841i \(0.319711\pi\)
\(678\) 0 0
\(679\) 147.067i 0.216594i
\(680\) 0 0
\(681\) 22.4657 0.0329892
\(682\) 0 0
\(683\) −704.881 704.881i −1.03204 1.03204i −0.999470 0.0325668i \(-0.989632\pi\)
−0.0325668 0.999470i \(-0.510368\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) −3.46801 3.46801i −0.00504805 0.00504805i
\(688\) 0 0
\(689\) 552.800i 0.802321i
\(690\) 0 0
\(691\) 814.437i 1.17864i 0.807901 + 0.589318i \(0.200603\pi\)
−0.807901 + 0.589318i \(0.799397\pi\)
\(692\) 0 0
\(693\) 171.014 + 171.014i 0.246773 + 0.246773i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 32.1915 + 32.1915i 0.0461858 + 0.0461858i
\(698\) 0 0
\(699\) 18.7442 0.0268158
\(700\) 0 0
\(701\) 39.4607i 0.0562920i 0.999604 + 0.0281460i \(0.00896033\pi\)
−0.999604 + 0.0281460i \(0.991040\pi\)
\(702\) 0 0
\(703\) 32.3078 32.3078i 0.0459570 0.0459570i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −172.767 + 172.767i −0.244366 + 0.244366i
\(708\) 0 0
\(709\) 1177.86 1.66130 0.830648 0.556798i \(-0.187970\pi\)
0.830648 + 0.556798i \(0.187970\pi\)
\(710\) 0 0
\(711\) −862.917 −1.21367
\(712\) 0 0
\(713\) 886.832 886.832i 1.24380 1.24380i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −15.0297 + 15.0297i −0.0209619 + 0.0209619i
\(718\) 0 0
\(719\) 242.835i 0.337740i −0.985638 0.168870i \(-0.945988\pi\)
0.985638 0.168870i \(-0.0540119\pi\)
\(720\) 0 0
\(721\) 162.624 0.225553
\(722\) 0 0
\(723\) 28.6537 + 28.6537i 0.0396317 + 0.0396317i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) −619.622 619.622i −0.852300 0.852300i 0.138116 0.990416i \(-0.455895\pi\)
−0.990416 + 0.138116i \(0.955895\pi\)
\(728\) 0 0
\(729\) 712.425i 0.977264i
\(730\) 0 0
\(731\) 84.4603i 0.115541i
\(732\) 0 0
\(733\) −281.127 281.127i −0.383529 0.383529i 0.488843 0.872372i \(-0.337419\pi\)
−0.872372 + 0.488843i \(0.837419\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −652.127 652.127i −0.884841 0.884841i
\(738\) 0 0
\(739\) −1109.74 −1.50168 −0.750839 0.660485i \(-0.770351\pi\)
−0.750839 + 0.660485i \(0.770351\pi\)
\(740\) 0 0
\(741\) 51.6175i 0.0696592i
\(742\) 0 0
\(743\) −339.850 + 339.850i −0.457403 + 0.457403i −0.897802 0.440399i \(-0.854837\pi\)
0.440399 + 0.897802i \(0.354837\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 571.084 571.084i 0.764504 0.764504i
\(748\) 0 0
\(749\) 304.780 0.406916
\(750\) 0 0
\(751\) 980.557 1.30567 0.652834 0.757501i \(-0.273580\pi\)
0.652834 + 0.757501i \(0.273580\pi\)
\(752\) 0 0
\(753\) 12.4324 12.4324i 0.0165105 0.0165105i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 101.564 101.564i 0.134166 0.134166i −0.636834 0.771001i \(-0.719757\pi\)
0.771001 + 0.636834i \(0.219757\pi\)
\(758\) 0 0
\(759\) 69.2154i 0.0911929i
\(760\) 0 0
\(761\) 767.675 1.00877 0.504386 0.863478i \(-0.331719\pi\)
0.504386 + 0.863478i \(0.331719\pi\)
\(762\) 0 0
\(763\) 74.3357 + 74.3357i 0.0974256 + 0.0974256i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 889.722 + 889.722i 1.16000 + 1.16000i
\(768\) 0 0
\(769\) 331.840i 0.431522i 0.976446 + 0.215761i \(0.0692232\pi\)
−0.976446 + 0.215761i \(0.930777\pi\)
\(770\) 0 0
\(771\) 65.1675i 0.0845234i
\(772\) 0 0
\(773\) 180.328 + 180.328i 0.233283 + 0.233283i 0.814061 0.580779i \(-0.197252\pi\)
−0.580779 + 0.814061i \(0.697252\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 0.656463 + 0.656463i 0.000844869 + 0.000844869i
\(778\) 0 0
\(779\) 772.078 0.991114
\(780\) 0 0
\(781\) 707.243i 0.905561i
\(782\) 0 0
\(783\) 64.2435 64.2435i 0.0820479 0.0820479i
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 945.029 945.029i 1.20080 1.20080i 0.226876 0.973924i \(-0.427149\pi\)
0.973924 0.226876i \(-0.0728513\pi\)
\(788\) 0 0
\(789\) −22.3940 −0.0283827
\(790\) 0 0
\(791\) 281.223 0.355529
\(792\) 0 0
\(793\) 46.3175 46.3175i 0.0584079 0.0584079i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −680.774 + 680.774i −0.854171 + 0.854171i −0.990644 0.136473i \(-0.956423\pi\)
0.136473 + 0.990644i \(0.456423\pi\)
\(798\) 0 0
\(799\) 58.4458i 0.0731487i
\(800\) 0 0
\(801\) 33.0305 0.0412366
\(802\) 0 0
\(803\) 407.393 + 407.393i 0.507339 + 0.507339i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −25.1275 25.1275i −0.0311369 0.0311369i
\(808\) 0 0
\(809\) 427.952i 0.528989i 0.964387 + 0.264495i \(0.0852051\pi\)
−0.964387 + 0.264495i \(0.914795\pi\)
\(810\) 0 0
\(811\) 1222.46i 1.50735i −0.657245 0.753677i \(-0.728278\pi\)
0.657245 0.753677i \(-0.271722\pi\)
\(812\) 0 0
\(813\) 63.5359 + 63.5359i 0.0781499 + 0.0781499i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 1012.84 + 1012.84i 1.23971 + 1.23971i
\(818\) 0 0
\(819\) −274.853 −0.335596
\(820\) 0 0
\(821\) 1019.26i 1.24148i −0.784015 0.620742i \(-0.786831\pi\)
0.784015 0.620742i \(-0.213169\pi\)
\(822\) 0 0
\(823\) −158.477 + 158.477i −0.192560 + 0.192560i −0.796801 0.604241i \(-0.793476\pi\)
0.604241 + 0.796801i \(0.293476\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −573.534 + 573.534i −0.693511 + 0.693511i −0.963003 0.269492i \(-0.913144\pi\)
0.269492 + 0.963003i \(0.413144\pi\)
\(828\) 0 0
\(829\) −1133.71 −1.36756 −0.683782 0.729686i \(-0.739666\pi\)
−0.683782 + 0.729686i \(0.739666\pi\)
\(830\) 0 0
\(831\) 23.2430 0.0279699
\(832\) 0 0
\(833\) −37.6335 + 37.6335i −0.0451783 + 0.0451783i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) −94.0534 + 94.0534i −0.112370 + 0.112370i
\(838\) 0 0
\(839\) 1109.49i 1.32240i 0.750212 + 0.661198i \(0.229952\pi\)
−0.750212 + 0.661198i \(0.770048\pi\)
\(840\) 0 0
\(841\) −93.5052 −0.111183
\(842\) 0 0
\(843\) 51.0094 + 51.0094i 0.0605094 + 0.0605094i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 34.5418 + 34.5418i 0.0407814 + 0.0407814i
\(848\) 0 0
\(849\) 31.6676i 0.0372999i
\(850\) 0 0
\(851\) 69.6278i 0.0818188i
\(852\) 0 0
\(853\) 1.51055 + 1.51055i 0.00177087 + 0.00177087i 0.707992 0.706221i \(-0.249601\pi\)
−0.706221 + 0.707992i \(0.749601\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 396.892 + 396.892i 0.463118 + 0.463118i 0.899676 0.436558i \(-0.143803\pi\)
−0.436558 + 0.899676i \(0.643803\pi\)
\(858\) 0 0
\(859\) 941.956 1.09657 0.548286 0.836291i \(-0.315280\pi\)
0.548286 + 0.836291i \(0.315280\pi\)
\(860\) 0 0
\(861\) 15.6879i 0.0182206i
\(862\) 0 0
\(863\) 833.800 833.800i 0.966164 0.966164i −0.0332818 0.999446i \(-0.510596\pi\)
0.999446 + 0.0332818i \(0.0105959\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 37.6064 37.6064i 0.0433754 0.0433754i
\(868\) 0 0
\(869\) −1149.43 −1.32270
\(870\) 0 0
\(871\) 1048.10 1.20333
\(872\) 0 0
\(873\) −412.794 + 412.794i −0.472846 + 0.472846i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 33.6015 33.6015i 0.0383142 0.0383142i −0.687690 0.726004i \(-0.741375\pi\)
0.726004 + 0.687690i \(0.241375\pi\)
\(878\) 0 0
\(879\) 64.0762i 0.0728967i
\(880\) 0 0
\(881\) 1084.55 1.23104 0.615521 0.788121i \(-0.288946\pi\)
0.615521 + 0.788121i \(0.288946\pi\)
\(882\) 0 0
\(883\) 1165.53 + 1165.53i 1.31997 + 1.31997i 0.913796 + 0.406174i \(0.133137\pi\)
0.406174 + 0.913796i \(0.366863\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −381.705 381.705i −0.430333 0.430333i 0.458409 0.888742i \(-0.348420\pi\)
−0.888742 + 0.458409i \(0.848420\pi\)
\(888\) 0 0
\(889\) 141.584i 0.159263i
\(890\) 0 0
\(891\) 956.338i 1.07333i
\(892\) 0 0
\(893\) 700.879 + 700.879i 0.784859 + 0.784859i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) −55.6215 55.6215i −0.0620084 0.0620084i
\(898\) 0 0
\(899\) −1094.34 −1.21729
\(900\) 0 0
\(901\) 49.3802i 0.0548060i
\(902\) 0 0
\(903\) −20.5800 + 20.5800i −0.0227907 + 0.0227907i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) −457.511 + 457.511i −0.504422 + 0.504422i −0.912809 0.408387i \(-0.866092\pi\)
0.408387 + 0.912809i \(0.366092\pi\)
\(908\) 0 0
\(909\) −969.856 −1.06695
\(910\) 0 0
\(911\) 620.530 0.681152 0.340576 0.940217i \(-0.389378\pi\)
0.340576 + 0.940217i \(0.389378\pi\)
\(912\) 0 0
\(913\) 760.699 760.699i 0.833187 0.833187i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −132.247 + 132.247i −0.144216 + 0.144216i
\(918\) 0 0
\(919\) 981.064i 1.06753i −0.845631 0.533767i \(-0.820776\pi\)
0.845631 0.533767i \(-0.179224\pi\)
\(920\) 0 0
\(921\) −35.3985 −0.0384349
\(922\) 0 0
\(923\) −568.341 568.341i −0.615754 0.615754i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 456.459 + 456.459i 0.492405 + 0.492405i
\(928\) 0 0
\(929\) 776.484i 0.835827i 0.908487 + 0.417914i \(0.137239\pi\)
−0.908487 + 0.417914i \(0.862761\pi\)
\(930\) 0 0
\(931\) 902.598i 0.969493i
\(932\) 0 0
\(933\) −29.5525 29.5525i −0.0316747 0.0316747i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −759.800 759.800i −0.810885 0.810885i 0.173881 0.984767i \(-0.444369\pi\)
−0.984767 + 0.173881i \(0.944369\pi\)
\(938\) 0 0
\(939\) 60.3267 0.0642457
\(940\) 0 0
\(941\) 759.500i 0.807120i −0.914953 0.403560i \(-0.867773\pi\)
0.914953 0.403560i \(-0.132227\pi\)
\(942\) 0 0
\(943\) 831.969 831.969i 0.882257 0.882257i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −822.618 + 822.618i −0.868657 + 0.868657i −0.992324 0.123667i \(-0.960535\pi\)
0.123667 + 0.992324i \(0.460535\pi\)
\(948\) 0 0
\(949\) −654.763 −0.689951
\(950\) 0 0
\(951\) −57.9572 −0.0609434
\(952\) 0 0
\(953\) −659.139 + 659.139i −0.691647 + 0.691647i −0.962594 0.270947i \(-0.912663\pi\)
0.270947 + 0.962594i \(0.412663\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 42.7056 42.7056i 0.0446244 0.0446244i
\(958\) 0 0
\(959\) 79.8661i 0.0832806i
\(960\) 0 0
\(961\) 641.133 0.667152
\(962\) 0 0
\(963\) 855.468 + 855.468i 0.888336 + 0.888336i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 332.005 + 332.005i 0.343335 + 0.343335i 0.857620 0.514284i \(-0.171942\pi\)
−0.514284 + 0.857620i \(0.671942\pi\)
\(968\) 0 0
\(969\) 4.61086i 0.00475837i
\(970\) 0 0
\(971\) 960.961i 0.989661i 0.868989 + 0.494831i \(0.164770\pi\)
−0.868989 + 0.494831i \(0.835230\pi\)
\(972\) 0 0
\(973\) −167.194 167.194i −0.171834 0.171834i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −69.4628 69.4628i −0.0710980 0.0710980i 0.670664 0.741762i \(-0.266009\pi\)
−0.741762 + 0.670664i \(0.766009\pi\)
\(978\) 0 0
\(979\) 43.9975 0.0449413
\(980\) 0 0
\(981\) 417.297i 0.425379i
\(982\) 0 0
\(983\) 234.943 234.943i 0.239006 0.239006i −0.577433 0.816438i \(-0.695945\pi\)
0.816438 + 0.577433i \(0.195945\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) −14.2412 + 14.2412i −0.0144288 + 0.0144288i
\(988\) 0 0
\(989\) 2182.82 2.20710
\(990\) 0 0
\(991\) 919.592 0.927944 0.463972 0.885850i \(-0.346424\pi\)
0.463972 + 0.885850i \(0.346424\pi\)
\(992\) 0 0
\(993\) 18.4694 18.4694i 0.0185996 0.0185996i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 835.935 835.935i 0.838450 0.838450i −0.150205 0.988655i \(-0.547993\pi\)
0.988655 + 0.150205i \(0.0479932\pi\)
\(998\) 0 0
\(999\) 7.38441i 0.00739180i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 800.3.m.b.657.6 20
4.3 odd 2 200.3.i.b.157.2 20
5.2 odd 4 160.3.m.a.113.6 20
5.3 odd 4 inner 800.3.m.b.593.5 20
5.4 even 2 160.3.m.a.17.5 20
8.3 odd 2 200.3.i.b.157.4 20
8.5 even 2 inner 800.3.m.b.657.5 20
20.3 even 4 200.3.i.b.93.4 20
20.7 even 4 40.3.i.a.13.7 20
20.19 odd 2 40.3.i.a.37.9 yes 20
40.3 even 4 200.3.i.b.93.2 20
40.13 odd 4 inner 800.3.m.b.593.6 20
40.19 odd 2 40.3.i.a.37.7 yes 20
40.27 even 4 40.3.i.a.13.9 yes 20
40.29 even 2 160.3.m.a.17.6 20
40.37 odd 4 160.3.m.a.113.5 20
60.47 odd 4 360.3.u.b.253.4 20
60.59 even 2 360.3.u.b.37.2 20
120.59 even 2 360.3.u.b.37.4 20
120.107 odd 4 360.3.u.b.253.2 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
40.3.i.a.13.7 20 20.7 even 4
40.3.i.a.13.9 yes 20 40.27 even 4
40.3.i.a.37.7 yes 20 40.19 odd 2
40.3.i.a.37.9 yes 20 20.19 odd 2
160.3.m.a.17.5 20 5.4 even 2
160.3.m.a.17.6 20 40.29 even 2
160.3.m.a.113.5 20 40.37 odd 4
160.3.m.a.113.6 20 5.2 odd 4
200.3.i.b.93.2 20 40.3 even 4
200.3.i.b.93.4 20 20.3 even 4
200.3.i.b.157.2 20 4.3 odd 2
200.3.i.b.157.4 20 8.3 odd 2
360.3.u.b.37.2 20 60.59 even 2
360.3.u.b.37.4 20 120.59 even 2
360.3.u.b.253.2 20 120.107 odd 4
360.3.u.b.253.4 20 60.47 odd 4
800.3.m.b.593.5 20 5.3 odd 4 inner
800.3.m.b.593.6 20 40.13 odd 4 inner
800.3.m.b.657.5 20 8.5 even 2 inner
800.3.m.b.657.6 20 1.1 even 1 trivial